
University of Sheffield, NLP

Module 9:
Semantic Annotation and Ontologies

© The University of Sheffield, 1995-2013
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike Licence

http://creativecommons.org/licenses/by-nc-sa/3.0/

Slide 2University of Sheffield, NLP

About this tutorial

● This tutorial will be a mixture of explanation, demos and
hands-on work

● Things for you to try yourself are in red
● It assumes basic familiarity with the GATE GUI and with

ANNIE and JAPE; no Java expertise
● Your hands-on materials are in

module-9-hands-on.zip which extracts to
module-9-hands-on/
From: http://gate.ac.uk/wiki/TrainingCourseJune2013/

● Completing the hands-on tasks will help you in the exam....

http://gate.ac.uk/wiki/TrainingCourseJune2013/

Slide 3University of Sheffield, NLP

ANNIE Annotations

● We know the type of named entity but nothing more
● What kind of organization is Blackstone Group LP?
● What is the job of William Hague?
● Where is Eastern DRC, what does DRC stand for?

=> only semantics: choice of annotation type name
=> some knowledge hidden deep in JAPE & Code

Slide 4University of Sheffield, NLP

Need More Semantics:

● To co-reference DRC with “Democratic Republic of Congo”
● To avoid scattered knowledge in JAPE/Java?

Cities are locations, cities have zip codes, ...
● To disambiguate: which “Washington” (state / city)?
● To use extracted information to allow for queries like:

● European politicians who visited an African country?
● Politicians and actors travelling together?

● To use extracted information to add information to our own
Database/Knowledgebase:

● Add information about the buying-agreement to our data
about Blackstone Group and First Potomac Realty Trust

● Connect with trading information or other data we have

Slide 5University of Sheffield, NLP

Semantic Annotation: Basic Idea/Vision

● Link annotations to concepts in a knowledge base.
● The annotated text is a “Mention” of a concept in the KB
● We can use the knowledge associated with Mentions in our

IE pipeline: e.g. Persons have JobTitles, Cities have zip
codes

● We can use the knowledge associated with Mentions for
“Semantic Search”

● We can use semantically annotated documents to add new
facts to our knowledge base

=> We need some way to represent knowledge

Slide 6University of Sheffield, NLP

Knowledge Base

Would want to represent knowledge for this domain:
● Westerwelle:

has job Foreign minister of Germany → a politician
 Germany → a country, in Europe
Member of the Free Democratic Party
 Free Democratic Party → a political party
 Political party → an organization
…

● Blackstone Group L.P. → a private equity company
has NYSE symbol: BX
based in: New York City
 New York City → a city
 located in: New York State which is located in USA
...

Slide 7University of Sheffield, NLP

Ontology

Use an ontology!
A formal way to represent knowledge as:

● Concepts of a domain or a set of domains
“Agelina Jolie”, “Ghana”

● Relationships between concepts
 “New York City is located in New York State”

● Hierarchies of Concepts and Relationships
“New York City is a City which is a Location”

● Associated Data
“Blackstone Group has NYSE symbol BX”

● => most widely used formalism is RDF/OWL

Slide 8University of Sheffield, NLP

OWL Ontologies - RDF(S)

● Based on RDF(S) - Resource Description Framework (Schema):
● Everything is identified by an URI
● Everything can be expressed as triples of the form

Subject Predicate Object:
:NewYork rdf:type :City .
:City rdfs:subClassOf :Location .
:Location a rdfs:Class .
:BlackstoneGroup :hasNyseSymbol “BX” .

● Simple vocabulary to express things:
rdf:type = “belongs to a class”
rdf:Class = “the class of all classes”
“BX” = the literal string “BX”

Slide 9University of Sheffield, NLP

OWL Ontologies - URIs

● Nearly everything represented by URI
(not blank nodes and literal values):
http://my.ontology/locations#NewYorkCity

● URIs can look like URLs
● Often many URIs share the same prefix:

http://my.ontology/locations#NewYorkState
http://my.ontology/people#AngelinaJolie

● Common part http://my.ontology/ is “Base URI”, can
abbreviate: locations#NewYorkState, people#AngelinaJolie

● Namespace + Fragement identifier
loc: = http://my.ontology/locations#
→ loc:NewYork means http://my.ontology/locations#NewYork
“:” alone can be used to indicate “default namespace”
If default namespace is http://my.ontology/#
→ :Class1 really means http://my.ontology/#Class1

http://my.ontology/locations#NewYorkCity
http://my.ontology/locations#NewYorkState
http://my.ontology/people#AngelinaJolie
http://my.ontology/
http://my.ontology/locations
http://my.ontology/locations
http://my.ontology/

Slide 10University of Sheffield, NLP

OWL Ontologies - RDF(S)

● All resources identified by URIs
Different URIs may refer to the same resource

● Resources that are “Individuals” can be grouped into “Classes”
and relate to other things and to values by “Properties”.

