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Classification—Practical Exercise

● Materials for this exercise are in the folder called 
“classification-hands-on”
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Classification using Training and 
Application PRs
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Load the corpus

● Create a corpus for testing and one for training (make sure you 
name them so you can tell which is which!)

● Populate them from classification-hands-on/test-corpus and 
classification-hands-on/training-corpus

● Open up one of the documents and examine it
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Examining the corpus

• The corpus contains an annotation set called “Key”, 
which has been manually prepared

• Within this annotation set are Document annotations 
with a “type” feature indicating the medical discipline 
of the document
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What are we going to do with this corpus?

• We are going to train a machine learner to annotate 
documents with their discipline

• We'll start with separate training and application steps

• Later we can try some of the evaluation techniques we 
talked about earlier
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Instances and Attributes

• This corpus so far contains only the class annotations

• There is not much in this corpus to learn from

• What would our instances be?

• What would our attributes be?

• If we run parts of ANNIE over the corpus, then we can 
use token features for attributes
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Making the Application

• Load ANNIE with defaults

• We only want tokens and some basic features so 
remove the last two PRs from the pipeline
– ANNIE NE Transducer

– ANNE Orthomatcher

• Check that the document reset PR's setsToKeep 
parameter includes “Key”!
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Annotation Set Transfer

● The Learning Framework expects all class and feature 
annotations to be in the same set

● ANNIE puts annotations in the default set

● So we need to copy the Document annotations from Key 
into the default set

● (We could have ANNIE output to “Key” but it would be a 
lot more hassle, and “Key” should be reserved for manual 
annotations really)

● We can use the Annotation Set Transfer PR to do this
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Annotation Set Transfer

● Create an 
Annotation Set 
Transfer PR (if 
you can't find it, 
perhaps you 
forgot to load the 
Tools plugin)

● Add it to your 
application

● Be sure to 
“copyAnnotations”
!!!!
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Training PR

● Make a PR for classification training and add it to the 
application at the end

● Make one for application too—we'll come to that later. 
Don't add it yet though
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Training PR—Parameters

● algorithmParameters—parameters influencing the algorithm, 
documented either in the library's own documentation or LF 
documentation on GitHub

● dataDirectory—where to put the model (it will be saved as a 
Java object on disk). It should be a directory that already 
exists.

● featureSpecURL—The xml file containing the description of 
what attributes to use

● inputASName—Input annotation set containing 
attributes/class

● instanceType—annotation type to use as instance



 

University of Sheffield, NLP

Training PR—Parameters

● scaleFeatures—use a feature scaling method for 
preparation? Some algorithms prefer features of similar 
magnitude (advanced)

● sequenceSpan—for sequence classifiers only. We'll look at 
this in the context of  chunking

● targetFeature—which feature on the instance annotation 
indicates the class

● trainingAlgorithm—which algorithm to use
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Feature Specification

● This file is in your hands-on 
materials

● Feature specification indicates 
which attributes we are going 
to use

● This one just uses the strings 
of the tokens (“bag of words”, 
or unigrams)

● What other features might be a 
good idea for this task? 

<ML-CONFIG>

<NGRAM>
<NUMBER>1</NUMBER>
<TYPE>Token</TYPE>
<FEATURE>string</FEATURE>
</NGRAM>

</ML-CONFIG>
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Feature Scaling

● Feature scaling is an advanced feature that we won't make use 
of today

● However it can be essential to getting a good result!

● Behind the scenes, all features are converted into numbers, for 
example one for the presence of a word or zero for its absence

● Other features might be the length of a word, which might 
range from one to twenty or more, or a frequency figure that 
might be a very large number

● Many algorithms work better if features have the same 
approximate magnitude

● Therefore after features have been gathered from the corpus, it 
can make sense to scale them
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Algorithms

● Three libraries are integrated/available; Mallet and Weka, each 
providing many algorithms, and LibSVM (support vector machine)

● Weka requires a separate download

● Names begin with the library they are from

● After that, “CL” indicates that it's a classification algorithm and 
“SEQ” indicates a sequence learner

● Where to start?

● SVM is good but you must tune it properly
● Decision trees can be interesting to read
● (Weka wrapper—Random Forest is good)
● CRF is good for chunking
● Try a few later and see for yourself!
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Set parameters for training

● Be sure to set the dataDirectory to a place you can store 
your trained model; perhaps the hands-on folder for this 
classification exercise?

● Unlike the evaluation PR, training creates a persistent 
model on disk that you can reuse later

● The application PR will use the model it finds there
● You need to set the targetFeature to “type” (why?)

● For algorithm, let's try LibSVM

● Set the feature spec URL to point to the feature XML file 
“classification-features.xml” in your hands on materials

● instanceType should be Document (why?) 
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Training Classification

● Be sure to 
choose the 
right corpus for 
training

● Go ahead and 
train your 
model!
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Training a model

● Switch to the messages pane so you can see the output

● Did it look like it worked? Can you find where it tells you 
what classes you have and how many features? Does it 
look right to you?
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Classification Application

● Move the training PR out of the application, and put the 
application one in instead

● You can also take out the Annotation Set Transfer

● We don't need the right answers at application time!
● They can stay where they are, in Key, and we'll use them 

to compare with our new ML annotations later
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Classification Application

● Many of the parameters are the same as for the training PR

● outputASName indicates where the final answers will go

● If you set it blank, the classes will go back onto the instances
● If you're applying to a test set, this may overwrite your class 

feature! So be careful! Though in our case, the class is in Key
● The default of “LearningFramework” is fine

