
GATE and Groovy

Advanced GATE Embedded: Using Groovy
Module 8

Twelfth GATE Training Course
June 2019

c© 2019 The University of Sheffield

This material is licenced under the Creative Commons

Attribution-NonCommercial-ShareAlike Licence

(http://creativecommons.org/licenses/by-nc-sa/3.0/)

Advanced GATE Embedded: Using Groovy 1 / 35

http://creativecommons.org/licenses/by-nc-sa/3.0/


GATE and Groovy

Outline

1 GATE and Groovy
Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Advanced GATE Embedded: Using Groovy 2 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Outline

1 GATE and Groovy
Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Advanced GATE Embedded: Using Groovy 3 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Groovy

Dynamic language for the JVM

Groovy scripts and classes compile to Java bytecode – fully
interoperable with Java.

Syntax very close to regular Java

Explicit types optional, semicolons optional

Dynamic dispatch – method calls dispatched based on runtime
type rather than compile-time.

Can add new methods to existing classes at runtime using
metaclass mechanism

Groovy adds useful extra methods to many standard classes in
java.io, java.lang, etc.

Advanced GATE Embedded: Using Groovy 4 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Groovy example

Find the start offset of each absolute link in the document.

1 def om = document.getAnnotations("Original markups")
2 om.get(’a’).findAll { anchor ->
3 anchor.features?.href =~ /^http:/
4 }.collect { it.startNode.offset }

def keyword declares an untyped variable
but dynamic dispatch ensures the get call goes to the right class
(AnnotationSet).
findAll and collect are methods added to Collection by
Groovy

http://groovy.codehaus.org/groovy-jdk has the
details.

?. is the safe navigation operator – if the left hand operand is
null it returns null rather than throwing an exception

Advanced GATE Embedded: Using Groovy 5 / 35

http://groovy.codehaus.org/groovy-jdk


GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Groovy example

Find the start offset of each absolute link in the document.

1 def om = document.getAnnotations("Original markups")
2 om.get(’a’).findAll { anchor ->
3 anchor.features?.href =~ /^http:/
4 }.collect { it.startNode.offset }

def keyword declares an untyped variable

but dynamic dispatch ensures the get call goes to the right class
(AnnotationSet).
findAll and collect are methods added to Collection by
Groovy

http://groovy.codehaus.org/groovy-jdk has the
details.

?. is the safe navigation operator – if the left hand operand is
null it returns null rather than throwing an exception

Advanced GATE Embedded: Using Groovy 5 / 35

http://groovy.codehaus.org/groovy-jdk


GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Groovy example

Find the start offset of each absolute link in the document.

1 def om = document.getAnnotations("Original markups")
2 om.get(’a’).findAll { anchor ->
3 anchor.features?.href =~ /^http:/
4 }.collect { it.startNode.offset }

def keyword declares an untyped variable
but dynamic dispatch ensures the get call goes to the right class
(AnnotationSet).

findAll and collect are methods added to Collection by
Groovy

http://groovy.codehaus.org/groovy-jdk has the
details.

?. is the safe navigation operator – if the left hand operand is
null it returns null rather than throwing an exception

Advanced GATE Embedded: Using Groovy 5 / 35

http://groovy.codehaus.org/groovy-jdk


GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Groovy example

Find the start offset of each absolute link in the document.

1 def om = document.getAnnotations("Original markups")
2 om.get(’a’).findAll { anchor ->
3 anchor.features?.href =~ /^http:/
4 }.collect { it.startNode.offset }

def keyword declares an untyped variable
but dynamic dispatch ensures the get call goes to the right class
(AnnotationSet).
findAll and collect are methods added to Collection by
Groovy

http://groovy.codehaus.org/groovy-jdk has the
details.

?. is the safe navigation operator – if the left hand operand is
null it returns null rather than throwing an exception

Advanced GATE Embedded: Using Groovy 5 / 35

http://groovy.codehaus.org/groovy-jdk


GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Groovy example

Find the start offset of each absolute link in the document.