● Values represented through “Literals”:
“BX” - a string (untyped literal)
“New York State”@en – string with language tag (untyped)
“Guido Westerwelle”^^xsd:string – typed literal
“24”^^xsd:integer

● :A rdf:type :B – :A is contained in class :B
:B rdf:type rdfs:Class – :B is an RDFS Class
:B rdfs:subClassOf :C – all members of :B are in :C

=> Application may do class membership subsumption

Slide 11University of Sheffield, NLP

OWL Ontologies

● Extend the vocabulary of RDF(S): more semantics, e.g.
owl:DatatypeProperty
owl:Class (different to rdfs:Class)
owl:sameAs
owl:FunctionalProperty, owl:inverseOf, ...

● (!) Reasoning/Inference: infer all derivable new facts from
asserted facts

● Arbitrary RDFS/OWL is undecidable: restrict language!
OWL Full = RDFS + semantics → undecidable, incomplete
OWL DL = decidable+complete but hard/slow
OWL Lite = better than OWL DL (but still hard): GATE!

● OWL2: profiles EL, DL, QL, RL have better trade-off between
expressiveness and performance

Slide 12University of Sheffield, NLP

OWL Ontologies

● OWL: Web Ontology Language
● Classes/Concepts and Individuals/Instances
● Properties:

DatatypeProperty: individual → literal
ObjectProperty: individual → individual
AnnotationProperty: resource → literal, but no inference

● Inference/Reasoning:
- Inheritance/Subsumption (classes and properties)
- “Restrictions”: domain, range, allValuesFrom, hasValue …infer class
membership, property values (but: does not really “restrict” anything)
Open World Assumption: what is not asserted, we do not now
Non Unique Name Assumption: different names may be used for same entity

● Classes can have more than one parent, Individuals can belong to more than
one class → OWL Ontologies are graphs, not trees

● Can be written down as RDF/XML, Turtle ...

Slide 13University of Sheffield, NLP

OWL Ontologies – Inference Examples

● :prop1 a owl:ObjectProperty .
:prop1 rdfs:domain :Class1 .
:A :prop1 :B .
→ :A must be a member of :Class1

● :prop1 rdfs:range :Class2 .
:A prop1 :D .
→ :D must be a member of :Class2

● :prop2 a owl:FunctionalProperty .
:A :prop2 :B .
:A :prop2 :C .
→ :B and :C must be the same!

Different literal values: inconsistent (but not in GATE)

Slide 14University of Sheffield, NLP

OWL Ontologies – Inference Examples

● :prop3 a owl:TransitiveProperty .
:A :prop3 :B .
:B :prop3 :C .
→ :A :prop3 :C .

● :prop4 a owl:ObjectProperty .
:prop5 rdfs:subPropertyOf :prop4 .
:A :prop5 :B .
 :A :prop4 :B .→

● :prop6 owl:inverseOf :prop5 .
 :B :prop6 :A .→

Slide 15University of Sheffield, NLP

OWL vs. Object Oriented

● Similar terminology but very different!
● Classes are not prototypes but merely sets of individuals

defined by intension (rule) or extension (enumeration)
● Properties are “global” by default
● No real inheritance of property/value from classes to

individuals
● No “real” restrictions/limitations but inference / inconsistency
● Inference often goes in a direction that is surprising or

unexpected

Slide 16University of Sheffield, NLP

OWL: Inference of values

● Cannot just add the property to the class and “inherit” in
individual!
(can add annotation property, but this will not be used to infer
anything for the individuals of the class)

● Use a owl:hasValue “Restriction”:
:Human a owl:Class ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:onProperty :numberOfLegs ;
 owl:hasValue 2
] .
:Person0213 a :Human .
 :Person0213 :numberOfLegs 2 .→

Slide 17University of Sheffield, NLP

Ontologies in GATE

● Can use OWL-Lite ontologies as language resources
(→ Plugin Ontology)

● Ontology Editor, Ontology Annotation Tool, Relation Annotation
Tool (→ Plugin Ontology_Tools)

● Ontology-enabled JAPE, JAPE Plus
● LKB Gazetteer (→ Plugin Gazetteer_LKB)

OntoRoot Gazetteer (→ Plugin Gazetteer_Ontology_Based)
● Ontology-based evaluation

(→ Plugin Ontology_BDM_Computation)
● Java API for ontology manipulation, triple manipulation,

SPARQL queries
● Simple CLI commands for ontology handling, querying, SPARQL

Slide 18University of Sheffield, NLP

GATE Ontology Implementation

● Based on Sesame and the OWLIM-Lite SAIL (Storage and
Inference Layer) implementation from Ontotext

● Fast in memory repository, scales to millions of statements
(depending on RAM)

● In addition to local file ontology, can connect to server:
- OWLIM Lite
- OWLIM SE/Enterprise: commercial product, persistent and
scalable implementation for huge (billion triples) ontologies

