

University of Sheffield, NLP

Advanced GATE Applications

© The University of Sheffield, 1995-2014
This work is licenced under the Creative Commons Attribution-NonCommercial-ShareAlike Licence

University of Sheffield, NLP

Topics covered

• This module is about adapting ANNIE to create your own
applications, and to look at more advanced techniques
within applications

– Using different gazetteers

– Using conditional applications

– Section-by-section processing

– Using multiple annotation sets

– Separating useful content in a document

– Schema Enforcer

– Using Groovy

– Modular Pipelines

University of Sheffield, NLP

Using different gazetteers

University of Sheffield, NLP

Why?

● The standard gazetteer in ANNIE only performs exact
matching against the text

● An entry in a gazetteer list must match the word exactly in
the text (with the exception of capitalisation issues
depending on if the case-sensitive parameter is switched
on)

● But what if we want to match a plural word in the text with a
singular word in the gazetteer?

● Or different forms of a verb (says, saying, say, said etc.)

● It would be nice not to have to specify alternative forms of
each word in the lists

● Luckily, we have ways to do this

University of Sheffield, NLP

Advanced Gazetteers

● There are several different gazetteers which let you do more
complex matching

● Flexible Gazetteer: enables matching against features on an
annotation (typically the Token's root feature)

● Feature Gazetteer: enables matching against features on an
annotation, but also enables adding/removing annotations and
features when a match is found

● Extended Gazetteer: as for the flexible gazetteer, but also
provides features for more powerful matching of partial words,
annotating prefixes and suffixes, and more versatile handling
of word boundaries and white space.

● BWP Gazetteer: approximate gazetteer based on
Levenshtein Edit Distance for strings, aiming to handle text
with noise and errors

University of Sheffield, NLP

Flexible Gazetteer

● Found in the Tools plugin

● Requires a regular gazetteer to be loaded - this should not be in
the pipeline, however

● Load-time parameters let you specify:

● the regular gazetteer to use

● the annotations and features to match on

● The typical use for this is to match against the root form of a
word (e.g. dogs -> dog; laughing -> laugh)

● To do this, you need to specify Token.root as the annotation and
feature to match on

● You also need to make sure you have run the morphological
analyser first, so you have root features on your Tokens

University of Sheffield, NLP

Flexible gazetteer load-time parameters

Select a gazetteer that you have
loaded, e.g. the default ANNIE oneChoose the annotation name and feature

that you want to match on

University of Sheffield, NLP

Hands-on with flexible gazetteer

● Load ANNIE

● Load the Tools plugin

● Create a new Flexible Gazetteer, and select Token.root as the
input Feature name

● Select the ANNIE gazetter as the gazetteer instance to use

● Create a new morphological analyser

● Go to the ANNIE application and add the morphological analyser
and flexible gazetteer to the pipeline after the POS tagger

● Remove the ANNIE gazetteer from the application (but don't
remove it from GATE!)

● Try it on some text!

University of Sheffield, NLP

Extended Gazetteer

● Found in the StringAnnotation plugin Plugin Repository
“Additional Plugins from the GATE Team” or download from
https://github.com/johann-petrak/gateplugin-StringAnnotation

● Faster loading, uses much less memory than regular gazetteer

● Needs annotations that identify words and whitespace

● Can limit annotating to just within containing annotations

● Same PR can be used for direct matching of document text or
indirect matching of feature values

● Can specify whether to match at the beginning and/or the end of
words separately

● Can use (gzip) compressed list files (.lst.gz)

https://github.com/johann-petrak/gateplugin-StringAnnotation

University of Sheffield, NLP

Init parameters

● caseSensitive: false if case should be ignored for matching

● configFile URL: specify the definition/config file – similar
to the “listsURL” parameter on the ANNIE gazetteer

● caseConversionLanguage: Specify the language to use
for converting characters to upper case when case-
insensitive matching (e.g. ß→SS for de) . Default is en
(English)

● gazetteerFeatureSeparator: same as for the ANNIE
gazetteer

● => no encoding parameters, list files have to be UTF-8
encoded

University of Sheffield, NLP

Run-time parameters

● containingAnnotationType: if an annotation type is given, then
matching is done only fully within the span of such annotations.
E.g. DocumentContent, Sentence.

● longestMatchOnly: if set to true, then only the longest match is
used and all shorter matches are ignored.

● matchAtWordEndOnly: if true, then the end of a match can only
occur at the end of a word annotation. Typically set to true.

● matchAtWordStartOnly: if true, then the start of a match can
only occur at the start of a word annotation. Typically set to true.