1 def om = document.getAnnotations("Original markups")
2 om.get(’a’).findAll { anchor ->
3 anchor.features?.href =~ /^http:/
4 }.collect { it.startNode.offset }

def keyword declares an untyped variable
but dynamic dispatch ensures the get call goes to the right class
(AnnotationSet).
findAll and collect are methods added to Collection by
Groovy

http://groovy.codehaus.org/groovy-jdk has the
details.

?. is the safe navigation operator – if the left hand operand is
null it returns null rather than throwing an exception

Advanced GATE Embedded: Using Groovy 5 / 35

http://groovy.codehaus.org/groovy-jdk


GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Groovy example

Find the start offset of each absolute link in the document.

1 def om = document.getAnnotations("Original markups")
2 om.get(’a’).findAll { anchor ->
3 anchor.features?.href =~ /^http:/
4 }.collect { it.startNode.offset }

def keyword declares an untyped variable
but dynamic dispatch ensures the get call goes to the right class
(AnnotationSet).
findAll and collect are methods added to Collection by
Groovy

http://groovy.codehaus.org/groovy-jdk has the
details.

?. is the safe navigation operator – if the left hand operand is
null it returns null rather than throwing an exception

Advanced GATE Embedded: Using Groovy 5 / 35

http://groovy.codehaus.org/groovy-jdk


GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Groovy example

Find the start offset of each absolute link in the document.

1 def om = document.getAnnotations("Original markups")
2 om.get(’a’).findAll { anchor ->
3 anchor.features?.href =~ /^http:/
4 }.collect { it.startNode.offset }

=~ for regular expression matching

unified access to JavaBean properties – it.startNode

shorthand for it.getStartNode()

and Map entries – anchor.features.href shorthand for
anchor.getFeatures().get("href")

Map entries can also be accessed like arrays, e.g.
features["href"]

Advanced GATE Embedded: Using Groovy 6 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Groovy example

Find the start offset of each absolute link in the document.

1 def om = document.getAnnotations("Original markups")
2 om.get(’a’).findAll { anchor ->
3 anchor.features?.href =~ /^http:/
4 }.collect { it.startNode.offset }

=~ for regular expression matching

unified access to JavaBean properties – it.startNode

shorthand for it.getStartNode()

and Map entries – anchor.features.href shorthand for
anchor.getFeatures().get("href")

Map entries can also be accessed like arrays, e.g.
features["href"]

Advanced GATE Embedded: Using Groovy 6 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Groovy example

Find the start offset of each absolute link in the document.

1 def om = document.getAnnotations("Original markups")
2 om.get(’a’).findAll { anchor ->
3 anchor.features?.href =~ /^http:/
4 }.collect { it.startNode.offset }

=~ for regular expression matching

unified access to JavaBean properties – it.startNode

shorthand for it.getStartNode()

and Map entries – anchor.features.href shorthand for
anchor.getFeatures().get("href")

Map entries can also be accessed like arrays, e.g.
features["href"]

Advanced GATE Embedded: Using Groovy 6 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Groovy example

Find the start offset of each absolute link in the document.

1 def om = document.getAnnotations("Original markups")
2 om.get(’a’).findAll { anchor ->
3 anchor.features?.href =~ /^http:/
4 }.collect { it.startNode.offset }

=~ for regular expression matching

unified access to JavaBean properties – it.startNode

shorthand for it.getStartNode()

and Map entries – anchor.features.href shorthand for
anchor.getFeatures().get("href")

Map entries can also be accessed like arrays, e.g.
features["href"]

Advanced GATE Embedded: Using Groovy 6 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Groovy example

Find the start offset of each absolute link in the document.

