

University of Sheffield, NLP

Module 6: Tools and Plugins

© The University of Sheffield, 1995-2021
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike Licence

University of Sheffield, NLP

Topics covered

• This module is about adapting ANNIE to create your own
applications, and to look at more advanced techniques
within applications

– Using different gazetteers

– Adapting ANNIE to different languages

– Using conditional applications

– Section-by-section processing

– Using multiple annotation sets

– Separating useful content in a document

– Schema Enforcer

– Using Groovy

– Modular Pipelines

University of Sheffield, NLP

Using different gazetteers

University of Sheffield, NLP

Why?

● The standard gazetteer in ANNIE only performs exact
matching against the text

● An entry in a gazetteer list must match the word exactly in
the text (with the exception of capitalisation issues
depending on if the case-sensitive parameter is switched
on)

● But what if we want to match a plural word in the text with a
singular word in the gazetteer?

● Or different forms of a verb (says, saying, say, said etc.)

● It would be nice not to have to specify alternative forms of
each word in the lists

● Luckily, we have ways to do this

University of Sheffield, NLP

Advanced Gazetteers

● There are several different gazetteers which let you do more
complex matching

● Flexible Gazetteer: enables matching against features on an
annotation (typically the Token's root feature)

● Feature Gazetteer: enables matching against features on an
annotation, but also enables adding/removing annotations and
features when a match is found

● Extended Gazetteer: as for the flexible gazetteer, but also
provides features for more powerful matching of partial words,
annotating prefixes and suffixes, and more versatile handling
of word boundaries and white space.

University of Sheffield, NLP

Flexible Gazetteer

● Found in the Tools plugin

● Requires a regular gazetteer to be loaded in memory but not in the
pipeline itself (the regular gazetteer gets wrapped in the flexible one)

● Run-time parameters let you specify:

● the regular gazetteer to use

● the annotations and features to match on

● input and output annotation sets

● A typical use for this is to match against the root form of a word (e.g.
dogs -> dog; laughing -> laugh)

● To do this, you need to specify Token.root as the annotation and feature
to match. You also need to make sure you have run the morphological
analyser first, so you have root features on your Tokens

University of Sheffield, NLP

Flexible gazetteer run-time params

Select a gazetteer that you have
loaded, e.g. the default ANNIE oneChoose the annotation name and feature

that you want to match on

University of Sheffield, NLP

Hands-on with flexible gazetteer

● Load ANNIE

● Load the Tools plugin

● Create a new Flexible Gazetteer and a new Morphological
Analyser

● Go to the ANNIE application and add the morphological analyser
and flexible gazetteer to the pipeline after the POS tagger

● Select the ANNIE gazetteer as the gazetteer instance to use in
the Flexible Gazetteer; set Token.root as the input feature name
(one item in the list)

● Remove the ANNIE gazetteer from the application (but don't
remove it from GATE) or switch it off

● Try it on some text!

University of Sheffield, NLP

Hands-on with flexible gazetteer

University of Sheffield, NLP

Extended Gazetteer

● Found in the StringAnnotation plugin

● Faster loading, uses much less memory than regular gazetteer

● Needs annotations that identify words and whitespace (usually
Token and SpaceToken).

● Can limit matching to just within containing annotations

● This PR can be used for direct matching of document text or
indirect matching of feature values

● Can specify separately whether to match at the beginning and/or
the end of words

● Can use (gzip) compressed list files (.lst.gz)

University of Sheffield, NLP

Init parameters

● caseSensitive: false if case should be ignored for matching

● configFile URL: specify the definition/config file – similar
to the “listsURL” parameter on the ANNIE gazetteer

● caseConversionLanguage: Specify the language to use
for converting characters to upper case when case-
insensitive matching (e.g. ß→SS for de) . Default is en
(English)

● gazetteerFeatureSeparator: same as for the ANNIE
gazetteer (but “\t” tab character is the default here)

● => no encoding parameters, list files have to be UTF-8
encoded

University of Sheffield, NLP

Run-time parameters

● containingAnnotationType: if an annotation type is given, then
matching is done only fully within the span of such annotations.
E.g. DocumentContent, Sentence.

● longestMatchOnly: if set to true, then only the longest match is
used and all shorter matches are ignored.

● matchAtWordEndOnly: if true, then the end of a match can only
occur at the end of a word annotation. Typically set to true.

