
Using Java in JAPE
The GATE Ontology API

Optional Material

GATE APIs
Track II, Module 6

Fourth GATE Training Course
May 2011

c© 2011 The University of Sheffield

This material is licenced under the Creative Commons

Attribution-NonCommercial-ShareAlike Licence

(http://creativecommons.org/licenses/by-nc-sa/3.0/)

GATE APIs 1 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Outline

1 Using Java in JAPE
Basic JAPE
Java on the RHS
Common idioms

2 The GATE Ontology API
5 minute guide to ontologies
Ontologies in GATE Embedded

3 Optional Material
Advanced JAPE

GATE APIs 2 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Outline

1 Using Java in JAPE
Basic JAPE
Java on the RHS
Common idioms

2 The GATE Ontology API
5 minute guide to ontologies
Ontologies in GATE Embedded

3 Optional Material
Advanced JAPE

GATE APIs 3 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

JAPE
Pattern matching over annotations

JAPE is a language for doing regular-expression-style pattern
matching over annotations rather than text.
Each JAPE rule consists of

Left hand side specifying the patterns to match
Right hand side specifying what to do when a match is found

JAPE rules combine to create a phase

Phases combine to create a grammar

GATE APIs 4 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

An Example JAPE Rule

1 Rule: University1
2 (
3 {Token.string == "University"}
4 {Token.string == "of"}
5 {Lookup.minorType == city}
6):orgName
7 -->
8 :orgName.Organisation =
9 {kind = "university", rule = "University1"}

Left hand side specifies annotations to match, optionally labelling
some of them for use on the right hand side.

GATE APIs 5 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

LHS Patterns
Elements

Left hand side of the rule specifies the pattern to match, in various
ways

Annotation type: {Token}
Feature constraints:

{Token.string == "University"}

{Token.length > 4}

Also supports <, <=, >=, != and regular expressions =~, ==~,
!~, !=~.

Negative constraints:
{Token.length > 4, !Lookup.majorType == "stopword"}

This matches a Token of more than 4 characters that does not
start at the same location as a "stopword" Lookup.

Overlap constraints:
{Person within {Section.title == "authors"}}

GATE APIs 6 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

LHS Patterns
Combinations

Pattern elements can be combined in various ways

Sequencing: {Token}{Token}

Alternatives: {Token} | {Lookup}

Grouping with parentheses

Usual regular expression multiplicity operators

zero-or-one: ({MyAnnot})?

zero-or-more: ({MyAnnot})*
one-or-more: ({MyAnnot})+

exactly n: ({MyAnnot})[n]

between n and m (inclusive): ({MyAnnot})[n,m]

GATE APIs 7 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

LHS Patterns
Labelling

Groups can be labelled. This has no effect on the matching process,
but makes matched annotations available to the RHS

1 (
2 {Token.string == "University"}
3 {Token.string == "of"}
4 ({Lookup.minorType == city}):uniTown
5):orgName

GATE APIs 8 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

LHS Patterns
Delimiting operator range

Use round brackets to delimit the range of the operators
One or more cities or countries in any order and combination

1 (
2 {Lookup.minorType == city} |
3 {Lookup.minorType == country}
4)+

One city OR one or more countries

1 ({Lookup.minorType == city} |
2 ({Lookup.minorType == country})+
3)

GATE APIs 9 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

RHS Actions

On the RHS, you can use the labels from the LHS to create new
annotations:

6 -->
7 :uniTown.UniversityTown = {},
8 :orgName.Organisation =
9 {kind = "university", rule = "University1"}

The :label.AnnotationType = {features} syntax
creates a new annotation of the given type whose span covers all the
annotations bound to the label.

so the Organisation annotation will span from the start of the
“University” Token to the end of the Lookup.

