

University of Sheffield, NLP

Classification—Practical Exercise

University of Sheffield, NLP

Classification—Practical Exercise

● Materials for this exercise are in the folder called
“classification-hands-on”

University of Sheffield, NLP

Classification using Training and
Application PRs

University of Sheffield, NLP

Load the corpus

● Create a corpus for testing and one for training (make sure you
name them so you can tell which is which!)

● Populate them from classification-hands-on/test-corpus and
classification-hands-on/training-corpus

● Open up one of the documents and examine it

University of Sheffield, NLP

Examining the corpus

• The corpus contains an annotation set called “Key”,
which has been manually prepared

• Within this annotation set are Document annotations
with a “type” feature indicating the medical discipline
of the document

University of Sheffield, NLP

What are we going to do with this corpus?

• We are going to train a machine learner to annotate
documents with their discipline

• We'll start with separate training and application steps

• Later we can try some of the evaluation techniques we
talked about earlier

University of Sheffield, NLP

Instances and Attributes

• This corpus so far contains only the class annotations

• There is not much in this corpus to learn from

• What would our instances be?

• What would our attributes be?

• If we run parts of ANNIE over the corpus, then we can
use token features for attributes

University of Sheffield, NLP

Making the Application

• Load ANNIE with defaults

• We only want tokens and some basic features so
remove the last two PRs from the pipeline
– ANNIE NE Transducer

– ANNE Orthomatcher

• Check that the document reset PR's setsToKeep
parameter includes “Key”!

University of Sheffield, NLP

Annotation Set Transfer

● The Learning Framework expects all class and feature
annotations to be in the same set

● ANNIE puts annotations in the default set

● So we need to copy the Document annotations from Key
into the default set

● (We could have ANNIE output to “Key” but it would be a
lot more hassle, and “Key” should be reserved for manual
annotations really)

● We can use the Annotation Set Transfer PR to do this

University of Sheffield, NLP

Annotation Set Transfer

● Create an
Annotation Set
Transfer PR (if
you can't find it,
perhaps you
forgot to load the
Tools plugin)

● Add it to your
application

● Be sure to
“copyAnnotations”
!!!!

University of Sheffield, NLP

Training PR

● Make a PR for classification training and add it to the
application at the end

● Make one for application too—we'll come to that later.
Don't add it yet though

University of Sheffield, NLP

Training PR—Parameters

● algorithmParameters—parameters influencing the algorithm,
documented either in the library's own documentation or LF
documentation on GitHub

● dataDirectory—where to put the model (it will be saved as a
Java object on disk). It should be a directory that already
exists.

● featureSpecURL—The xml file containing the description of
what attributes to use

● inputASName—Input annotation set containing
attributes/class

● instanceType—annotation type to use as instance

University of Sheffield, NLP

Training PR—Parameters

● scaleFeatures—use a feature scaling method for
preparation? Some algorithms prefer features of similar
magnitude (advanced)

● sequenceSpan—for sequence classifiers only. We'll look at
this in the context of chunking

● targetFeature—which feature on the instance annotation
indicates the class

● trainingAlgorithm—which algorithm to use

University of Sheffield, NLP

Feature Specification

● This file is in your hands-on
materials

● Feature specification indicates
which attributes we are going
to use

● This one just uses the strings
of the tokens (“bag of words”,
or unigrams)

● What other features might be a
good idea for this task?

<ML-CONFIG>

<NGRAM>
<NUMBER>1</NUMBER>
<TYPE>Token</TYPE>
<FEATURE>string</FEATURE>
</NGRAM>

</ML-CONFIG>

University of Sheffield, NLP

Feature Scaling

● Feature scaling is an advanced feature that we won't make use
of today

● However it can be essential to getting a good result!