● matchAtWordStartOnly: if true, then the start of a match can
only occur at the start of a word annotation. Typically set to true.

● textFeature: feature of the word annotation to match on (as for
FlexibleGazetteer). Typically left empty or set to root.

University of Sheffield, NLP

More run-time parameters

● outputAnnotationType: in case you want to change the name
of the annotation to be created on a match (instead of Lookup)

● spaceAnnotationType: the annotation type that identifies space
between words. Default is SpaceToken.

● splitAnnotationType: the annotation type that identifies
positions in the document that should not be crossed by
matches. Default is Split.

● wordAnnotationType: type of annotations that define the word
boundaries of the text that should be used for matching or if
matching by feature is used, the annotations containing the
feature. Default is Token.

University of Sheffield, NLP

Extended gazetteer cache files

● When a gazetteer is first loaded from a .def file, then the
ExtendedGazetteer will create a new gazetteer cache file.

● This cache file has the same name as the .def file but with
a file extension ".gazbin" instead of ".def".

● When the gazetteer gets loaded and such a cache file
exists, the cache file will be loaded instead of the original
files.

● NOTE: if a cache file exists, it will always be used, even if
the .def or any .lst file has been changed in the meantime.
If you update the gazetteer data, make sure you select
“Remove cache and re-initialise” in the GUI

University of Sheffield, NLP

Feature gazetteer

● Found in the StringAnnotation plugin

● Enables adding/removing annotations/features when a match is
found

● For example, if tokens have a root feature and there is a
gazetteer list that has as a feature the frequencies of English
word roots in some corpus, the "add features" action can be
used to enrich the token annotations with word frequencies.

● filter annotations: if there is a gazetteer of stopwords, the
string or root feature of existing token annotations can be
matched and the "remove annotation" action can be used to
remove these annotations if a stopword is matched.

University of Sheffield, NLP

Init parameters

● exactly the same as for the ExtendedGazetteer

● Note: this gazetteer uses the cache, .def and .lst files in
exactly the same way as the ExtendedGazetter. If the
ExtendedGazetteer and/or FeatureGazetteer load from the
same files using the same Init-parameters, only one shared
copy is used in memory.

University of Sheffield, NLP

Feature gazetteer run-time parameters

● containingAnnotationType: If an annotation type is given, then
matching is done only within the span of such annotations.

● InputAnnotationSet: the set that contains the annotations to be
updated, if annotations are updated

● matchAtStartOnly: if true, then a match must be found at the
start of the value of the feature, if false, a match may start
anywhere.

● matchAtEndOnly: if true, then a match must be found that ends
at the end of the value of the feature, if false, a match may end
anywhere.

● outputAnnotationType: in case you want to change the name
of the annotation to be created on a match, if annotations are
created (instead of Lookup)

University of Sheffield, NLP

More run-time parameters

● wordAnnotationType: the annotation type that is used for
matching. For example Token or Lookup.

● textFeature: the name of a feature of the word annotation which is
used for matching, e.g. root or id

● processingMode: select an option from:

● AddFeatures: add all features from the def file or the gazetteer
entry which are not already present in the annotation

● OverwriteFeatures: overwrite all features (if any existing) from
the def file or the gazetteer entry with the new values

● RemoveAnnotation: delete the annotation from the input AS

● AddNewAnnotation: add a new annotation to the output AS

● KeepAnnotation: keep annotation if match, else remove

University of Sheffield, NLP

Gazetteer features

● All GATE gazetteers allow arbitrary feature values to be associated
with particular entries in a single list

● Values are separated by the gazetteerFeatureSeparator character
which for historical reasons defaults to ;

● We advise setting this to the tab character (\t) when creating a new
gazetteer so that it is never confused with part of a list entry

● It also means you can directly use tab-separated value (.tsv) files
from your favourite spreadsheet editor

● You do not have to provide the same features for every line in the
file, e.g. you can provide extra features for some lines in the list but
not others.

● Use the “+cols” option in the ANNIE gazetteer editor to add new
sets of features and values

University of Sheffield, NLP

Developing IE for other languages

University of Sheffield, NLP

Finding available resources

• When creating an IE system for new languages, it's easiest to
start with ANNIE and then work out what needs adapting

• Check the resources in GATE for your language (if any)

– Check the GATE plugin manager (hint: the language
plugins begin with “Language:”)

– Check the user guide for things like POS taggers and
stemmers which have various language options

• Check which PRs you can reuse directly from ANNIE

– Existing tokeniser and sentence splitter will work for
most European languages. Asian languages may require
special components.