● Supports “almost OWL-Lite”
● Java API represents OWL concepts (ontology, property,

literal) as Java objects
Also provides support for SPARQL and manipulating Triples
directly

Slide 19University of Sheffield, NLP

Load Ontology

● Need plugin Ontology
● For Editor, also need plugin Ontology_Tools
● Language Resource → New → OWLIM Ontology

● Loaded:

Slide 20University of Sheffield, NLP

Ontology Viewer/Editor

● Basic viewing of ontologies
● Some edit functionalities:

● create new concepts and instances
● define new properties and property values
● deletion

● Some limitations of what's supported, basically chosen
from practical needs for semantic annotation

● Not a Protégé replacement

Slide 21University of Sheffield, NLP

Ontology Editor

Slide 22University of Sheffield, NLP

URIs, Labels, Comments

● The names of classes, properties or instances shown in the GUI
are the fragment identifiers of their URIs
http://gate.ac.uk/example#Person → “Person”

● URIs and fragment identifiers cannot contain spaces and certain
other characters: use underscore or “encode” (%20)

● To also store the correctly spelled name (or several), the
annotation property “label” is often used:

● right click on the class/instance → Properties → label, enter the
value in the dialogue box (cannot chose type or language!)

● The comment property is often used for documentation purposes,
also a string

● Comments and labels are annotation properties: no inference
but can be used with properties and classes too

http://gate.ac.uk/example#Person

Slide 23University of Sheffield, NLP

New label

“lexicalisation”

Slide 24University of Sheffield, NLP

Hands-on 1: classes and individuals

● Load the Ontology and Ontology_Tools plugins
● Language Resource → New → OWLIM Ontology

- For RdfXmlURL use test­ontology.owl
- This loads a small ontology of Entity, Location, etc.

● Double-click on the ontology LR to open the Viewer
● Create a subclass of “Location” called “City” and then add the

city where you live as an instance of “City”
● Add yourself as an individual of the class “Person”
● Add a label with your full name
● Save the ontology (right click on ontology in resources pane

and select “Save as”
● Keep the ontology open for the next hands on

Slide 25University of Sheffield, NLP

Datatype Properties

● Datatype properties link individuals to data values
● Datatype properties can (but do not have to) be of type

boolean, date, int, ...
● Available datatypes taken from XMLSchema
● To define a new data property in the Ontology Editor

● Select an ontology class and click on the D button
● Choose the desired datatype from the list (e.g. xsd:int)
● Provide the property name (e.g. hasAge)
● Specify the domain (the class of the individuals having this property)

(no domain: domain is owl:Thing)
● If more than one class is listed as a domain, this asserts that any

individual having that property must be a member of the intersection
of those classes

Slide 26University of Sheffield, NLP

Adding a new property

Slide 27University of Sheffield, NLP

Adding a DatatypeProperty Value

● To add a value for an instance, right click on the instance and
select “Properties” and then the name of the property for which
you want to add a value.

● If the property is not listed, then you haven't defined it yet for the
concept to which your instance belongs

● Enter the value in the popup box
GATE does some basic type checking (not OWL!)

● You should now see the property and its value listed in the right
hand pane

● The same property can be added multiple times with different
values (but not the same value)
GATE does not prevent you from doing this for functional
properties → inconsistent ontology!

Slide 28University of Sheffield, NLP

Adding a property value

1. Select instance
and property

2. Add or select value

3. Property and value displayed

Slide 29University of Sheffield, NLP

Hands-on 2: Datatype properties

● Use the ontology from the previous exercise
● Add a datatype property “hasAge” with domain “Person” and

domain “xsd:nonNegativeInteger”
● Add a value for the hasAge property to the instance of Person

that refers to you (you can make it up if you don't want to reveal
your real age!)

● Add an instance of Organization denoting the organization you
work for (make one up if you like)

● Save the ontology (with the same name as before)
● Keep everything open for the next hands-on

Slide 30University of Sheffield, NLP

Object Properties

● Object properties describe relationships between individuals, e.g.
people work for organisations

● Domain is the subject of the relation (the thing it applies to)
● Range is the object of the relation (the possible ”values”)

Similar to domains, multiple classes for a range will assert that the
value will belong to the intersection of all specified classes.

Person work_for Organisation

Domain Property Range

Slide 31University of Sheffield, NLP

Creating new Object Properties

To define a new object property:
● Click on the O button
● Provide a property name and (optionally) domain / range

To set the value of an object property for an instance:
● Right-click on the instance
● Select Properties and then the name of the relevant property
● From the drop down list of instances, choose the correct instance

as a value and add to the list of values
GATE does not prevent adding multiple values for a functional
property: → individuals are same or ontology inconsistent!

Slide 32University of Sheffield, NLP

New Object Property

Slide 33University of Sheffield, NLP

Hands-on 3: Object properties

● Use the entity ontology you saved in the previous exercise
● Add an object property “worksFor” to model that persons work

for organizations: which domain / range?
● Add a property value so you work for the organization you

added earlier
● Right click the ontology and choose “Load”

As file select “employs.turtle”
As file format choose “turtle”
This loads a file that contains:
 :employs owl:inverseOf :worksFor .