GATE APIs 10 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

JAPE Grammars and Multiple Phases

Each JAPE file must contain a set of headers at the top:

1 Phase: University / / a l p h a n u m e r i c c h a r s and u n d e r s c o r e s o n l y
2 Input: Token Lookup / / i f n o t g i ven , a l l a n n o t s used
3 Options: control = appelt / / see User Guide f o r d e t a i l s

A typical JAPE grammar will contain different rules, divided into
phases.
The set of phases is run sequentially over the document.
Multi-phase transducers - the JAPE file looks like this:

1 MultiPhase: TestTheGrammars
2 Phases:
3 first
4 findnames
5 cleanup

GATE APIs 11 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Macros

You may find yourself re-using the same patterns in several
places in a grammar.

e.g.
({Token.string ==~ "[A-Z]"}({Token.string == "."})?)+

to match initials.

JAPE allows you to define macros - labelled patterns that can be
re-used.

1 Macro: INITIALS
2 ({Token.string ==~ "[A-Z]"}({Token.string == "."})?)+
3

4 Rule: InitialsAndSurname
5 ((INITIALS)?
6 {Token.orth == "upperInitial"}):per
7 -->
8 :per.Person = {rule = "InitialsAndSurname"}

GATE APIs 12 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Templates

Templates are to values as macros are to pattern fragments.

Declare a template once, reference it many times.

Template value can be a quoted string, number or boolean (true
or false).

Template reference can go anywhere a quoted string could go.

1 Template: threshold = 0.6
2 Template: source = "Interesting location finder"
3

4 Rule: IsInteresting
5 ({Location.score > [threshold]}):loc
6 -->
7 :loc.Entity = { kind = "Location", source = [source]}

GATE APIs 13 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Templates (cont)

String templates can have parameters, parameter values
supplied in the call.

Useful if you have many similar strings in your grammar.

1 Template:
2 wp = "http://${lang}.wikipedia.org/wiki/${page}"
3

4 Rule: EnglishWPCat
5 ({a.href =~ [wp lang="en", page="Category:"]}):wp
6 -->
7 :wp.WPCategory = { lang = "en" }

In a multi-phase grammar, templates and macros declared in one
phase can be used in later phases.

GATE APIs 14 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Outline

1 Using Java in JAPE
Basic JAPE
Java on the RHS
Common idioms

2 The GATE Ontology API
5 minute guide to ontologies
Ontologies in GATE Embedded

3 Optional Material
Advanced JAPE

GATE APIs 15 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Beyond Simple Actions

It’s often useful to do more complex operations on the RHS than
simply adding annotations, e.g.

Set a new feature on one of the matched annotations

Delete annotations from the input

More complex feature value mappings, e.g. concatenate several
LHS features to make one RHS one.

Collect statistics, e.g. count the number of matched annotations
and store the count as a document feature.

Populate an ontology (later).

JAPE has no special syntax for these operations, but allows blocks of
arbitrary Java code on the RHS.

GATE APIs 16 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Java on the RHS

1 Rule: HelloWorld
2 (
3 {Token.string == "Hello"}
4 {Token.string == "World"}
5):hello
6 -->
7 {
8 System.out.println("Hello world");
9 }

The RHS of a JAPE rule can have any number of
:bind.Type = {} assignment expressions and blocks of Java
code, separated by commas.

GATE APIs 17 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

How JAPE Rules are Compiled

For each JAPE rule, GATE creates a Java class

1 package japeactionclasses;
2 / / v a r i o u s i m p o r t s , see be low
3

4 public class /∗ g e n e r a t e d c l a s s name ∗ /
5 implements RhsAction {
6 public void doit(
7 Document doc,
8 Map<String, AnnotationSet> bindings,
9 AnnotationSet annotations, / / d e p r e c a t e d

10 AnnotationSet inputAS,
11 AnnotationSet outputAS,
12 Ontology ontology) throws JapeException {
13 / / . . .
14 }
15 }

GATE APIs 18 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

JAPE Action Classes

Each block or assignment on the RHS becomes a block of Java
code.
These blocks are concatenated together to make the body of the
doit method.

Local variables are local to each block, not shared.

At runtime, whenever the rule matches, doit is called.