• Collect any other resources for your language, e.g POS
taggers. These can be implemented as GATE plugins.

University of Sheffield, NLP

Language plugins available

University of Sheffield, NLP

Which resources need modifying?

We can divide the PRs into 3 types depending on how much
modification they need to work with other languages:

• language-independent: work with different languages with
little or no modification

• easily modifiable: can be easily modified for a different
language with little programming skill

• language-dependent: these need to be replaced by an
entirely new PR

University of Sheffield, NLP

Language-independent resources

• ANNIE PRs which are totally language-independent are the
Document Reset and Annotation Set Transfer

• They can be seen as “language-agnostic” as they just make use of
existing annotations with no reference to the document itself or the
language used

• The tokeniser and sentence splitter are (more or less) language-
independent and can be re-used for languages that have the same
notions of token and sentence as English (white space, full stops etc)

• Make sure you use the Unicode tokeniser, not the English tokeniser
(which is customised with some English abbreviations)

• Some tweaking could be necessary - these PRs have resources that
are easy to modify (with no Java skills needed)

University of Sheffield, NLP

Easily modifiable resources

• Gazetteers are normally language-dependent, but can
easily be translated or equivalent lists found or generated

– Lists of numbers, days of the week etc. can be
translated

– Lists of cities, countries, etc., can be found on the
web

• Gazetteer modification requires no programming or
linguistic skills

• The Orthomatcher will work for other languages where
similar rules apply, e.g. John Smith --> Mr Smith

• Might need modification in some cases: some basic Java
skills and linguistic knowledge are required

University of Sheffield, NLP

Language-dependent resources

• POS taggers and grammars are highly language-dependent

• If no POS tagger exists, a hack can be done by replacing the
English lexicon for the Hepple tagger with a language-specific
one

• Some grammar rules can be left intact, but many will need to
be rewritten

• Many rules may just need small modifications, e.g., component
order needs to be reversed in a rule

• Knowledge of some linguistic principles of the target language
is needed, e.g., agglutination, word order

• No substantial programming skills are required, but knowledge
of JAPE and basic Java are necessary

University of Sheffield, NLP

Adding a POS tagger for a new language

 If you already have a POS tagger for your language with a
Java API, you can write a “wrapper” PR for it

 This enables you to feed sentences/tokens to the
tagger, and map the output back to GATE annotations

 See the Stanford_CoreNLP plugin for an example

 Or for a non-Java POS tagger, use the Tagger_Framework PR
(to pipe data through an external process and back)

 If you have a POS-tagged corpus, you can translate it into
“traditional” tagged format with one line per sentence, e.g.

 The_DT cat_NN sat_VBD on_IN the_DT mat_NN ._.
 You can use this to train a model for the LingPipe POS

Tagger PR
 This is how we POS-tagged Bulgarian in GATE

University of Sheffield, NLP

Tree Tagger

• Language-independent POS tagger supporting English,
French, German, Spanish in GATE

• Needs to be installed separately (binary executable + models)

• Also supports Italian and Bulgarian, but not in GATE

• Tagger framework should be used to run the TreeTagger

• This provides a generic wrapper for various taggers

• In addition to TreeTagger, sample applications for

– GENIA (English biomedical tagger)

– HunPos (English and Hungarian)

– Stanford Tagger (English, German and Arabic)

• More details in the GATE User Guide

University of Sheffield, NLP

Conditional Processing

University of Sheffield, NLP

What is conditional processing?

 In GATE, you can set a processing resource in your
application to run or not depending on certain circumstances

 You can have several different PRs loaded, and let the system
automatically choose which one to run, for each document.

 This is very helpful when you have texts in multiple
languages, or of different types, which might require different
kinds of processing

 For example, if you have a mixture of German and English
documents in your corpus, you might have some PRs which
are language-dependent and some which are not

 You can set up the application to run the relevant PRs on the
right documents automatically.

University of Sheffield, NLP

Conditional processing with different
languages

● Suppose we have a corpus with documents in German and
English, and we only want to process the English texts.