● Behind the scenes, all features are converted into numbers, for
example one for the presence of a word or zero for its absence

● Other features might be the length of a word, which might
range from one to twenty or more, or a frequency figure that
might be a very large number

● Many algorithms work better if features have the same
approximate magnitude

● Therefore after features have been gathered from the corpus, it
can make sense to scale them

University of Sheffield, NLP

Algorithms

● Three libraries are integrated/available; Mallet and Weka, each
providing many algorithms, and LibSVM (support vector machine)

● Weka requires a separate download

● Names begin with the library they are from

● After that, “CL” indicates that it's a classification algorithm and
“SEQ” indicates a sequence learner

● Where to start?

● SVM is good but you must tune it properly
● Decision trees can be interesting to read
● (Weka wrapper—Random Forest is good)
● CRF is good for chunking
● Try a few later and see for yourself!

University of Sheffield, NLP

Set parameters for training

● Be sure to set the dataDirectory to a place you can store
your trained model; perhaps the hands-on folder for this
classification exercise?

● Unlike the evaluation PR, training creates a persistent
model on disk that you can reuse later

● The application PR will use the model it finds there
● You need to set the targetFeature to “type” (why?)

● For algorithm, let's try LibSVM

● Set the feature spec URL to point to the feature XML file
“classification-features.xml” in your hands on materials

● instanceType should be Document (why?)

University of Sheffield, NLP

Training Classification

● Be sure to
choose the
right corpus for
training

● Go ahead and
train your
model!

University of Sheffield, NLP

Training a model

● Switch to the messages pane so you can see the output

● Did it look like it worked? Can you find where it tells you
what classes you have and how many features? Does it
look right to you?

University of Sheffield, NLP

Classification Application

● Move the training PR out of the application, and put the
application one in instead

● You can also take out the Annotation Set Transfer

● We don't need the right answers at application time!
● They can stay where they are, in Key, and we'll use them

to compare with our new ML annotations later

University of Sheffield, NLP

Classification Application

● Many of the parameters are the same as for the training PR

● outputASName indicates where the final answers will go

● If you set it blank, the classes will go back onto the instances
● If you're applying to a test set, this may overwrite your class

feature! So be careful! Though in our case, the class is in Key
● The default of “LearningFramework” is fine

● Set instanceType

● At training time, we learned from the Document annotations
● At application time, we need to make Document annotations

for the PR to classify—we'll do that next
● So what do you think instanceType should be?

University of Sheffield, NLP

Classification Application

● You can set dataDirectory as previously, so it can find the
model you just trained

● targetFeature needs to be the same as the one in the Key
set, so that when we evaluate it matches

● confidenceThreshold allows you to set a threshold for how
certain the model needs to be to assign a class. For a well
tuned model it shouldn't be necessary. It's more relevant for
problems such as finding named entities (more on that
later). So we'll leave it blank

University of Sheffield, NLP

Classification Application

● Make a Groovy scripting PR

● When you make the PR, you will be asked to set the
ScriptURL initialization time parameter—set it to the
makeDocumentAnnotation.groovy file that is in the
classification-hands-on directory

● Add the Groovy scripting PR to the application directly
before the classification application PR

University of Sheffield, NLP

Applying a model

● Make sure
you have
selected
the test
corpus

● Go ahead
and run the
application!

University of Sheffield, NLP

Examining classification results
using Corpus QA

University of Sheffield, NLP

Evaluating Classification

● Accuracy is a simple statistic that describes how many of the
instances were correctly classified

● But what constitutes a good figure? 95%

● What if 99% of your instances are the majority class? You
could get an accuracy of 99% whilst completely failing to
separate the classes and identify any of the minority class
instances at all!

● Kappa metrics provide a measure of the statistical
independence of your result from the actual right answers

● Accuracy is a useful metric for parameter tuning but tells you
little about how well your system is performing at its task

University of Sheffield, NLP

Corpus QA for classification

● In the Corpus
QA tab, select
annotation
sets to
compare,
instance type
and class
feature and
choose both
agreement
and a kappa
statistic

● Click on
“Compare”

University of Sheffield, NLP

Classification metrics

● What do you think about this result? Not bad?