GATE APIs 19 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Java Block Parameters

The parameters available to Java RHS blocks are:

doc The document currently being processed.

inputAS The AnnotationSet specified by the
inputASName runtime parameter to the JAPE
transducer PR. Read or delete annotations from here.

outputAS The AnnotationSet specified by the
outputASName runtime parameter to the JAPE
transducer PR. Create new annotations in here.

ontology The ontology (if any) provided as a runtime parameter to
the JAPE transducer PR.

bindings The bindings map. . .

GATE APIs 20 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Bindings

bindings is a Map from string to AnnotationSet

Keys are labels from the LHS.

Values are the annotations matched by the label.

1 (
2 {Token.string == "University"}
3 {Token.string == "of"}
4 ({Lookup.minorType == city}):uniTown
5):orgName

bindings.get("uniTown") contains one annotation (the
Lookup)

bindings.get("orgName") contains three annotations (two
Tokens plus the Lookup)

GATE APIs 21 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Hands-on exercises

The easiest way to experiment with JAPE is to use GATE
Developer.

The hands-on directory contains a number of sample JAPE
files for you to modify, which will be described for each individual
exercise.
There is an .xgapp file for each exercise to load the right PRs
and documents.

Good idea to disable session saving using Options →
Configuration → Advanced (or GATE 6.0-beta1 → Preferences →
Advanced on Mac OS X).

GATE APIs 22 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Exercise 1: A simple JAPE RHS

Start GATE Developer.

Load hands-on/jape/exercise1.xgapp

This is the default ANNIE application with an additional JAPE
transducer “exercise 1” at the end.

This transducer loads the file
hands-on/jape/resources/simple.jape, which
contains a single simple JAPE rule.

Modify the Java RHS block to print out the type and features of
each annotation the rule matches. You need to right click the
“Exercise 1 Transducer” and reinitialize after saving the .jape
file.

Test it by running the “Exercise 1” application.

GATE APIs 23 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Imports

By default, every action class imports java.io.*, java.util.*, gate.*,
gate.jape.*, gate.creole.ontology.*, gate.annotation.*, and
gate.util.*.

So classes from these packages can be used unqualified in RHS
blocks.

You can add additional imports by putting an import block at the
top of the JAPE file, before the Phase: line:

1 Imports: {
2 import my.pkg.*;
3 import static gate.Utils.*;
4 }

You can import any class available in the GATE core or in any loaded
plugin. A useful class is gate.Utils, which provides static utility
methods for common tasks that are frequently used in RHS Java code.

GATE APIs 24 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Named Java Blocks

1 -->
2 :uniTown{
3 uniTownAnnots.iterator().next().getFeatures()
4 .put("hasUniversity", Boolean.TRUE);
5 }

You can label a Java block with a label from the LHS

The block will only be called if there is at least one annotation
bound to the label
Within the Java block there is a variable labelAnnots
referring to the AnnotationSet bound to the label

i.e. AnnotationSet xyAnnots = bindings.get("xy")

GATE APIs 25 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Exceptions

Any JapeException or RuntimeException thrown by a Java
RHS block will cause the JAPE Transducer PR to fail with an
ExecutionException

For non-fatal errors in a RHS block you can throw a
gate.jape.NonFatalJapeException

This will print debugging information (phase name, rule name, file
and line number) but will not abort the transducer execution.

However it will interrupt this rule, i.e. if there is more than one
block or assignment on the RHS, the ones after the throw will not
run.

GATE APIs 26 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Returning from RHS blocks

You can return from a Java RHS block, which prevents any later
blocks or assignments for that rule from running, e.g.

1 -->
2 :uniTown{
3 String townString = doc.getContent().getContent(
4 uniTownAnnots.firstNode().getOffset(),
5 uniTownAnnots.lastNode().getOffset())
6 .toString();
7 / / don’t add an annotation if this town has been seen before. If we
8 / / return, the UniversityTown annotation will not be created.
9 if(!((Set)doc.getFeatures().get("knownTowns"))

10 .add(townString)) return;
11 },
12 :uniTown.UniversityTown = {}

GATE APIs 27 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Outline

1 Using Java in JAPE
Basic JAPE
Java on the RHS
Common idioms

2 The GATE Ontology API
5 minute guide to ontologies
Ontologies in GATE Embedded

3 Optional Material
Advanced JAPE

GATE APIs 28 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Common Idioms for Java RHS