● First we must distinguish between the two kinds of text, using
a language identification tool

● For this we can use TextCat, which has a GATE plugin
(Language Identification)

● We use this (in default mode) to add a feature on each
document, telling us which language the document is in

● Then we run a conditional processing pipeline, that only runs
the subsequent PRs if the value of the language feature on
the document is English

● The other documents will not be processed

University of Sheffield, NLP

Hands-on with multilingual corpora

● Create a new corpus in GATE and populate it with the two
documents found in corpus/rar-english-german-corpus/

● Select utf-8 as the encoding when you populate the corpus

● You should have one English and one German document loaded

● Load the Language Identification plugin and create a TextCat
Language Identification PR

● Create a new application

● Add TextCat to the end of the application and run it on the corpus

● Examine the document features for both documents

University of Sheffield, NLP

Check the document language

● Click on a document

● In the bottom left corner is the
document features pane

● TextCat will add a language
feature here

University of Sheffield, NLP

What if we want to process the
German and the English?

● If we want to process both German and English documents
with different resources, we have a couple of options

1. We can just call some language-specific PRs
conditionally, and use the language-neutral PRs on all
documents

2. We can call different applications from within the main
application

● The following two hands-on exercises demonstrate the
difference between these

University of Sheffield, NLP

Hands-on with multilingual apps

● Load the application annie+german.gapp

● Look at the various PRs in the app: some are set to run on
English documents, some on German ones, and some on
all documents

● Run the application on your corpus

● The German document should now be annotated with
German NEs and the English document with English ones

● There will be some mistakes (we're not using a German
POS tagger here so results are weaker than usual)

University of Sheffield, NLP

Hands-on with multilingual apps

● Close recursively all applications you have loaded in GATE (keep the
corpus and documents)

● Load ANNIE

● Load german-ie.gapp from the hands-on materials

● Create a new conditional corpus pipeline

● Create a TextCat PR and add it to the new pipeline

● Add the ANNIE and German NE applications to the pipeline (in either
order) after the TextCat

Set ANNIE to run on English documents and the German app to run on
German ones (use document features and values that match the TextCat
output we have already seen)

● Run the main application on your corpus

University of Sheffield, NLP

Your application should look like this

University of Sheffield, NLP

Other uses for conditional processing

• Processing degraded text along with normal text

• For degraded text (e.g., emails, ASR transcriptions) you
might want to use some case-insensitive PRs

• Another use is in combination with different kinds of files
(HTML, plain text etc.) which might require different
processing

• More about this later....

University of Sheffield, NLP

Another example

 In one application we developed, we found a problem when
running the Orthomatcher (co-reference) on certain texts
where there were a lot of annotations of the same type.

 To solve this issue, we first checked to see how many
annotations of each were present in a document

 If more than a certain number were present, we added a
document feature indicating this

 We then set the orthomatcher to only run on a document
which did not contain this feature.

University of Sheffield, NLP

Grammar to check number of annotations

Options: control = once

Rule: CheckAnnotations

({Person}|{Organization}|{Location})

-->

{

 if (inputAS.get("Person").size() > 200) {

 doc.getFeatures().put("runOrthomatcher","false");

 } else {

 doc.getFeatures().put("runOrthomatcher","true");

 }

}

If there are more than 200 Person annotations, don't run the orthomatcher!

University of Sheffield, NLP

Section by Section Processing:
the Segment Processing PR

University of Sheffield, NLP

What is it?

 PR which enables you to process labelled sections of a
document independently, one at a time

 Useful for
 very large documents
 when you want annotations in different sections to be

independent of each other
 when you only want to process certain sections within

a document

University of Sheffield, NLP

Processing large documents

• If you have a very large document, processing it may be very slow

• One solution is to chop it up into smaller documents and process
each one separately, using a datastore to avoid keeping all the
documents in memory at once

• But this means you then need to merge all the documents back
afterwards

• The Segment Processing PR does this all in one go, by
processing each labelled section separately

• This is quicker than processing the whole document in one go,
because storing a lot of annotations (even if they are not being
accessed) slows down the processing

University of Sheffield, NLP

Processing Sections Independently

• Another problem with large documents can arise when you
want to handle each section separately

• You may not want annotations to be co-referenced across
sections, for instance if a web page has profiles of different
people with similar names

• Using the Segment Processing PR enables you to handle each
section separately, without breaking up the document

• It also enables you to use different PRs for each section, using
a conditional controller

• For example, some documents may have sections in different
languages

University of Sheffield, NLP

Problematic co-references

University of Sheffield, NLP

Getting rid of the junk

• Another very common problem is that some documents contain
lots of “junk” that you don't want to process, e.g. HTML files
contain javascript or contents lists, footers etc.