1 def om = document.getAnnotations("Original markups")
2 om.get(’a’).findAll { anchor ->
3 anchor.features?.href =~ /^http:/
4 }.collect { it.startNode.offset }

=~ for regular expression matching

unified access to JavaBean properties – it.startNode

shorthand for it.getStartNode()

and Map entries – anchor.features.href shorthand for
anchor.getFeatures().get("href")

Map entries can also be accessed like arrays, e.g.
features["href"]

Advanced GATE Embedded: Using Groovy 6 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Closures

Parameter to collect, findAll, etc. is a closure

like an anonymous function (JavaScript) or lambda expression
(Java 8), a block of code that can be assigned to a variable and
called repeatedly.

Can declare parameters (typed or untyped) between the opening
brace and the ->

If no explicit parameters, closure has an implicit parameter called
it.

Closures have access to the variables in their containing scope –
unlike Java inner classes and lambdas these do not have to be
(effectively) final.

The return value of a closure is the value of its last expression (or
an explicit return).

Advanced GATE Embedded: Using Groovy 7 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

More Groovy Syntax

Shorthand for lists: ["item1", "item2"] declares an
ArrayList

Shorthand for maps: [foo:"bar"] creates a HashMap mapping
the key "foo" to the value "bar".

Interpolation in double-quoted strings (like Perl):
"There are ${anns.size()} annotations of type ${annType}"

Parentheses for method calls are optional (where this is
unambiguous): myList.add 0, "someString"

When you use parentheses, if the last parameter is a closure it
can go outside them: this is a method call with two parameters
someList.inject(0) { last, cur -> last + cur }

“slashy string” syntax where backslashes don’t need to be
doubled: /C:\Program Files\Gate/ equivalent to
’C:\\Program Files\\Gate’

Advanced GATE Embedded: Using Groovy 8 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Operator Overloading

Groovy supports operator overloading cleanly
Every operator translates to a method call

x == y becomes x.equals(y) (for reference equality, use
x.is(y))
x + y becomes x.plus(y)
x << y becomes x.leftShift(y)
full list at http://groovy.codehaus.org

To overload an operator for your own class, just implement the
method.

e.g. List implements leftShift to append items to the list:
[’a’, ’b’] << ’c’== [’a’, ’b’, ’c’]

Advanced GATE Embedded: Using Groovy 9 / 35

http://groovy.codehaus.org


GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Groovy in GATE

Groovy support in GATE is provided by the Groovy plugin.
Loading the plugin

enables the Groovy scripting console in GATE Developer
adds utility methods to various GATE classes and interfaces for
use from Groovy code
provides a PR to run a Groovy script.
provides a scriptable controller whose execution strategy is
determined by a Groovy script.

Advanced GATE Embedded: Using Groovy 10 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Scripting GATE Developer

Groovy provides a
Swing-based console to test
out small snippets of code.

The console is available in the
GATE Developer GUI via the
Tools menu. To enable, load
the Groovy plugin.

Advanced GATE Embedded: Using Groovy 11 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Imports and Predefined Variables

The GATE Groovy console imports a few packages by default:

gate, gate.util

plus the standard java.util, java.io, etc. common to all
Groovy code.

The following read-only variables are implicitly defined:

corpora a list of loaded corpus LRs (Corpus)

docs a list of all loaded document LRs (DocumentImpl)

prs a list of all loaded PRs

apps a list of all loaded Applications (AbstractController)

Advanced GATE Embedded: Using Groovy 12 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Exercise 1: The Groovy Console

Start the GATE Developer GUI

Load the Groovy plugin

Select Tools → Groovy Tools → Groovy Console

Experiment with the console

For example to tokenise a document and find how many “number”
tokens it contains:

1 doc = Factory.newDocument(new URL(’http://gate.ac.uk’))
2 tokeniser = Factory.createResource(’gate.creole.tokeniser.

DefaultTokeniser’)
3 tokeniser.document = doc
4 tokeniser.execute()
5 tokens = doc.annotations.get(’Token’)
6 tokens.findAll { it.features.kind == ’number’ }.size()

Advanced GATE Embedded: Using Groovy 13 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Exercise 1: The Groovy Console

Variables you assign in the console (without a def or a type
declaration) remain available to future scripts in the same
console.