● textFeature: feature of the word annotation to match on (as for
FlexibleGazetteer). Typically left empty or set to root.

University of Sheffield, NLP

More run-time parameters

● outputAnnotationType: in case you want to change the name
of the annotation to be created on a match (instead of Lookup)

● spaceAnnotationType: the annotation type that identifies space
between words, default is SpaceToken.

● splitAnnotationType: the annotation type that identifies
positions in the document that should not be crossed by
matches, default is Split.

● wordAnnotationType: type of annotations that define the word
boundaries of the text that should be used for matching or if
matching by feature is used, the annotations containing the
feature. Typically set to Token.

University of Sheffield, NLP

Extended gazetteer cache files

● When a gazetteer is first loaded from a .def file, then the
ExtendedGazetteer will create a new gazetteer cache file.

● This cache file has the same name as the .def file but with
a file extension ".gazbin" instead of ".def".

● When the gazetteer gets loaded and such a cache file
exists, the cache file will be loaded instead of the original
files.

● NOTE: if a cache file exists, it will always be used, no
matter if the .def or any .lst file has been changed in the
meantime. If you update the gazetteer, make sure you
select “Remove cache and re-initialise” in the GUI

University of Sheffield, NLP

Feature gazetteer

● Found in the StringAnnotation plugin

● Enables adding/removing annotations/features when a match is
found

● For example, if tokens have a root feature and there is a
gazetteer list that has as a feature the frequencies of English
word roots in some corpus, the "add features" action can be
used to enrich the token annotations with word frequencies.

● filter annotations: if there is a gazetteer of stopwords, the
string or root feature of existing token annotations can be
matched and the "remove annotation" action can be used to
remove these annotations if a stopword is matched.

University of Sheffield, NLP

Init parameters

● exactly the same as for the ExtendedGazetteer

● Note: this gazetteer uses the cache, .def and .lst files in
exactly the same way as the ExtendedGazetter. If the
ExtendedGazetteer and/or FeatureGazetteer load from the
same files using the same Init-parameters, only one shared
copy is used in memory.

University of Sheffield, NLP

Feature gazetteer run-time parameters

● containingAnnotationType: If an annotation type is given, then
matching is done only within the span of such annotations.

● InputAnnotationSet: the set that contains the annotations to be
updated, if annotations are updated

● matchAtStartOnly: if true, then a match must be found at the
start of the value of the feature, if false, a match may start
anywhere.

● matchAtEndOnly: if true, then a match must be found that ends
at the end of the value of the feature, if false, a match may end
anywhere.

● outputAnnotationType: in case you want to change the name
of the annotation to be created on a match, if annotations are
created (instead of Lookup)

University of Sheffield, NLP

More run-time parameters

● wordAnnotationType: the annotation type that is used for
matching. For example Token or Lookup.

● textFeature: the name of a feature of the word annotation which is
used for matching, e.g. root or id

● processingMode: select an option from:

● AddFeatures: add all features from the def file or the gazetteer
entry which are not already present in the annotation

● OverwriteFeatures: overwrite all features (if any existing) from
the def file or the gazetteer entry with the new values

● RemoveAnnotation: delete the annotation from the input AS

● AddNewAnnotation: add a new annotation to the output AS

● KeepAnnotation: keep annotation if match, else remove

University of Sheffield, NLP

Gazetteer features

● All GATE gazetteers allow arbitrary feature values to be associated
with particular entries in a single list

● ANNIE does not use this capability, but to enable it for your own
gazetteers, set the optional gazetteerFeatureSeparator parameter

● We advise setting the value of this feature to the tab character (\t)
so that it is never confused with part of a list entry

● It also means you can directly use tab-separated value (.tsv) files
from your favourite spreadsheet editor

● You do not have to provide the same features for every line in the
file, e.g. you can provide extra features for some lines in the list but
not others.

● Use the “+cols” option in the GATE gazetteer editor to add new
sets of features and values

University of Sheffield, NLP

BWP gazetteer

● Does not come with GATE, but can be loaded as a plugin

● Download from
http://sourceforge.net/projects/bwp-gazetteer/

http://sourceforge.net/projects/bwp-gazetteer/

University of Sheffield, NLP

Conditional Processing

University of Sheffield, NLP

What is conditional processing?

 In GATE, you can set a processing resource in your
application to run or not depending on certain circumstances

 You can have several different PRs loaded, and let the system
automatically choose which one to run, for each document.

 This is very helpful when you have texts in multiple
languages, or of different types, which might require different
kinds of processing

 For example, if you have a mixture of German and English
documents in your corpus, you might have some PRs which
are language-dependent and some which are not

 You can set up the application to run the relevant PRs on the
right documents automatically.