• There are a number of ways in which you can do this: you may
need to experiment to find the best solution for each case

– Segment Processing PR enables you to only process the
section(s) you are interested in and ignore the junk

– Using the AnnotationSetTransfer PR, though this works
slightly differently

– Using the Boilerpipe PR - this works best for ignoring
standard kinds of boilerplate

University of Sheffield, NLP

How does it work?

• The PR is part of the Alignment Plugin

• A new application needs to be created, containing the
Segment PR

• The PR then takes as one of its parameters, an instance of
the application that you want to run on the document (e.g.
ANNIE)

• You can add other PRs before or after the Segment PR, if
you want them to run over the whole document rather than
the specified section(s)

University of Sheffield, NLP

Running ANNIE on a title segment

• Application
contains a
Segment
Processing
PR

• Segment
Processing
PR calls
ANNIE
application

University of Sheffield, NLP

Segment Processing Parameters

• Segment Processing PR calls the ANNIE application

• ANNIE is set to run only on the text covered by the span of the
“title” annotation in the Original markups annotation set

University of Sheffield, NLP

Annotation Result

• Green shading shows the title, which spans the section to be
annotated
• The only NE found is the Organization “BBC News” in the title
• Tokens in the rest of the document are not annotated

University of Sheffield, NLP

Using multiple annotation sets

University of Sheffield, NLP

Annotation Set Transfer

• This PR enables copying or moving annotations from one
set to another

• As with the Segment Processing PR, you can specify a
covering annotation to delimit the section you're interested in

• One use for this is to change annotation set names or to
move results into a new set, without rerunning the
application

• For example, you might want to move all the gold standard
annotations from Default to Key annotation set

University of Sheffield, NLP

Transferring annotations

The annotations remain the same, they're just stored in a different set

University of Sheffield, NLP

Hands-on Exercise

• Objective: move all the annotations from the Default set into the
Key set

• Clear GATE of all previous documents, corpora, applications
and PRs

• Load document self-shearing-sheep-marked.xml and create an
instance of an AST (you may need to load the Tools plugin)

• Have a look at the annotations in the document

• Add the AST to a new application and set the parameters to
move all annotations from the default AS to Key

• Make sure you don't leave the originals in the default AS!

• Run the application and check the results

University of Sheffield, NLP

Delimiting a section of text

• Another use is to delimit only a certain section of text in which to
run further PRs over

• Unlike with the Segment Processing PR, if we are dealing with
multiple sections within a document, these will not be processed
independently

• So co-references will still hold between different sections

• Also, those PRs which do not consider specific annotations as
input (e.g. tokeniser and gazetteer), will run over the whole
document regardless

University of Sheffield, NLP

Processing a single section

• Only the “title” section is annotated with NEs title

University of Sheffield, NLP

Transferring title annotations

• But the rest of the document remains tokenised
• These Tokens remain in the Default set because they weren't moved.

University of Sheffield, NLP

Setting the parameters

• Let's assume we want to process only those annotations covered by the
HTML “body” annotation (i.e. we don't want to process the headers etc.).

• We'll put our final annotations in the “Result” set.

• We need to specify as parameters

– textTagName: the name of the covering annotation: “body”

– tagASname: the annotation set where we find this: “Original
markups”

– annotationTypes: which annotations we want to transfer

– inputASname: which annotation set we want to transfer them
from: “Default”

– outputASname: which annotation set we want to transfer them
into: “Result”

University of Sheffield, NLP

Additional options

 There are two additional options you can choose
 copyAnnotations: whether to copy or move the annotations

(i.e. keep the originals or delete them)
 transferAllUnlessFound: if the covering annotation is not

found, just transfer all annotations. This is a useful option if you
just want to transfer all annotations in a document without
worrying about a covering annotation.

University of Sheffield, NLP

Parameter settings

• Move all annotations contained within the “body” annotation (found
in the Original markups set), from the Default set to the Result set.

• If no “body” annotation is found, do nothing.