So you can run the previous example, then try more things with
the doc and tokens variables.
Some things to try:

Find the names and sizes of all the annotation sets on the
document (there will probably only be one named set).
List all the different kinds of token
Find the longest word in the document

Advanced GATE Embedded: Using Groovy 14 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Exercise 1: Solution

Some possible solutions (there are many. . . )

1 / / Find the annotation set names and sizes
2 doc.namedAnnotationSets.each { name, set ->
3 println "${name} has size ${set.size()}"
4 }
5

6 / / List the different kinds of token
7 tokens.collect { it.features.kind }.unique()
8

9 / / Find the longest word
10 tokens.findAll {
11 it.features.kind == ’word’
12 }.max { it.features.length.toInteger() }

Advanced GATE Embedded: Using Groovy



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Groovy Categories

In Groovy, a class declaring static methods can be used as a
category to inject methods into existing types (including
interfaces)

A static method in the category class whose first parameter is a
Document:
public static SomeType foo(Document d, String arg)

. . . becomes an instance method of the Document class:
public SomeType foo(String arg)

The use keyword activates a category for a single block

To enable the category globally:
TargetClass.mixin(CategoryClass)

Advanced GATE Embedded: Using Groovy 15 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Utility Methods

The gate.Utils class (mentioned in the JAPE module) contains
utility methods for documents, annotations, etc.

Loading the Groovy plugin treats this class as a category and
installs it as a global mixin.

Enables syntax like:

1 tokens.findAll {
2 it.features.kind == ’number’
3 }.each {
4 println "${it.type}: length = ${it.length()}, "
5 println " string = ${doc.stringFor(it)}"
6 }

Advanced GATE Embedded: Using Groovy 16 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Utility Methods

The Groovy plugin also mixes in the GateGroovyMethods class.
This extends common Groovy idioms to GATE classes

e.g. implements each, eachWithIndex and collect for
Corpus to do the right thing when the corpus is stored in a
datastore
defines a withResource method on Resource, to call a closure
with a given resource as a parameter, and ensure the resource is
deleted when the closure returns:

1 Factory.newDocument(someURL).withResource { doc ->
2 / / do some th i ng w i t h t h e document
3 }

Advanced GATE Embedded: Using Groovy 17 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Utility Methods

Also overloads the subscript operator [] to allow:
annSet["Token"] and annSet["Person", "Location"]

annSet[15..20] to get annotations within given span
doc.content[15..20] to get the DocumentContent within a
given span

See src/gate/groovy/GateGroovyMethods.java in
the Groovy plugin for details.

Advanced GATE Embedded: Using Groovy 18 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Exercise 2: Using a category

In the console, try using some of these new methods:

1 tokens = doc.annotations["Token"]
2 tokens.findAll {
3 it.features.kind == ’number’
4 }.each {
5 println "${it.type}: length = ${it.length()}, "
6 println " string = ${doc.stringFor(it)}"
7 }

Advanced GATE Embedded: Using Groovy 19 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

The Groovy Script PR

The Groovy plugin provides a PR to execute a Groovy script.

Useful for quick prototyping, or tasks that can’t be done by JAPE
but don’t warrant writing a custom PR.

PR takes the following parameters:

scriptURL (init-time) The path to a valid Groovy script

inputASName an optional annotation set intended to be used as input
by the PR

outputASName an optional annotation set intended to be used as
output by the PR

scriptParams optional parameters for the script as a FeatureMap

Advanced GATE Embedded: Using Groovy 20 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Script Variables

The script has the following implicit variables available when it is run

doc the current document

corpus the corpus containing the current document

content the string content of the current document

inputAS the annotation set specified by inputASName in the PRs
runtime parameters

outputAS the annotation set specified by outputASName in the
PRs runtime parameters

scriptParams the parameters FeatureMap passed as a runtime
parameter

and the same implicit imports as the console.

Advanced GATE Embedded: Using Groovy 21 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Corpus-level processing

Any other variables are treated like instance variables in a PR –
values set while processing one document are available while
processing the next.