Setting a new feature on one of the matched annotations

1 Rule: LcString
2 ({Token}):tok
3 -->
4 :tok {
5 for(Annotation a : tokAnnots) {
6 / / get the FeatureMap for the annotation
7 FeatureMap fm = a.getFeatures();
8 / / get the “string” feature
9 String str = (String)fm.get("string");

10 / / convert it to lower case and store
11 fm.put("lcString", str.toLowerCase());
12 }
13 }

GATE APIs 29 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Exercise 2: Modifying Existing Annotations

Load hands-on/jape/exercise2.xgapp

As before, this is ANNIE plus an extra transducer, this time
loading
hands-on/jape/resources/general-pos.jape.

Modify the Java RHS block to add a generalCategory
feature to the matched Token annotation holding the first two
characters of the POS tag (the category feature).

Remember to reinitialize the “Exercise 2 Transducer” after editing
the JAPE file.

Test it by running the “Exercise 2” application.

GATE APIs 30 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Common Idioms for Java RHS

Removing matched annotations from the input

1 Rule: Location
2 ({Lookup.majorType = "location"}):loc
3 -->
4 :loc.Location = { kind = :loc.Lookup.minorType,
5 rule = "Location"},
6 :loc {
7 inputAS.removeAll(locAnnots);
8 }

This can be useful to stop later phases matching the same annotations
again.

GATE APIs 31 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Common Idioms for Java RHS

Accessing the string covered by a match

1 Rule: Location
2 ({Lookup.majorType = "location"}):loc
3 -->
4 :loc {
5 try {
6 String str = doc.getContent().getContent(
7 locAnnots.firstNode().getOffset(),
8 locAnnots.lastNode().getOffset())
9 .toString();

10 }
11 catch(InvalidOffsetException e) {
12 / / can’t happen, but won’t compile without the catch
13 }
14 }

GATE APIs 32 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Utility methods

gate.Utils provides static utility methods to make common
tasks easier

http://gate.ac.uk/gate/doc/javadoc/gate/Utils.html

Add an import static gate.Utils.*; to your Imports: block
to use them.

Accessing the string becomes stringFor(doc, locAnnots)

This is also useful for division of labour
Java programmer writes utility class
JAPE expert writes rules, importing utility methods

GATE APIs 33 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Example: start and end

To get the start and end offsets of an Annotation, AnnotationSet or
Document.

1 Rule: NPTokens
2 ({NounPhrase}):np
3 -->
4 :np {
5 List<String> posTags = new ArrayList<String>();
6 for(Annotation tok : inputAS.get("Token")
7 .getContained(start(npAnnots), end(npAnnots))) {
8 posTags.add(
9 (String)tok.getFeatures().get("category"));

10 }
11 FeatureMap fm =
12 npAnnots.iterator().next().getFeatures();
13 fm.put("posTags", posTags);
14 fm.put("numTokens", (long)posTags.size());
15 }

GATE APIs 34 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Exercise 3: Working with Contained Annotations

Load hands-on/jape/exercise3.xgapp

As before, this is ANNIE plus an extra transducer, this time
loading
hands-on/jape/resources/exercise3-main.jape.

This is a multiphase grammar containing the
general-pos.jape from exercise 2 plus
num-nouns.jape.

Modify the Java RHS block in num-nouns.jape to count the
number of nouns in the matched Sentence and add this count
as a feature on the sentence annotation.

Remember to reinitialize the “Exercise 3 Transducer” after editing
the JAPE file.

Test it by running the “Exercise 3” application.

GATE APIs 35 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Passing state between rules

To pass state between rules, use document features:

1 Rule: Section
2 ({SectionHeading}):sect
3 -->
4 :sect {
5 doc.getFeatures().put("currentSection",
6 stringFor(doc, sectAnnots));
7 }
8

9 Rule: Entity
10 ({Entity}):ent
11 -->
12 :ent {
13 entAnnots.iterator().next().getFeatures()
14 .put("inSection",
15 doc.getFeatures().get("currentSection"));
16 }

GATE APIs 36 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

Basic JAPE
Java on the RHS
Common idioms

Passing state between rules

Remember from yesterday - a FeatureMap can hold any Java
object.