University of Sheffield, NLP

Using it within an application

• We want to run ANNIE over only the text contained within the
“title” text

• Apart from the tokeniser and gazetteer, the other ANNIE PRs all
rely on previous annotations (Token, Lookup, Sentence, etc.)

• We run the tokeniser and gazetteer first on the whole document

• Then use the AST to transfer all relevant Token and Lookup
annotations into the new set

• Then we can run the rest of the ANNIE PRs on these
annotations

• To do this, we use for inputAS and outputAS the name of the
new set “Result”

University of Sheffield, NLP

Application architecture

University of Sheffield, NLP

Hands-on: processing a document section

● We will modify ANNIE to only run over the title of the document

● Close old applications, PRs, and LRs

● Load the document cricket.html and create a corpus with it

● Load ANNIE

● Add an AST PR immediately after the sentence splitter

● Set the AST parameters to move all annotations contained within the “title”
annotation (found in the Original markups set), from the default set to the Result
set. If you get stuck, check the slide “Setting the Parameters”

● Modify the input and output sets of all following PRs to “Result”

● Run on the corpus and inspect the results

● Now try moving the AST to earlier place in the application—what happens when
you run it?

University of Sheffield, NLP

Content Detection using Boilerpipe

University of Sheffield, NLP

What is the Boilerpipe PR?

 In a closed domain, you can often write some JAPE rules to
separate real document content from headers, footers,
menus etc.

 In many cases, or when dealing with texts of different kinds
or in different formats, it can get much trickier

 Boilerpipe PR provides algorithms to separate the surplus
“clutter” (boilerplate, templates) from the main textual content
of a web page.

 Applies the Boilerpipe Library to a GATE document in order
to annotate the content, the boilerpipe, or both.

 Due to the way in which the library works, not all features
from the library are currently available through the GATE PR

University of Sheffield, NLP

Boilerpipe Parameters

University of Sheffield, NLP

Original HTML document

University of Sheffield, NLP

Processed Document

University of Sheffield, NLP

Try it yourself

 Load the “Tagger: Boilerpipe” and ANNIE plugins

 Create a Boilerpipe Content Detection PR

 Create a new application, and add to it a Document Reset, a
Tokeniser, and the Boilerpipe PR

 Leave all the parameters as default

 Load a document, e.g. the document cricket.html from your
hands-on material, or a page from http://bbc.co.uk/news, and
add to a corpus

 Run the application and examine the “Content” annotations on
the document (in the default set)

 Change the annotateBoilerplate parameter from false to true;
rerun the application; examine the “Boilerplate” annotations

University of Sheffield, NLP

Schema Enforcer

 When creating an application, you often end up with lots of
annotations and features which are not needed in the final output

 If pushing the output into a MIMIR index, or if storage space is an
issue, it's particularly important to get rid of these

 You can tidy up the output using the AnnotationSetTransfer PR to
move selected annotation types to a new set, but there's still the
problem of the features

 Schema Enforcer PR will ensure that annotations and features
will only appear in the final output set if they adhere strictly to the
annotation schemas used

 Straightforward to use - load Schema Tools plugin and just list the
schemas to be used in the runtime parameters (they must be
loaded in GATE already)

University of Sheffield, NLP

Modular Pipelines

● With a normal application (corpus pipeline) you can load other
applications as sub-components, as we have seen

● The problem with this is that when you make changes to any of these
sub-components and then save your main application, the original
application is not saved.

● So if you want to use these sub-components separately, you have to
remember to save separately any changes to them.

● The modular pipelines method gets round this by saving the individual
applications separately.

● “Modular Pipelines” is now included in the GATE plugin manager.

University of Sheffield, NLP

How to use it

● Load the Modular Pipelines plugin

● Create a new Parametrized Corpus Controller from the
Applications menu

● Load an application (sub-pipeline) by creating a new
Processing Resource of type “Pipeline”

● Select a .gapp file as the value of PipelineFileURL in the
loadtime parameters

● This will load the application into GATE

● Add the pipeline to your Parametrized Corpus Controller
application

● Add more sub-pipelines or PRs as you wish

University of Sheffield, NLP

The Groovy PR

University of Sheffield, NLP

Groovy Scripting PR

• Groovy is a dynamic programming language based on Java.

– http://groovy.codehaus.org/

• The GATE Groovy plugin provides a powerful scripting PR
that can be included in a corpus pipeline and run over each
document.