So Groovy script is stateful, can e.g. collect statistics from all the
documents in a corpus.
Script can declare methods for pre- and post-processing:

beforeCorpus called before first document is processed.
afterCorpus called after last document is processed
aborted called if anything goes wrong

All three take the corpus as a parameter

scriptParams available within methods, other variables not.

Advanced GATE Embedded: Using Groovy 22 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Controller Callbacks Example

Count the number of annotations of a particular type across the corpus

1 void beforeCorpus(c) {
2 println "Processing corpus ${c.name}"
3 count = 0
4 }
5

6 count += doc.annotations[scriptParams.type].size()
7

8 void afterCorpus(c) {
9 println "Total ${scriptParams.type} annotations " +

10 "in corpus ${c.name}: ${count}"
11 }

Advanced GATE Embedded: Using Groovy 23 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Exercise 3: Using the Script PR

Write a very simple Goldfish annotator as a Groovy script
Annotate all occurrences of the word “goldfish” (case-insensitive)
in the input document as the annotation type “Goldfish”.
Add a “numFish” feature to each Sentence annotation giving the
number of Goldfish annotations that the sentence contains.

Put your script in the file
hands-on/groovy/goldfish.groovy

To test, load hands-on/groovy/goldfish-app.xgapp
into GATE Developer (this application contains tokeniser,
sentence splitter and goldfish script PR).

You need to re-initialize the Groovy Script PR after each edit to
goldfish.groovy

Advanced GATE Embedded: Using Groovy 24 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Exercise 3: Solution

One of many possible solutions:

1 def m = (content =~ /(?i)goldfish/)
2 while(m.find()) {
3 outputAS.add((long)m.start(), (long)m.end(),
4 ’Goldfish’, [:].toFeatureMap())
5 }
6

7 def allGoldfish = outputAS["Goldfish"]
8 inputAS["Sentence"].each { sent ->
9 sent.features.numFish =

10 allGoldfish[sent.start()..sent.end()].size()
11 }

Advanced GATE Embedded: Using Groovy



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

The Scriptable Controller

ConditionalSerialAnalyserController can run PRs
conditionally based on the value of a document feature.

This is useful but limited; Groovy plugin’s scriptable controller
provides more flexibility.

Uses Groovy DSL to define the execution strategy.

Advanced GATE Embedded: Using Groovy 25 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

The ScriptableController DSL

Run a single PR by using its name as a method call
So good idea to give your PRs identifier-friendly names.

Iterate over the documents in the corpus using eachDocument

Within an eachDocument closure, any PRs that implement
LanguageAnalyser get their document and corpus parameters
set appropriately.

Override runtime parameters by passing named arguments to the
PR method call.

DSL is a Groovy script, so all Groovy language features available
(conditionals, loops, method declarations, local variables, etc.).

http://gate.ac.uk/userguide/sec:api:groovy:
controller

Advanced GATE Embedded: Using Groovy 26 / 35

http://gate.ac.uk/userguide/sec:api:groovy:controller
http://gate.ac.uk/userguide/sec:api:groovy:controller


GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

ScriptableController example

1 eachDocument {
2 documentReset()
3 tokeniser()
4 gazetteer()
5 splitter()
6 posTagger()
7 findLocations()
8 / / choose the appropriate classifier depending how many Locations were found
9 if(doc.annotations["Location"].size() > 100) {

10 fastLocationClassifier()
11 }
12 else {
13 fullLocationClassifier()
14 }
15 }

Advanced GATE Embedded: Using Groovy 27 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

ScriptableController example

1 eachDocument {
2 / / find all the annotatorN sets on this document
3 def annotators =
4 doc.annotationSetNames.findAll {
5 it ==~ /annotator\d+/
6 }
7

8 / / run the post-processing JAPE grammar on each one
9 annotators.each { asName ->

10 postProcessingGrammar(
11 inputASName: asName,
12 outputASName: asName)
13 }
14

15 / / merge them to form a consensus set
16 mergingPR(annSetsForMerging: annotators.join(’;’))
17 }

Advanced GATE Embedded: Using Groovy 28 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Robustness and Realtime Features

When processing large corpora, applications need to be robust.
If processing of a single document fails it should not abort
processing of the whole corpus.