So can pass complex structures between rules, not limited to
simple strings.

GATE APIs 37 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Outline

1 Using Java in JAPE
Basic JAPE
Java on the RHS
Common idioms

2 The GATE Ontology API
5 minute guide to ontologies
Ontologies in GATE Embedded

3 Optional Material
Advanced JAPE

GATE APIs 38 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Ontologies
A 5 minute introduction

A set of concepts and relationships between
them.

GATE uses the OWL formalism for
ontologies

Classes, subclasses, instances,
relationships
Multiple inheritance

a class can have many superclasses
an instance can belong to many classes

GATE APIs 39 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Why Ontologies?

Semantic annotation: rather than just annotating the word
“Sheffield” as a location, link it to an ontology instance

Sheffield, UK rather than Sheffield, Massachusetts or Sheffield,
Tasmania, etc.

Reasoning
Ontology tells us that this particular Sheffield is part of the country
called the United Kingdom, which is part of the continent Europe.
So we can infer that this document mentions a city in Europe.

Ontology Population: discover new facts from text and add them
as new information to the ontology.

GATE APIs 40 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Ontologies
Properties

Properties represent relationships between, and data about,
instances.

Properties can have hierarchy.

Object properties relate one instance to another (DCS partOf
University of Sheffield) — domain and range specify which
classes the instances must belong to

Can be symmetric, transitive

GATE APIs 41 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Ontologies
Datatype Properties

Datatype properties attach simple data (literals) to instances.

Available data types are taken from XML Schema.

GATE APIs 42 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Ontologies
Annotation Properties

Annotation properties used to annotate classes, instances and
other properties (collectively known as resources, confusingly).

Similar to datatype properties, but those can only be attached to
instances, not classes.

e.g. RDFS defines properties like comment and label (a
human-readable name for an ontology resource, as opposed to
formal name of the resource which is a URI).

GATE APIs 43 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Outline

1 Using Java in JAPE
Basic JAPE
Java on the RHS
Common idioms

2 The GATE Ontology API
5 minute guide to ontologies
Ontologies in GATE Embedded

3 Optional Material
Advanced JAPE

GATE APIs 44 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Ontologies in GATE Embedded

GATE represents ontologies using abstract data model defined by
interfaces in gate.creole.ontology package in gate.jar

Ontology interface represents an ontology, OClass,
OInstance, OURI etc. represent ontology components.
Implementation provided by Ontology plugin, based on
OWLIM version 3.

Alternative OWLIM 2-based implementation in
Ontology_OWLIM2 plugin for backwards compatibility only
Not possible to load both plugins at the same time.

You need to load the plugin in order to create an Ontology
object, but code should only interact with the interfaces.

http://gate.ac.uk/gate/doc/javadoc/?gate/
creole/ontology/package-summary.html

GATE APIs 45 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Creating an empty ontology

1 Gate.init();
2 / / load the Ontology plugin
3 Gate.getCreoleRegister().registerDirectories(
4 new File(Gate.getPluginsHome(), "Ontology")
5 .toURI().toURL());
6

7 Ontology emptyOnto = (Ontology)Factory.createResource(
8 "gate.creole.ontology.impl.sesame.OWLIMOntology");

GATE APIs 46 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Loading an existing OWL file

More useful is to load an existing ontology. OWLIMOntology can
load RDF-XML, N3, ntriples or turtle format.

1 / / init GATE and load plugin as before...
2

3 URL owl = new File("ontology.owl").toURI().toURL();
4 FeatureMap params = Factory.newFeatureMap();
5 params.put("rdfXmlURL", owl);
6

7 Ontology theOntology = (Ontology)Factory.createResource(
8 "gate.creole.ontology.impl.sesame.OWLIMOntology",
9 params);

GATE APIs 47 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Under the Covers: Sesame

The Ontology plugin implementation is built on OpenRDF
Sesame version 2.