● Click the organization instance and check that “employs” got
automatically inferred from “worksFor”

● Save the ontology

Slide 34University of Sheffield, NLP

Using Ontologies on a Server

● Use the ConnectSesameOntology LR
● Can connect to any remote Sesame repository, but GATE

only fully supports OWLIM with ruleset owl-max
● Parameters repositoryID and repositoryLocation:

http://uid:pwd@host.com:8080/openrdf-sesame/repositories/someid

repositoryID: someid

repositoryLocation: http://uid:pwd@host.com:8080/openrdf-sesame

● Do NOT use the editor/viewer or other GUI tools with this
unless the ontology is small!

● Mainly for use with the Java API
● If not an OWLIM/owl-max repository, some things may still

be possible with the Java API

Slide 35University of Sheffield, NLP

Ontology Design Principles

● There are many ways to encode a domain in an ontology – use your application
needs as a guide. Keep it simple: only model what is needed, not what is true.

● Ontology authoring is often iterative and evolves with your text analysis
application

● Classes vs. instances: this can vary, but as a rough guide, proper nouns are
usually instances, common nouns are usually classes.
Dilemma: OWL-Lite cannot treat something as both a Class and an Instance

● Level of granularity: what subclasses do you need? (e.g do organisations need
subclasses such as government, education, charity?)

● Domains and ranges: really only useful when the inference is needed!
Similar for local range restrictions (allValuesFrom, someValuesFrom)

● Properties: subproperties, transitive properties, inverse properties can be useful

● Literals: make sure literals are always typed or never typed

Slide 36University of Sheffield, NLP

Semantic Annotation

● Link text mentions to ontology resources:
Mention annotations have a feature (inst) with the
URI of the resource

● Usually linking to individuals, may link to classes
● Use:

● Information Extraction (OBIE: Ontology-Based Information
Extraction): e.g. match a Vegetable with a Plant in JAPE,
add knowledge useful for IE

● Semantic Search
● Knowledge Acquisition:

Ontology Population: add facts to given structure
Ontology Learning: find structure of ontology too

Slide 37University of Sheffield, NLP

Semantic Annotation

● Match lexical information (e.g. value of rdfs:label property)
with text / word stems / lemmata

● Must disambiguate between possible alternatives
“bank” (river) vs. “bank” (institution)
“G. Bush” (father) vs. “G. Bush” (son) vs. “G. Bush” (not
related)
→ Knowlege from the ontology may be useful here

● Link disambiguated mentions to ontology via URI

Slide 38University of Sheffield, NLP

Semantic Annotation

Slide 39University of Sheffield, NLP

Ontology Learning / Population

● Ontology Population: add new facts to a given ontology. The
ontology structure and many classes and individuals are
already there:
“Westerwelle visits Ghana”
→ :GWesterwelle01 :actorOf :Event001 .
:Event001 a :VisitingEvent .
:Event001 :destination :Ghana .
…

● Ontology Learning: also create or extend the structure of the
ontology.

Slide 40University of Sheffield, NLP

Semantic Annotation: How

● Manually
GATE: ontology based annotation using OAT/RAT
(Ontology Annotation Tool, Relation Annotation Tool)

● Automatically
● Gazetteer/rule/pattern based

GATE: OntoRoot gazetteer, LKB gazetteer, JAPE, ...
● Classifier (ML) based
● Combination of the two

Slide 41University of Sheffield, NLP

Manual semantic annotation: OAT

● Shows document and ontology class hierarchy
side-by-side

● Interactive creation of annotations that link to the ontology
class/instance

● Allows on-the-fly instance creation
● Used to create evaluation or training corpus
● Plugin: Ontology_Tools

Adds a button “OAT” in the document view

Slide 42University of Sheffield, NLP

OAT: Options Tab

● Customisation has to be done for
each document

● To ensure that any new instances
automatically have a label (the
string you selected in the
document), tick Select text as
property value.

● To put all annotations into a set
other than Default, change
accordingly

● By default, OAT creates:
● Annotations of type Mention
● class feature with the class URI
● inst feature with the instance URI

Slide 43University of Sheffield, NLP

OAT

Slide 44University of Sheffield, NLP

OAT: The Editor Pop-up

Slide 45University of Sheffield, NLP

Annotating classes and instances

● Be careful about the difference between annotating
classes and instances

● If you want to add UK to the ontology as an instance of
a Location, you need to select “Create instance”

● Note that this will create a new instance in the ontology
with a name like Location_00020. The string UK will
appear as a label on that instance.

● If you just want to annotate UK with the class Location,
then deselect “Create instance”

Slide 46University of Sheffield, NLP

Annotating a class

Annotating UK as a class will create a new label on the
class with the text string → not what we want!