• The script has full access to the current document and corpus
through the GATE API, like a Java JAPE RHS but more
powerful

• Unlike a JAPE Transducer, this PR does not have to match
anything in the document in order to “fire the rules”

University of Sheffield, NLP

Groovy Scripting PR

• Two init parameters:

– scriptURL, the path to the script

– encoding (default UTF-8)

• Once the PR is created, the path to the file cannot be
changed

• Just like JAPE, you can edit the file outside of GATE, save it,
and re-initialize the PR to reload the file (and get syntax error
messages)

• Three runtime parameters:

– inputASName and outputASName (annotation
sets)

– scriptParams (key-value pairs)

University of Sheffield, NLP

Groovy Scripting PR

• Inside the script, you get 6 automatic variables “free of
charge”:

– doc, the current document (as in JAPE)

– corpus, the current corpus

– content, the string content of this document

– inputAS and outputAS, the annotation sets for the
current document named in the runtime parameters
(as in JAPE)

– scriptParams, a FeatureMap with the keys and
values from the scriptParams runtime parameter,
which lets you pass your own simple configuration
options to the PR and change them from the
pipeline interface without editing the script

University of Sheffield, NLP

Groovy Scripting PR

• What can you do with it?

– Anything you can do in a JAPE Java RHS, and more

– Read/write access to the document (features,
content, all annotation sets)

– Read/write access to the corpus (features, size,
contents) but be careful

– Control structures (loops, if then else, etc.)

– No need to match a pattern of annotations

• Example: check each document for certain things and set its
features accordingly

– features can be used to regulate conditional PRs
later in a conditional corpus pipeline, for example

University of Sheffield, NLP

Hands-on: Groovy Scripting PR

• Remove all existing documents, corpora, resources and
applications from GATE

• Create a new corpus and populate it from corpus/ft-corpus
in the hands-on materials

• Load the ANNIE application and the Groovy plugin

• Create a new Groovy Scripting PR from the file
groovy/Example.groovy in the hands-on materials, and add
it to end of the ANNIE pipeline.

University of Sheffield, NLP

Groovy Scripting PR

// Print the name of the current document
println doc.getName()

// Print the text underlying each Person annotation
inputAS["Person"].each{ anno ­>
 println " " + doc.stringFor(anno)
}

// Record the number of Person annotations
doc.getFeatures().put("nbr_persons",

inputAS["Person"].size())

// Flag whether the document contains any Person annotations;
// this feature can be used in a Conditional Corpus Pipeline.
doc.getFeatures().put("has_persons", !

inputAS["Person"].isEmpty())

What do you think this will do?

University of Sheffield, NLP

Groovy Scripting PR

• Run the pipeline and note the output in the Messages tab.

• Open a few documents, examine the document features, and
compare them with the annotations in the default AS.

University of Sheffield, NLP

Groovy script to delimit parts of a
document

// set the annotation type from an annotation in the document

intStart = inputAS["Interesting"].start()

intEnd = inputAS["Interesting"].end()

// add the new annotations

outputAS.add(doc.start(), doc.end(), "WholeDoc", Factory.newFeatureMap())

outputAS.add(doc.start(), intStart, "BeforeInt", Factory.newFeatureMap())

outputAS.add(intStart, doc.end(), "IntZone", Factory.newFeatureMap())

outputAS.add(intEnd, doc.end(), "AfterInt", Factory.newFeatureMap())

University of Sheffield, NLP

Try it out

• Load the JAPE grammar from the file grammar/get-interesting.jape
and add it to the end of your ANNIE application

• You can remove or turn off the other Groovy PR if you want

• Create a new Groovy Scripting PR from the file
groovy/Interesting.groovy in the hands-on materials, and add it
after the new JAPE grammar you just added

• Load the document from the file corpus/report.pdf and add it to a
new corpus

• Run the application over this corpus and check the annotations

• Bonus points: change your application so that ANNIE only runs
over the IntZone part of the corpus

• More bonus points: change the groovy script to get the annotation
type from the script parameters

University of Sheffield, NLP

Putting it all together

• You can combine ideas from all these topics (and more) when
creating your applications

• Here's a real example of an IE application we created for a
project on business intelligence

• It involved different kinds of HTML texts, which required
different processing methods