● What do you think of this kappa statistic? (A kappa of over
0.5 is considered good, and over 0.8 excellent.)

University of Sheffield, NLP

Confusion matrices

● Often you can learn a lot about what might be improved by
looking at the kind of mistakes your classifier is making

● A confusion matrix shows you which types tend to get
confused with which other types

University of Sheffield, NLP

Confusion Matrices

● Confusion matrices are available on the next tab (at the top
of the screen)

● What do you think about the misclassifications?

University of Sheffield, NLP

Classification Evaluation

● The result is okay but hematology documents are more
likely to be classified as pain documents than hematology

● Maybe we can improve this

● It would be easier to try different things using holdout or
cross validation approaches, which would automate the
process of splitting, training and testing

University of Sheffield, NLP

Classification using the Evaluation
PR

University of Sheffield, NLP

Classification Evaluation PR

● This implements holdout and n-fold cross validation
evaluation

● It will split, train and test, and give you an accuracy figure

● It does not create persistent annotations on the corpus that
can be examined

● It does not provide a kappa statistic

● However it is a fast way to tune parameters

● We can later return to separate training and application,
once we have improved our parameters

University of Sheffield, NLP

Making the Application

●Create and add
a classification
evaluation PR
●We'll need the
annotation set
transfer too!

University of Sheffield, NLP

Evaluation PR—Parameters

● We have already introduced some of the parameters, but
this PR has several new ones

● classAnnotationType—the annotation type to use as target
for chunking*. Leave blank to indicate classification

● evaluationMethod—Cross-validation or hold-out

● featureSpecURL—As previously, the xml file containing the
feature specification

● inputASName—Input annotation set containing
attributes/class (we have everything in the default
annotation set)

● instanceType—annotation type to use as instance

*Why would you evaluate chunking using the classification evaluation PR? I'll tell you later!

University of Sheffield, NLP

Evaluation PR—Parameters

● numberOfFolds—number of folds for cross-validation

● numberOfRepeats—number of repeats for hold-out

● targetFeature—for classification only, which feature on the
instance annotation (not classAnnotationType!) indicates the
class? Leave blank to indicate chunking

● trainingAlgorithm—which algorithm to use

● trainingFraction—for hold-out evaluation, what fraction to
train on?

University of Sheffield, NLP

More operations—Evaluation

● Two evaluation modes are provided; CROSSVALIDATION
and HOLDOUT

● These wrap the evaluation implementation provided by the
machine learning library for that algorithm

University of Sheffield, NLP

Setting the parameters

● Now set the parameters of the evaluation PR

● classAnnotationType MUST be left blank, to indicate that we are
running a classification problem

● featureSpecURL should point to the feature file

● instanceType is the annotation type we created when we copied
our training sentences over from the Key set

● The more folds you use, the better your result will be, because
your training portion is larger, but it will take longer to run—10 is
common

● targetFeature is the feature containing the class we want to learn
—what will that be?

● Let's try the LibSVM algorithm!

University of Sheffield, NLP

Running the application

● Now run the PR

● If you switch to the messages pane, before running the application
by right clicking on the application in the resources pane, you can
see the output as it appears

University of Sheffield, NLP

Classification Exercises

● Now see if you can improve your result

● Ideas:

● Try different algorithms
● For SVM, it's important to tune cost. Cost is the penalty

attached to misclassification. A high cost could result in an
overfitted model (it just memorised the training data and may
be unable to generalize) but a low cost might mean that it didn't
really try to learn! In “algorithmParameters” you can set a
different cost for example like this: “-c 2”. The default cost is 1.

● Add new features
● Where to get help: https://github.com/GateNLP/gateplugin-

LearningFramework/wiki

● E.g. the Algorithm Parameters page

University of Sheffield, NLP

Classification Exercises

● Once you have a result you're happy with, transfer what you
learned back into your training application

● Then you can train a new model and run it on the test
corpus

● How does your confusion matrix look now?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Setting up a corpus 2
	Setting up a corpus 3
	Setting up a corpus 4
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