BUT: we may want
to annotate
“location” that way ...

Slide 47University of Sheffield, NLP

Annotating an instance

Annotating UK as an instance will create a new instance
of Location and set the label of the instance to the text
string

Slide 48University of Sheffield, NLP

Hands-on 4: using OAT

● Use the previously created ontology
● Load the document voting-example.xml (from hands-on)
● Select the OAT button from the doc viewer
● From the Options tab, set “Key” as the annotation set and tick

“Select text as property value”
● Annotate every instance of UK in the text as an instance of a

Location
● Tip: Make sure you select “Create instance” and “Apply to all”

before choosing the target class
● Switch to the ontology viewer to see the new instance
● Examine the annotations created in Key and their features
● Save the ontology and the document

Slide 49University of Sheffield, NLP

OAT: Comments

● The options to filter out some classes / only show some
are useful when working with bigger ontologies

● Limitation: cannot annotate properties:

→ RAT (Relation Annotation Tool)

Slide 50University of Sheffield, NLP

Relation Annotation Tool (RAT)

● RAT annotates a document with ontology instances and creates
relations between annotations by means of ontology object
properties.

● It is compatible with OAT, but focuses on relations between
annotations modelled as object properties

● Plugin Ontology_Tools
● It is comprised of 2 viewers: RATC (RAT-Concept) and RATI

(Rat-Instance).
● Buttons RATC and RATI in document editor work in tandem
● The RATC pane (on the RHS) looks similar to OAT. Click the

checkbox beside a class to display the relevant instances.

Slide 51University of Sheffield, NLP

RAT-I: Adding Instances and Properties

● The RAT-I view (lower horizontal pane) shows two columns: one for
instances and one for properties

● To create a new instance, select an item in the ontology and then
select the relevant text in the document

● Click “New instance”
● Any properties on the relevant class will be shown on the RHS of the

table
● To add a property range, select a property and choose a value from

the dropdown list
● Only object properties will be shown: it is not possible to add datatype

properties in this way

Slide 52University of Sheffield, NLP

Hands-on 5: RAT

● Use the document from the previous hands-on
● Load the ontology test-ontology-instances.owl and remove the old

ontology
● Click on RAT-C or RAT-I to display the viewers
● Add a new instance Liberal Democrats to the class Organization
● Add a new instance Nick Clegg to the class Leader
● Select the Nick Clegg instance and add the value of the

person_works_for property to Liberal Democrats
● Use the ontology viewer to check the results, then save the ontology

(may need to select a different instance then Nick_Clegg to update
view)

Slide 53University of Sheffield, NLP

Adding a property value

● Your result should look something like this:

Slide 54University of Sheffield, NLP

Checking the result

Check that the instance and property have been added
correctly, by viewing it in the ontology editor

Slide 55University of Sheffield, NLP

RAT Comments

● Tool to add individuals and object properties that model
relationships between them based on document text

● Limitation: cannot model relations as individuals, but
often we need to model n-ary relations, actions, events ..

Slide 56University of Sheffield, NLP

OAT vs RAT

 In OAT, you have the option to annotate all mentions of the
selected string in one go, e.g. the string “Liberal Democrats” as
being the mention of the respective instance from the ontology.
In RAT, you'll have to annotate each of the occurrences of this
string over and over again

 OAT currently creates rather opaque instance URIs (e.g.,
Leader_0007A with label “David Cameron”), so once you have
several automatically created instances of the same class, it
becomes hard to distinguish which is which in OAT. RAT shows
you all labels, not just the URI, so it's easier to select

 In OAT you can annotate a string as a mention of a class,
without giving an instance

Slide 57University of Sheffield, NLP

GATE: Automatic Semantic Annotation

● Ontology aware Gazetteers:
● OntoRoot gazetteer
● LKB Gazetteer
● Other gazetteers, using inst/class features

● Ontology aware JAPE
● Semantic Enrichment: LKB Gazetteer, JAPE

Slide 58University of Sheffield, NLP

Ontology Lookup: OntoRoot Gazetteer

● Finds mentions in the text matching classes, instances, data
property values and labels in the ontology

● Matching can be done between any morphological or
typographical variant (e.g. upper/lower case, CamelCase)

● Converts CamelCase names, hyphens, underscores
● Morphological analysis is performed on both text and

ontology, then matching is done between the two at the root
level.

● Text is annotated with features containing the root and
original string(s)

● Creates a gazetteer PR that can be used with the
FlexibleGazetteerPR

Slide 59University of Sheffield, NLP

OntoRoot Gazetteer

● Lives in the Gazetteer_Ontology_Based plugin
● Generates candidate gazetteer list from ontology
● Runs the Tokeniser, POS tagger, Morphological Analyser to

create lemmas from the labels and the fragment identifiers of all
classes and instances and then creates lists to match against
the text

● Gordon_Brown, GordonBrown → Gordon Brown
● Note that the gazetteer produced is stored in memory only and

cannot be edited
→ limited size!