• As you will see, it's important to keep calm and do things one
step at a time

• When you have complex applications like this, keeping things
in separate annotation sets (and removing unwanted
annotations) can help you keep track of what's going on

University of Sheffield, NLP

Complex IE application

Add document features depending on text type

Tried this grammar out, but didn't use it ultimately

For each text type, copy the pre-processing
annotations from the relevant section to a new
annotation set

Run a text-specific grammar on the documents

Pre-processing is same for all document types

Do something with the results of all documents

Pre-process all documents

University of Sheffield, NLP

Everybody loves spreadsheets (input)

● GATE has built-in support for loading Microsoft Office and
LibreOffice spreadsheets

● They are internally converted to HTML, so the “Original
markups” AS has tr (table row) and td (table data) annotations
marking the rows and cells

● Open a few of your favourite spreadsheets in GATE to see how
they are processed

University of Sheffield, NLP

Everybody loves spreadsheets (output)

● The Configurable Exporter (in the Tools plugin) produces CSV or
TSV output with a row for each matched annotation (or
document) and a cell for each value—suitable for importing into
spreadsheets

● Create a corpus and populate it from corpus/ft-corpus

● Load the application exporter/annie+tsv.gapp

● The exporter has one init parameter for the config file (re-
initialize the PR to reload a changed file)

● It has runtime parameters for the input AS, the instance
(annotation to generate one line of output), and output file
location

University of Sheffield, NLP

Everybody loves spreadsheets (output)

● Look at the config file exporter tsv.conf

● The annotation types in the config file usually match the instance
parameter, but they don’t have to

● Specifying an annotation type without a feature prints the text
covered

● The groovy PR shows an example of copying information from
elsewhere onto the instance annotations

● Set the output file, run the application, and examine the output

● If you leave the output file unset, output is printed in “Messages”

● TSV is usually the easiest format to generate consistently and
load into a spreadsheet

University of Sheffield, NLP

Summary of this module

• You should now have some ideas about how to take ANNIE a
step further and do more interesting things in GATE than just IE
on English news texts.

• Porting an IE system to a different language

• Processing multilingual corpora

• How to process “difficult” texts, e.g. keeping sections
independent, processing only parts of a document, processing
large documents.

• How to manipulate existing annotated documents

• This should enable you now to start building up more complex
applications with confidence

University of Sheffield, NLP

Take-home message for today

• Don't be afraid to try weird and wonderful things in GATE!

• We do it all the time...sometimes it even works :-)

University of Sheffield, NLP

Extra hands-on for the super keen

● Some more exercises to try out!

University of Sheffield, NLP

Extra hands-on

● Modify ANNIE for a language of your choice, by adapting some
gazetteer lists and adding some grammar rules

● If this isn't feasible for your language (e.g. Chinese) then just make an
application with some simple gazetteer lists for your language and
some rules which convert the Lookups into annotations

● Create a small corpus containing a combination of documents in your
chosen language and in English

● Create an application that processes the documents separately but
which merges the results from both into a single final annotation set

● Use any method you like to only annotate certain parts of those
documents

University of Sheffield, NLP

Extra hands-on segment processing (1)

• Clear GATE of all PRs, applications and resources

• Load the application segment-processing.gapp

• Load the document execs2.html and add it to a corpus

• Run the application on the corpus

• This application first creates an annotation type “bold” in the default annotation
set, using the “b” annotations from the Original markups set.

• Have a look at the grammar get-bold.jape and the runtime parameters for it to
see how it was done.

• Then the application uses the get-person.jape grammar to match a bold
annotation followed by a set of sentences, creating a new annotation “Content”
in the default annotation set.

• Have a look at the “bold” and “Content” annotations in the document.

University of Sheffield, NLP

Hands-on segment processing (2)

• Now we have our document separated into sections with the Content annotations.

• Load ANNIE. Remove the Document Reset, Tokeniser and Sentence Splitter
from it (make sure you remove the ones named ANNIE Tokeniser, etc. and not
the ones previously loaded) and change the “failOnMissingInputAnnotations”
parameter of the POS Tagger to false.

• Create a Segment Processing PR and add it to the end of your Segment
application.

• Select the Segment Processing PR in the application and set the “analyser” value
to “ANNIE”

• Set the value of “segmentAnnotationType” to “Content”

• Run the application and look at the results

• Look at the co-references created: they should not cross Content boundaries.
Look at “Google” annotations for an example.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93