University of Sheffield, NLP

Conditional processing with different
languages

● Suppose we have a corpus with documents in German and
English, and we only want to process the English texts.

● First we must distinguish between the two kinds of text, using
a language identification tool

● For this we can use TextCat, which is a GATE plugin

● We use this (in default mode) to add a feature on each
document, telling us which language the document is in

● Then we run a conditional processing pipeline, that only runs
the subsequent PRs if the value of the language feature on
the document is English

● The other documents will not be processed

University of Sheffield, NLP

Hands-on with multilingual corpora (1)

● Create a new corpus in GATE and populate it with the two
documents found in corpus/rar-english-german-corpus/

● Select iso-8859-1 as the encoding when you populate the corpus

● You should have one English and one German document loaded

● Load ANNIE

● Load the Language Identification plugin and load the TextCat
Language Identification PR

● Add TextCat to the end of the ANNIE application and run it on the
corpus

● You should get some sensible annotations for the English
document and some slightly less sensible ones for the German
one

University of Sheffield, NLP

Check the language of the documents

● Click on a document

● In the bottom left corner is the
document features pane

● TextCat will add a language
feature here

University of Sheffield, NLP

What if we want to process the German
too?

● If we want to process both German and English documents
with different resources, we have a couple of options

1. We can just call some language-specific PRs
conditionally, and use the language-neutral PRs on all
documents

2. We can call different applications from within the main
application

● The following two hands-on exercises demonstrate the
difference between these

University of Sheffield, NLP

Hands-on with multilingual apps (1)

● Load the application annie+german.gapp

● Look at the various PRs in the app: some are set to run on
English documents, some on German ones, and some on
all documents

● Run the application on your corpus

● The German document should now be annotated with
German NEs and the English document with English ones

● There will be some mistakes (we're not using a German
POS tagger here so results are weaker than usual)

University of Sheffield, NLP

Hands-on with multilingual apps (2)

● Close recursively all applications you have loaded in GATE (keep
the corpus)

● Load ANNIE with defaults

● Load the Lang_German plugin

● Load the German IE application from “Ready-made applications”

● Create a new conditional corpus pipeline

● Load a TextCat PR and add it to the new pipeline created

● Add the ANNIE and German applications to the pipeline (in either
order) after the TextCat

Set ANNIE to run on English documents and the German app to
run on German ones

● Save the main application and run it on your corpus

University of Sheffield, NLP

Your application should look like this

University of Sheffield, NLP

Other uses for conditional processing

• Processing degraded text along with normal text

• For degraded text (e.g. emails, ASR transcriptions) you
might want to use some case-insensitive PRs

• Another use is in combination with different kinds of files
(HTML, plain text etc) which might require different
processing

• More about this later....

University of Sheffield, NLP

Another example

 In one application we developed, we found a problem when
running the Orthomatcher (co-reference) on certain texts
where there were a lot of annotations of the same type.

 To solve this issue, we first checked to see how many
annotations of each were present in a document

 If more than a certain number were present, we added a
document feature indicating this

 We then set the orthomatcher to only run on a document
which did not contain this feature.

University of Sheffield, NLP

Application

University of Sheffield, NLP

Grammar to check number of annotations

If there are more than 200 annotations of one type, don't run
the orthomatcher

Rule: CheckAnnotations

({Person}|{Organization}|{Location})

-->

{

AnnotationSet annots = inputAS.get("Person");

if (annots.size() > 200) {

doc.getFeatures().put("runOrthomatcher","false");

return;}

...

doc.getFeatures().put("runOrthomatcher","true");

}

University of Sheffield, NLP

Section by Section Processing:
the Segment Processing PR

University of Sheffield, NLP

What is it?

 PR which enables you to process labelled sections of a
document independently, one at a time

 Useful for
 very large documents
 when you want annotations in different sections to be

independent of each other
 when you only want to process certain sections within

a document

University of Sheffield, NLP

Processing large documents

• If you have a very large document, for example an entire patient
record concatenated into a single GATE document, you may not
be able to load it all into memory at once

• One solution is to chop it up into smaller documents and process
each one separately, using a datastore to avoid keeping all the
documents in memory at once

• But this means you then need to merge all the documents back
afterwards

• The Segment Processing PR does this all in one go, by
processing each labelled section separately

University of Sheffield, NLP

Processing Sections Independently

• Another problem with large documents can arise when you
want to handle each section separately

• You may not want annotations to be co-referenced across
sections, for instance if a web page has profiles of different
people with similar names

• Using the Segment Processing PR enables you to handle each
section separately, without breaking up the document

• It also enables you to use different PRs for each section, using
a conditional controller

• For example, some documents may have sections in different
languages

University of Sheffield, NLP

Getting rid of the junk

• Another very common problem is that some documents contain
lots of “junk” that you don't want to process, e.g. HTML files
contain javascript or contents lists, footers etc.