● Must use tokeniser, sentence splitter, POS tagger and
morphological analyser first: so we get “root” (lemma) feature!

Slide 60University of Sheffield, NLP

Init-time OntoRoot params

Ontology LR

POS Tagger

Tokeniser

!!! Must add “class”,”instance”,”property”
(bug in GATE 7.1, later: default)

Slide 61University of Sheffield, NLP

Running the OntoRoot gazetter

● If mostly matching proper names, then add to your application and
run like the ANNIE gazetteer

● It will match against the document text as it is, which is not ideal if
matching against terms (“leaders” should match “leader”: need
lemma/root)

● To find root we need: Tokeniser, Sentence Splitter, POS tagger,
and Morphological Analyser

● To match the root and not the text, use Flexible Gazetteer PR with
OntoRoot as the embedded gazetteer

● Flexible Gazetteer delegates to OntoRoot Gazetteer: Flexible
Gazetteer is the one that needs to be added to the application!
→ If Flexible Gazetteer is used, no need to add OntoRoot
Gazetteer to application.

Slide 62University of Sheffield, NLP

OntoRoot Application in GATE

Create a Flexible
Gazetteer with an
OntoRoot inside it

Build a GATE application with
the PRs shown

Slide 63University of Sheffield, NLP

Output Example

Screen shot of the Lookup annots with the special
features

● The URI feature contains the matched class or instance URI

● The type feature is either class or instance

● Instances have also features classURI and classURIList

Slide 64University of Sheffield, NLP

Hands-on 6: OntoRootGazetteer

• Load Gazetteer_Ontology_Based plugin, ANNIE and Tools plugins

• Close any open ontologies, but keep the document you have open
Load the ontology test-ontology-instances.owl

• Create a new corpus pipeline

• Create Document Reset, Tokeniser, Sentence Splitter, POS Tagger, and
Morphological Analyser (all with defaults) and add to the pipeline in that
order

• Create separate Tokeniser, POS Tagger, and Morphological Analyser PRs
for OntoRoot Gaz, name them OR-Tokeniser etc.

• Create and configure OntoRootGazetteer: chose ontology and make sure
the OR-... tokeniser, POS Tagger, Morpher are selected

• Add “class”, “instance” and “property” to typesToConsider

• Continue on next page

Slide 65University of Sheffield, NLP

Hands-on 6: OntoRoot (contd.)

● Create a FlexibleGazetteer PR:
- add Token.root to inputFeatureNames
- choose the OntoRoot gazetteer as gazetteerInst

● Add Flexible Gazetteer to the pipeline
● Set the runtime parameter setsToRemove of the Document Reset to

“Test”
● Set all the input and output sets in the pipeline to Test
● Create a corpus for document voting-example.xml
● Run the pipeline and inspect the resulting Lookup annotations in the

Test annotation set

● Save your application and keep it open for later

Slide 66University of Sheffield, NLP

Conventions in GATE

● We use “Mention” annotations to reflect the fact that the text
mentions a particular instance or a class

● The Mention annotations have two special features:
● class = class URI from the ontology
● inst = instance URI from the ontology (if available)

e.g. Mention {class=Leader, inst=Gordon_Brown}
● It's important not to use class and inst as features unless you're

dealing with ontologies, as these are predefined names in
several tools

● OntoRoot Gazetteer does not follow the conventions

Slide 67University of Sheffield, NLP

Compatibility with OntoRootGazetteer

● The OntoRootGazetteer always puts the matching resource
(class or individual) URI in a feature called “URI” and the kind of
match in a feature called “type”. For individuals it also creates the
features “classURI” and “classURIList”

● But GATE/JAPE requires these features to be
 called class and inst

● So we need a JAPE grammar to first change the names of these
 features

Slide 68University of Sheffield, NLP

JAPE grammar to change feature names

Phase: LookupRename
Input: Lookup
Options: control = appelt

Rule: RenameLookup
(
 {Lookup.type == instance}

):match
­­>
:match{
 for (Annotation lookup : matchAnnots) {
 FeatureMap theFeatures = lookup.getFeatures();
 theFeatures.put(

"class", theFeatures.get("classURI"));
 theFeatures.put("inst", theFeatures.get("URI"));
 }
}

finds all Lookups which OntoRoot gazetteer
created from ontology instances

add a new feature class with the
value of the original classURI feature

do the same
for inst

Slide 69University of Sheffield, NLP

Ontology Aware JAPE

● JAPE transducers have a run-time parameter which is an ontology
● [Note that the ANNIE NE Transducer] does not have this parameter,

so you cannot use it for ontology-aware JAPE]
● By default it is left blank, so not used during LHS matching
● When an ontology is provided, the class feature can be used on the

LHS of a JAPE rule
● When matching the class value, the ontology is checked for

subsumption: any subclass on the left side of “==” matches
● e.g. {Lookup.class == Person} will match a Lookup annotation with

class feature, whose value is either Person or any subclass of it

Slide 70University of Sheffield, NLP

Ontology-aware JAPE example

Phase: OntoMatching
Input: Lookup
Options: control = appelt

Rule: PersonLookup
(
 {Lookup.class == Person}

):person
-->
:person.Mention =
 {class = :person.Lookup.class,
 inst = :person.Lookup.inst}

Matches the class Person
or any of its subclasses

Adds class and instance information
as features on the Mention annotation

Slide 71University of Sheffield, NLP

Ontology-aware JAPE example

Ontology-aware JAPE applies only to a feature named “class” and
only if the PR's ontology parameter is set.