When processing mixed corpora or using complex grammars,
most documents process quickly but a few may take much longer.

Option to interrupt/terminate processing of a document when it
takes too long.
Particularly useful with pay-per-hour processing such as
GATECloud.net

Advanced GATE Embedded: Using Groovy 29 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Ignoring Errors

Use an ignoringErrors block to ignore any exceptions thrown
in the block.

1 eachDocument {
2 ignoringErrors {
3 myTransducer()
4 }
5 }

Exceptions thrown will be logged but will not terminate execution.
Note nesting

ignoringErrors inside eachDocument – exception means
move to next document.
eachDocument inside ignoringErrors – exception would
terminate processing of corpus.

Advanced GATE Embedded: Using Groovy 30 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Limiting Execution Time

Use a timeLimit block to place a limit on the running time of the
given block.

1 eachDocument {
2 annotateLocations()
3 timeLimit(soft:30.seconds, hard:30.seconds) {
4 classifyLocations()
5 }
6 }

soft limit – interrupt the running thread and PR

hard limit – Thread.stop()

Limits are cumulative – hard limit starts counting from the expiry
of the soft limit.

Advanced GATE Embedded: Using Groovy 31 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Limiting Execution Time (2)

When a block is terminated due to reaching a hard time limit, this
generates an exception.

So in GATE Developer you probably want to wrap the timeLimit

block in an ignoringErrors so it doesn’t fail the corpus.
But on GATECloud.net each document is processed separately,
so you do want the exception thrown to mark the offending
document as failed.

Treat timeLimit as a last resort – use heuristics to try and avoid
long-running PRs (see the “fast” vs. “full” location classifier
example).

Advanced GATE Embedded: Using Groovy 32 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Writing Resources in Groovy

Groovy is more than a scripting language – you can write classes
(including GATE resources such as ScriptableController) in
Groovy and compile them to Java bytecode.

Compiler available via <groovyc> Ant task in groovy-all
JAR.

In order to use GATE resources written in Groovy (other than
those that are part of the Groovy plugin), groovy-all JAR file
must go into gate/lib.

Advanced GATE Embedded: Using Groovy 33 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Groovy Beans

Recall unified Java Bean property access in Groovy
x = it.someProp means x = it.getSomeProp()

it.someProp = x means it.setSomeProp(x)

Declarations have a similar shorthand: a field declaration with no
public, protected or private modifier becomes a private field
plus an auto-generated public getter/setter pair.

For parameters and sharable properties, the annotation can go
on the field declaration.

But you can provide explicit setter or getter, which will be used
instead of the automatic one.

Advanced GATE Embedded: Using Groovy 34 / 35



GATE and Groovy

Introduction to Groovy
Scripting GATE Developer
Groovy Scripting for PRs and Controllers
Writing GATE Resource Classes in Groovy

Example: a Groovy Regex PR

1 package gate.groovy.example
2 import gate.*
3 import gate.creole.*
4 import gate.creole.metadata.*
5

6 public class RegexPR extends AbstractLanguageAnalyser {
7 @RunTime @CreoleParameter String regex
8 @RunTime @CreoleParameter String annType
9 @Optional @RunTime @CreoleParameter

10 String annotationSetName
11

12 public void execute() {
13 def aSet = document.getAnnotations(annotationSetName)
14 def matcher = (document.content.toString() =~ regex)
15 while(matcher.find()) {
16 aSet.add(matcher.start(), matcher.end(),
17 annType, [:].toFeatureMap())
18 }
19 }
20 }

Advanced GATE Embedded: Using Groovy 35 / 35


	GATE and Groovy
	Introduction to Groovy
	Scripting GATE Developer
	Groovy Scripting for PRs and Controllers
	Writing GATE Resource Classes in Groovy