OWLIMOntology LR creates a Sesame repository using a
particular configuration of OWLIM as the underlying SAIL
(Storage And Inference Layer)
Other configurations or SAIL implementations can be used via
alternative LRs: CreateSesameOntology (to create a new
repository) and ConnectSesameOntology (to open an
existing one).

though some parts of the GATE ontology API depend on the
reasoning provided by OWLIM, so other SAILs may not behave
exactly the same.

GATE APIs 48 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Persistent Repositories

When loading an OWLIMOntology LR from RDF/ntriples, etc.
OWLIM parses the source file and builds internal representation

Can set persistent parameter to true and specify a
dataDirectoryURL to store this internal representation on
disk as a Sesame repository.

ConnectSesameOntology LR can use the existing
repository — much faster to init, particularly for large ontologies
(e.g. 12k instances, 10 seconds to load from RDF, < 0.2s to
open repository).

GATE APIs 49 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Exploring the ontology

1 / / get all the ‘top’ classes
2 Set<OClass> tops = ontology.getOClasses(true);
3

4 / / list them along with their labels
5 for(OClass c : tops) {
6 System.out.println(c.getONodeID() +
7 " (" + c.getLabels() + ")");
8 }
9

10 / / find a class by URI
11 OURI uri = ontology.createOURIForName("Person");
12 OClass personClass = ontology.getOClass(uri);

GATE APIs 50 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Exploring the ontology

1 / / get direct instances of a class
2 Set<OInstance> people = ontology.getOInstances(
3 personClass, OConstants.Closure.DIRECT_CLOSURE);
4

5 / / get instances of a class or any of its subclasses
6 Set<OInstance> allPeople = ontology.getOInstances(
7 personClass, OConstants.Closure.TRANSITIVE_CLOSURE);

GATE APIs 51 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Exploring the ontology

1 / / get a datatype property
2 OURI namePropURI = ontology.createOURI(
3 "http://example.org/stuff/1.0/hasName");
4 DatatypeProperty nameProp = ontology
5 .getDatatypeProperty(namePropURI);
6

7 / / find property values for an instance
8 for(OInstance person : allPeople) {
9 List<Literal> names =

10 ontology.getDatatypePropertyValues(nameProp);
11 for(Literal name : names) {
12 System.out.println("Person " + person.getONodeID()
13 + " hasName " + name.toTurtle());
14 }
15 }

GATE APIs 52 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Exploring the ontology

1 / / University of Sheffield instance
2 OURI uosURI = ontology.createOURIForName(
3 "UniversityOfSheffield");
4 OInstance uosInstance = ontology.getOInstance(uosURI);
5

6 / / worksFor property
7 OURI worksForURI = ontology.createOURIForName(
8 "worksFor");
9 ObjectProperty worksFor = ontology.getObjectProperty(

10 worksForURI);
11

12 / / find all the people who work for the University of Sheffield
13 List<OResource> uniEmployees =
14 ontology.getOResourcesWith(worksFor, uosInstance);

GATE APIs 53 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

A note about URIs

Ontology resources are identified by URIs.

URI is treated as a namespace (everything up to and including
the last #, / or :, in that order) and a resource name (the rest)
Ontology LR provides factory methods to create OURI objects:

createOURI takes a complete URI string
createOURIForName takes the resource name and prepends
the ontology LR’s default namespace
generateOURI takes a resource name, prepends the default
NS and adds a unique suffix.

Only ASCII letters, numbers and certain symbols are permitted in
URIs, other characters (including spaces) must be escaped.

OUtils defines common escaping methods.