• There are a number of ways in which you can do this: you may
need to experiment to find the best solution for each case

– Segment Processing PR enables you to only process the
section(s) you are interested in and ignore the junk

– Using the AnnotationSetTransfer PR, though this works
slightly differently

– Using the Boilerpipe PR - this works best for ignoring
standard kinds of boilerplate

University of Sheffield, NLP

How does it work?

• The PR is part of the Alignment Plugin

• A new application needs to be created, containing the
Segment PR

• The PR then takes as one of its parameters, an instance of
the application that you want to run on the document (e.g.
ANNIE)

• You can add other PRs before or after the Segment PR, if
you want them to run over the whole document rather than
the specified section(s)

University of Sheffield, NLP

Running ANNIE on a title segment

• Application
contains a
Segment
Processing
PR

• Segment
Processing
PR calls
ANNIE
application

University of Sheffield, NLP

Segment Processing Parameters

• Segment Processing PR calls the ANNIE application

• ANNIE is set to run only on the text covered by the span of the
“title” annotation in the Original markups annotation set

University of Sheffield, NLP

Annotation Result

• Green shading shows the title, which spans the section to be
annotated
• The only NE found is the Organization “BBC News” in the title
• Tokens in the rest of the document are not annotated

University of Sheffield, NLP

Using multiple annotation sets

University of Sheffield, NLP

Annotation Set Transfer

• This PR enables copying or moving annotations from one
set to another

• This is useful for backing up annotations before processing,
or where a PR wants everything in the same set (ML PRs)

• For example, you might want to move all the gold standard
annotations from Default to Key annotation set

University of Sheffield, NLP

Transferring annotations

The annotations remain the same, they're just stored in a different set

University of Sheffield, NLP

Delimiting a section of text

• Another use is to delimit only a certain section of text in which to run
further PRs over

• We can move the annotations we want to work on into a different set,
and work on that set

• Use the tagASName and textTagName to specify the covering
annotation (for example “body” in the “Original markups” annotation set
gives the body text of html documents)

University of Sheffield, NLP

Hands-on Exercise

• Objective: move all the annotations from the Default set into the
Key set

• Clear GATE of all previous documents, corpora, applications
and PRs

• Load document self-shearing-sheep-marked.xml and create an
instance of an AST (you may need to load the Tools plugin)

• Have a look at the annotations in the document

• Add the AST to a new application and set the parameters to
move all annotations from Default to Key

• Make sure you don't leave the originals in Default!

• Run the application and check the results

University of Sheffield, NLP

Schema Enforcer

 When creating an application, you often end up with lots of
annotations and features which are not needed in the final output

 If pushing the output into a MIMIR index, or if storage space is an
issue, it's particularly important to get rid of these

 You can tidy up the output using the AnnotationSetTransfer PR to
move selected annotation types to a new set, but there's still the
problem of the features

 Schema Enforcer PR will ensure that annotations and features
will only appear in the final output set if they adhere strictly to the
annotation schemas used

 Straightforward to use - load Schema Tools plugin and just list the
schemas to be used in the runtime parameters (they must be
loaded in GATE already)

University of Sheffield, NLP

Modular Pipelines

● With a normal application (corpus pipeline) you can load other
applications as sub-components, as we have seen

● The problem with this is that when you make changes to any of these
sub-components and then save your main application, the original
application is not saved.

● So if you want to use these sub-components separately, you have to
remember to save separately any changes to them.

● The modular pipelines method gets round this by saving the individual
applications separately.

● It's not part of GATE, but you can download the plugin from

https://github.com/johann-petrak/gateplugin-ModularPipelines

or from the Plugin Repository “Additional Plugins from the GATE Team”

https://github.com/johann-petrak/gateplugin-ModularPipelines

University of Sheffield, NLP

How to use it

● Load the Modular Pipelines plugin

● Create a new Parametrized Corpus Controller from the
Applications menu

● Load an application (sub-pipeline) by creating a new
Processing Resource of type “Pipeline”

● Select a .gapp file as the value of PipelineFileURL in the
loadtime parameters

● This will load the application into GATE

● Add the pipeline to your Parametrized Corpus Controller
application

● Add more sub-pipelines or PRs as you wish

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