{Lookup.class == “http://example.com/stuff#Person”}

{Lookup.class == “Person”}

Matches this class or any subclass in the ontology

If the string is not a full URI, JAPE adds the default namespace from
the ontology, looks up that class in the ontology, and matches it or any
subclasses. Be very careful if your ontology uses more than one
namespace!

These rules apply equally to the string in the JAPE rule and in the
value of the annotation's class feature.

Slide 72University of Sheffield, NLP

Templates to simplify namespaces

Template declarations can be used to simplify namespaces.

Template: protont =
 “http://proton.semanticweb.org/2005/04/protont#${n}”
...
{Lookup.class == [protont n=Person]}
...
{Lookup.class == [protont n=Location]}

If you switch to a newer version of PROTON, you only need to change
the Template declarations, not every JAPE LHS. (See the GATE
User Guide http://gate.ac.uk/userguide/sec:jape:templates for more
details and examples.)
Template: protont =
 “http://proton.semanticweb.org/2006/05/protont#${n}”
...

Slide 73University of Sheffield, NLP

Matching subclasses

David Cameron was the first of the main UK party leaders...

The rule matches
because Leader
is a subclass of
Person

Slide 74University of Sheffield, NLP

Hands-on 7: ontology-aware JAPE

● Load the JAPE transducer rename-lookup-features.jape and add
to the end of your existing pipeline
Set the input and output sets for it to Test

● Run the modified pipeline to see how the Lookup annotations for
individuals in Test now have class features

● Load the JAPE transducer person-onto-matching.jape and add it to
the end of the pipeline as before.
- Set the input and output sets for it to Test
- Select the ontology as the run-time param

● Run the modified pipeline to see how it creates new Mention
annotations

● Save the application with a new name and close it

Slide 75University of Sheffield, NLP

LKB Gazetteer

● The LKB gazetteer is used to do ontology-based gazetteer lookup
against very large ontologies, e.g. DBPedia, GeoNames and other
Open Linked Data ontologies

● Uses a SPARQL query to create a gazetteer list from the ontology

SELECT DISTINCT ?label ?inst ?class
WHERE {
 ?inst rdf:type dbp:Country .
 ?inst foaf:name ?label .
 FILTER (lang(?label) = "en")
}

● Internally retrieves the result rows and converts them to gazetteer
entries with inst and class features

● Creates a cache file that will load fast subsequently

Slide 76University of Sheffield, NLP

LKB: Continued

● Lives in plugin Gazetteer_LKB
● LKB does not use the GATE ontology language resources. Instead, it

uses its own mechanism to load and process ontologies.
● Set up your dictionary first. The dictionary is a folder with some

configuration files. Use the samples at
GATE_HOME/plugins/Gazetteer_LKB/samples as a guide or download a
pre-built dictionary from ontotext.com/kim/lkb_gazetteer/dictionaries.

● The dictionary directory defines which repository to connect to, which
SPARQL queries to use to initialise the gazetteer, etc.

● For details see

http://gate.ac.uk/userguide/sec:gazetteers:lkb-gazetteer

http://gate.ac.uk/userguide/sec:gazetteers:lkb-gazetteer

Slide 77University of Sheffield, NLP

Other Gazetteers

● Often ontologies are huge
→ need gazetteers that can deal with very large gazetteer lists, do not
want to re-create list too often

● Often we need to use specific SPARQL queries, need to process/clean
labels or property values before using for the gazetteer

=> Separate preprocessing pipeline to create large gazetteer files with
inst and class features
● Use a gazetteer that can handle large files:

LKB Gazetteer with list files (not SPARQL):
 GATE version > 7.1 can handle class and inst features
ExtendedGazetteer from StringAnnotation plugin
(http://code.google.com/p/gateplugin-stringannotation/)
 can handle arbitrary features

http://code.google.com/p/gateplugin-stringannotation/

Slide 78University of Sheffield, NLP

Semantic Enrichment

● Add additional knowledge to semantically annotated
mentions

● Simplest: add features
e.g. add the name of the country, zip code for a city
→ if we have city names to disambiguate, may use zip code
to disambiguate!