GATE APIs 54 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Extending the ontology

1 OURI personURI = ontology.createOURIForName("Person");
2 OClass personClass = ontology.getOClass(personURI);
3

4 / / create a new class as a subclass of an existing class
5 OURI empURI = ontology.createOURIForName("Employee");
6 OClass empClass = ontology.addOClass(empURI);
7 personClass.addSubClass(empClass);
8

9 / / create an instance
10 OURI fredURI = ontology.createOURIForName("FredSmith");
11 OInstance fred = ontology.addOInstance(fredURI,
12 empClass);
13

14 / / Fred works for the University of Sheffield
15 fred.addObjectPropertyValue(worksFor, uosInstance);

GATE APIs 55 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Exporting the ontology

1 OutputStream out =
2 ontology.writeOntologyData(out,
3 OConstants.OntologyFormat.RDFXML, false);

false means don’t include OResources that came from an import
(true would embed the imported data in the exported ontology).

Other formats are TURTLE, N3 and NTRIPLES.

GATE APIs 56 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Ontology API in JAPE

Recall that JAPE RHS blocks have access to an ontology
parameter.

Can use JAPE rules for ontology population or enrichment

Create new instances or property values in an ontology based on
patterns found in the text.

GATE APIs 57 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Exercise 1: Basic Ontology API

Start GATE Developer.

Load hands-on/ontology/exercise1.xgapp

This xgapp loads two controllers. “Exercise 1 application” is a
“trick” application containing a JAPE grammar
exercise1.jape with a single rule that is guaranteed to fire
exactly once when the application is run.

The application loads hands-on/ontology/demo.owl
and configures the JAPE transducer with that ontology.

We treat the RHS of the rule as a “scratch pad” to test Java code
that uses the ontology API.

Also loads “Reset ontology” application you can use to reset the
ontology to its original state.

GATE APIs 58 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Exercise 1: Basic Ontology API

The initial JAPE file contains comments giving some suggested
tasks.

See how many of these ideas you can implement.

Each time you modify the JAPE file you will need to re-init the
“Exercise 1 transducer” then run the “Exercise 1 application”.

Open the ontology viewer to see the result of your changes.

You will need to close and re-open the viewer each time.

Use the reset application as necessary.

Remember: ontology API JavaDocs at
http://gate.ac.uk/gate/doc/javadoc/?gate/
creole/ontology/package-summary.html

GATE APIs 59 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Ontology-aware JAPE

When supplied with an ontology parameter, JAPE can do
ontology-aware matching.

In this mode the feature named “class” on an annotation is
special: it is assumed to be an ontology class URI, and will match
any subclass.
If the class feature is not a complete URI, it has the ontology’s
default namespace prepended.

e.g. {Lookup.class == "Location"} with our demo
ontology would match Lookup annotations with any subclass of
http://www.owl-ontologies.com/unnamed.owl#Location,
in the class feature, including “City”, “Country”, etc.

When an ontology parameter is not specified, class is treated the
same as any other feature (not the case prior to GATE 5.2).

GATE APIs 60 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Ontology Population

Ontology population is the process of adding instances to an
ontology based on information found in text.

We will explore a very simple example, real-world ontology
population tasks are complex and domain-specific.

GATE APIs 61 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Ontology population example

The demo ontology from exercise 1 contains a “Location” class
with subclasses “City”, “Country”, “Province” and “Region”.

These correspond to subsets of the ANNIE named entities.

We want to populate our ontology with instances for each location
in a document.
Very simple assumption – if two Location annotations have the
same text, they refer to the same location.

Typically you would need to disambiguate, e.g. with coreference
information.

GATE APIs 62 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Exercise 2: Ontology population

Start GATE Developer

Load hands-on/ontology/exercise2.xgapp

This xgapp again loads the demo ontology and defines the
ontology reset controller.

Second controller in this case is a normal ANNIE with two
additional JAPE grammars.

GATE APIs 63 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

ANNIE locType to Ontology Class

ANNIE creates Location annotations with a locType
feature, and Organization annotations with an orgType
feature.

e.g. locType = region

The first of the two additional grammars (“NEs to Mentions”)
creates annotations of type Mention with a “class” feature derived
from the locType or orgType.

Location (or Organization) annotations without a locType (or
orgType) are mapped to the top-level Location (Organization)
class.

GATE APIs 64 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Populating the ontology

Given these Mention annotations, we can now populate the
ontology.

We want to create one instance for each distinct entity.