● Set instanceType

● At training time, we learned from the Document annotations
● At application time, we need to make Document annotations 

for the PR to classify—we'll do that next
● So what do you think instanceType should be?
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Classification Application

● You can set dataDirectory as previously, so it can find the 
model you just trained

● targetFeature needs to be the same as the one in the Key 
set, so that when we evaluate it matches

● confidenceThreshold allows you to set a threshold for how 
certain the model needs to be to assign a class. For a well 
tuned model it shouldn't be necessary. It's more relevant for 
problems such as finding named entities (more on that 
later). So we'll leave it blank
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Classification Application

● Make a Groovy scripting PR

● When you make the PR, you will be asked to set the 
ScriptURL initialization time parameter—set it to the 
makeDocumentAnnotation.groovy file that is in the 
classification-hands-on directory

● Add the Groovy scripting PR to the application directly 
before the classification application PR
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Applying a model

● Make sure 
you have 
selected 
the test 
corpus

● Go ahead 
and run the 
application!
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Examining classification results 
using Corpus QA
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Evaluating Classification

● Accuracy is a simple statistic that describes how many of the 
instances were correctly classified

● But what constitutes a good figure? 95%

● What if 99% of your instances are the majority class? You 
could get an accuracy of 99% whilst completely failing to 
separate the classes and identify any of the minority class 
instances at all!

● Kappa metrics provide a measure of the statistical 
independence of your result from the actual right answers

● Accuracy is a useful metric for parameter tuning but tells you 
little about how well your system is performing at its task
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Corpus QA for classification

● In the Corpus 
QA tab, select 
annotation 
sets to 
compare, 
instance type 
and class 
feature and 
choose both 
agreement 
and a kappa 
statistic

● Click on 
“Compare”
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Classification metrics

● What do you think about this result? Not bad?

● What do you think of this kappa statistic? (A kappa of over 
0.5 is considered good, and over 0.8 excellent.)
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Confusion matrices

● Often you can learn a lot about what might be improved by 
looking at the kind of mistakes your classifier is making

● A confusion matrix shows you which types tend to get 
confused with which other types
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Confusion Matrices

● Confusion matrices are available on the next tab (at the top 
of the screen)

● What do you think about the misclassifications?
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Classification Evaluation

● The result is okay but hematology documents are more 
likely to be classified as pain documents than hematology

● Maybe we can improve this

● It would be easier to try different things using holdout or 
cross validation approaches, which would automate the 
process of splitting, training and testing
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Classification using the Evaluation 
PR
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Classification Evaluation PR

● This implements holdout and n-fold cross validation 
evaluation

● It will split, train and test, and give you an accuracy figure

● It does not create persistent annotations on the corpus that 
can be examined

● It does not provide a kappa statistic

● However it is a fast way to tune parameters

● We can later return to separate training and application, 
once we have improved our parameters
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Making the Application

●Create and add 
a classification 
evaluation PR
●We'll need the 
annotation set 
transfer too!
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Evaluation PR—Parameters

● We have already introduced some of the parameters, but 
this PR has several new ones 

● classAnnotationType—the annotation type to use as target 
for chunking*. Leave blank to indicate classification

● evaluationMethod—Cross-validation or hold-out

● featureSpecURL—As previously, the xml file containing the 
feature specification

● inputASName—Input annotation set containing 
attributes/class (we have everything in the default 
annotation set)

● instanceType—annotation type to use as instance

*Why would you evaluate chunking using the classification evaluation PR? I'll tell you later!
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Evaluation PR—Parameters

● numberOfFolds—number of folds for cross-validation

● numberOfRepeats—number of repeats for hold-out

● targetFeature—for classification only, which feature on the 
instance annotation (not classAnnotationType!) indicates the 
class? Leave blank to indicate chunking

● trainingAlgorithm—which algorithm to use

● trainingFraction—for hold-out evaluation, what fraction to 
train on?



 

University of Sheffield, NLP

More operations—Evaluation

● Two evaluation modes are provided; CROSSVALIDATION 
and HOLDOUT

● These wrap the evaluation implementation provided by the 
machine learning library for that algorithm
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Setting the parameters

● Now set the parameters of the evaluation PR

● classAnnotationType MUST be left blank, to indicate that we are 
running a classification problem

● featureSpecURL should point to the feature file

● instanceType is the annotation type we created when we copied 
our training sentences over from the Key set

● The more folds you use, the better your result will be, because 
your training portion is larger, but it will take longer to run—10 is 
common

● targetFeature is the feature containing the class we want to learn
—what will that be?

● Let's try the LibSVM algorithm!
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Running the application

● Now run the PR

● If you switch to the messages pane, before running the application 
by right clicking on the application in the resources pane, you can 
see the output as it appears 
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Classification Exercises

● Now see if you can improve your result

● Ideas:

● Try different algorithms
● For SVM, it's important to tune cost. Cost is the penalty 

attached to misclassification. A high cost could result in an 
overfitted model (it just memorised the training data and may 
be unable to generalize) but a low cost might mean that it didn't 
really try to learn! In “algorithmParameters” you can set a 
different cost for example like this: “-c 2”. The default cost is 1.

● Add new features
● Where to get help: https://github.com/GateNLP/gateplugin-

LearningFramework/wiki

● E.g. the Algorithm Parameters page
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Classification Exercises

● Once you have a result you're happy with, transfer what you 
learned back into your training application

● Then you can train a new model and run it on the test 
corpus

● How does your confusion matrix look now?
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