● Use Java API in JAPE RHS, Groovy or own PR
● SemanticEnrichment PR from the Gazetteer_LKB plugin

- SPARQL Endpoint (not GATE Ontology LR)
- Run SPARQL query for each URI in inst
- add query result to 'connections' feature

Slide 79University of Sheffield, NLP

The Big Picture

Linguistic Processing: Tokens, POS, Corefs ...

Semantic Annotation, Enrichment

Disambiguation, Postprocessing

Ontology

SPARQL, Filtering
GATE processing

Format Conversion

Gazetter
LST Files

O-Population

Mimir ServerNew Ontology

Mimir PR ???

Corpus

Slide 80University of Sheffield, NLP

GATE Mímir

● Server-based, index large numbers of GATE documents
- Text (Tokens)
- Annotations and their features
- Semantics: links to ontologies

● Can combine any of these into complex queries
SPARQL can be used to semantic annotations based on the
ontology:

(European Union) &
{Person sparql = “SELECT ?inst {
 ?inst :partyMember :LabourPartyUK .
 ?inst :birthPlace ?x .
 ?x :locatedIn :Wales . }"
}

Slide 81University of Sheffield, NLP

Performance Evaluation

● Mention annotations can be evaluated against a gold standard by
matching the classes or instances

● However, traditional IE evaluation measures (Precision and
Recall) don't take into account the class hierarchy

● Some mistakes can be “more wrong” than others
● Nick Clegg → Person (not Leader) – still logically correct
● Nick Clegg → Location – wrong

● We need a way of dealing with this, to give some credit for these
kind of situations

Slide 82University of Sheffield, NLP

Balanced Distance Metric

● BDM measures the closeness of two concepts in an ontology or
taxonomy

● It produces a real number between 0 and 1
● The more closely related the two concepts are in an ontology,

the greater their BDM score is
● It is dependent on a number of features:

● the length of the shortest path connecting the two concepts
● the depth of the two concepts in the ontology
● size and density of the ontology

Slide 83University of Sheffield, NLP

1: Use OAT to create gold standard

By convention, change the OAT default to put the annotations in the Key set.
It is already configured to create Mentions with class and inst features.

Slide 84University of Sheffield, NLP

2: Compute BDM

● Located in the Ontology_BDM_Computation plugin
● Can be run in a non-corpus pipeline

Runtime parameters:
- input ontology
- output txt file

● For each pair of classes in the ontology, it calculates a number of
statistics

● Since BDM is symmetric for any two concepts, the resulting file
contains only one entry per pair, despite one being called key

● Example file: module-9-hands-on/bonus/bdm-output.txtkey=http://gate.ac.uk/example#Entity,
response=http://gate.ac.uk/example#Location, bdm=0.0,
msca=http://gate.ac.uk/example#Entity, cp=0, dpk=0, dpr=1, n0=1.6666666,
n1=1.6666666, n2=2.0, bran=1.8000001

Slide 85University of Sheffield, NLP

3: Calculate BDM-aware measures

● The IAA plugin computes precision, recall, and F-measure over
a corpus
BDM statistics file can optionally be used to make BDM-aware

● Corpus Quality Assurace VR for a corpus can calculate and
show precision, recall and F-measure (strict+lenient) over a
corpus and for each document in a corpus.
BDM statistics file can optionally be used to calculate
BDM-aware and traditional measures.

Slide 86University of Sheffield, NLP

Our example text again

Clegg is marked as a Person, instead of Leader

Salmond is missing

Slide 87University of Sheffield, NLP

Results

● Traditional scores for the example:
● Match = 2, Only A (missing) = 2, Only B (spurious) = 1, Overlap

(Partial) = 0
● Recall = 0.50, Precision = 0.67, F1 = 0.57

● BDM-sensitive scores:
● Recall = 0.60, Precision = 0.81, F1 = 0.69

Slide 88University of Sheffield, NLP

Further materials

Ontology design:
principles:http://lsdis.cs.uga.edu/SemWebCourse/OntologyDesign.ppt

BDM: http://gate.ac.uk/userguide/sec:eval:bdmplugin

Semantic Annotation:

K. Bontcheva, B. Davis, A. Funk, Y. Li and T. Wang. Human Language Technologies.
Semantic Knowledge Management, John Davies, Marko Grobelnik, and Dunja
Mladenic (Eds.), Springer, 37-49, 2009.

K.Bontcheva, H.Cunningham, A.Kiryakov and V.Tablan. Semantic Annotation and
Human Language Technology. Semantic Web Technology: Trends and Research.
John Wiley and Sons Ltd. 2006.

D. Maynard, Y. Li and W. Peters. NLP Techniques for Term Extraction and Ontology
Population. Bridging the Gap between Text and Knowledge - Selected Contributions
to Ontology Learning and Population from Text, P. Buitelaar and P. Cimiano (editors).
IOS Press, 2007.

http://gate.ac.uk/userguide/sec:eval:bdmplugin

Slide 89University of Sheffield, NLP

QUESTIONS?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