Use the RDFS “label” annotation property to associate the
instance with its text.
So for each Mention of a Location, we need to:

determine which ontology class it is a mention of
see if there is already an instance of this class with a matching
label, and if not, create one, and
store the URI of the relevant ontology instance on the Mention
annotation.

GATE APIs 65 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Exercise 2: Ontology population

Over to you!

Fill in hands-on/ontology/exercise2.jape to
implement this algorithm.

As before, you need to re-init the Exercise 2 transducer each time
you edit the JAPE file.

Use the “Reset ontology” application to clean up the ontology
between runs (though if you do it right it won’t create extra
instances if you run again without cleaning).

GATE APIs 66 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material

5 minute guide to ontologies
Ontologies in GATE Embedded

Conclusions and further reading on ontologies

This is a good example of a case where utility classes are useful.

We have used this technique in other projects, e.g.
gate.ac.uk/sale/icsd09/sprat.pdf

Lots of tutorial materials on ontologies, OWL, etc. available
online.

For GATE, best references are the user guide and javadocs.

GATE APIs 67 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material
Advanced JAPE

Outline

1 Using Java in JAPE
Basic JAPE
Java on the RHS
Common idioms

2 The GATE Ontology API
5 minute guide to ontologies
Ontologies in GATE Embedded

3 Optional Material
Advanced JAPE

GATE APIs 68 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material
Advanced JAPE

Contextual Operators in JAPE

The contextual operators “contains” and “within” match
annotations within the context of other annotations

{Organization contains Person} matches if an
Organization annotation completely contains a Person
annotation.

{Person within Organization} matches if a Person
annotation lies completely within an Organization annotation

The difference between the two is that the first annotation
specified is the one matched

In the first example, Organization is matched

In the second example, Person is matched

GATE APIs 69 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material
Advanced JAPE

Regular Expression Operators

On the LHS you can also use =~ and ==~ to match regular
expressions

{Token.string ==~ "[Dd]ogs"} matches a Token
whose string feature value is (exactly) either “dogs” or “Dogs”

{Token.string =~ "[Dd]ogs"} is the same but
matches a Token whose string feature CONTAINS either “dogs”
or “Dogs” within it

Similarly, you can use !~ and !=~

In the first example, it would match a Token whose string feature
is NOT either “dogs” or “Dogs”

In the second example, it would match a Token whose string
feature does NOT contain either “dogs” or “Dogs” within it

GATE APIs 70 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material
Advanced JAPE

Annotation Sets and Ordering

An AnnotationSet is a set, so it is not ordered
38 Rule: SimpleNPRule1
39 (
40 ({Token.generalCategory=="DET"})?
41 ({Token.generalCategory=="JJ"})[0,4]
42 ({Token.generalCategory=="NN"})+
43):nnp
44 -->
45 :nnp {
46 System.out.println("______________");
47 System.out.println(stringFor(doc, nnpAnnots));
48 System.out.println("The individual tokens:");
49
50 for(Annotation tok : nnpAnnots) {
51 System.out.println(stringFor(doc,tok));
52 }
53 }

The grammar for this example is in hands-on/jape/resources/match-nps.jape. To run the

example yourself, load exercise2.xgapp in GATE Developer, load an extra JAPE

Transducer PR, and give it as a parameter this grammar file. Finally, add the resulting new

PR at the end of the Exercise 2 application and re-run it.

GATE APIs 71 / 72

Using Java in JAPE
The GATE Ontology API

Optional Material
Advanced JAPE

Annotation Sets and Ordering (Continued)

Here is a sample output, if you execute this rule on our test
document
__
waste management businesses
Now printing the matched individual tokens:
businesses
waste
management
__

Instead, use from gate.Utils this method:
static List<Annotation> inDocumentOrder(AnnotationSet as) ,
which returns a list containing the annotations in the given
annotation set, in document order (i.e. increasing order of start
offset).
As an additional exercise, try instead to implement this
functionality yourself, by modifying the RHS of the rule above and
using the OffsetComparator from gate.Utils.

GATE APIs 72 / 72

