
Mining the Peanut Gallery: Opinion Extraction and
Semantic Classification of Product Reviews

Kushal Dave
NEC Laboratories America

4 Independence Way
Princeton, NJ 08540

kushal@nec-labs.com

Steve Lawrence
NEC Laboratories America

4 Independence Way
Princeton, NJ 08540

lawrence@necmail.com

David M. Pennock
�

Overture Services, Inc.,
74 Pasadena Ave, 3rd Floor

Pasadena, CA 91101

david.pennock@overture.com

ABSTRACT
The web contains a wealth of product reviews, but sifting through
them is a daunting task. Ideally, an opinion mining tool would pro-
cess a set of search results for a given item, generating a list of
product attributes (quality, features, etc.) and aggregating opinions
about each of them (poor, mixed, good). We begin by identify-
ing the unique properties of this problem and develop a method
for automatically distinguishing between positive and negative re-
views. Our classifier draws on information retrieval techniques for
feature extraction and scoring, and the results for various metrics
and heuristics vary depending on the testing situation. The best
methods work as well as or better than traditional machine learn-
ing. When operating on individual sentences collected from web
searches, performance is limited due to noise and ambiguity. But
in the context of a complete web-based tool and aided by a sim-
ple method for grouping sentences into attributes, the results are
qualitatively quite useful.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing; H.3.3 [Information Storage and Retrieval]: Infor-
mation Search and Retrieval; I.2.7 [Artificial Intelligence]: Natu-
ral language processing

General Terms
Algorithms, Measurement, Evaluation

Keywords
Opinion mining, document classification

1. INTRODUCTION
Product reviews exist in a variety of forms on the web: sites

dedicated to a specific type of product (such as MP3 player or
movie pages), sites for newspapers and magazines that may fea-
ture reviews (like Rolling Stone or Consumer Reports), sites that
couple reviews with commerce (like Amazon), and sites that spe-
cialize in collecting professional or user reviews in a variety of ar-
eas (like C

�
net or ZDnet in electronics, or the more broad Epin-

ions.com and Rateitall.com). Less formal reviews are available on
�
This work conducted at NEC Laboratories America, Princeton,

New Jersey.

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.

discussion boards and mailing list archives, as well as in Usenet via
Google Groups. Users also comment on products in their personal
web sites and blogs, which are then aggregated by sites such as
Blogstreet.com, AllConsuming.net, and onfocus.com. When try-
ing to locate information on a product, a general web search turns
up several useful sites, but getting an overall sense of these reviews
can be daunting or time-consuming.

In the movie review domain, sites like Rottentomates.com have
sprung up to try to impose some order on the void, providing ratings
and brief quotes from numerous reviews and generating an aggre-
gate opinion. Such sites even have their own category—“Review
Hubs”—on Yahoo!

On the commerical side, Internet clipping services like Webclip-
ping.com, eWatch.com, and TracerLock.com watch news sites and
discussion areas for mentions of a given company or product, try-
ing to track “buzz.” Print clipping services have been providing
competitive intelligence for some time. The ease of publishing on
the web led to an explosion in content to be surveyed, but the same
technology makes automation much more feasible.

This paper describes a tool for sifting through and synthesizing
product reviews, automating the sort of work done by aggregation
sites or clipping services. We begin by using structured reviews
for testing and training, identifying appropriate features and scor-
ing methods from information retrieval for determining whether re-
views are positive or negative. These results perform as well as
traditional machine learning methods. We then use the classifier to
identify and classify review sentences from the web, where clas-
sification is more difficult. However, a simple technique for iden-
tifying the relevant attributes of a product produces a subjectively
useful summary.

2. BACKGROUND
Although the broad problem we are trying to solve is unique in

the literature, there are various relevant areas of existing research.
Separating reviews from other types of web pages about a product
is similar to other style classification problems. Trying to determine
the sentiment of a review has been attempted in other applications.
Both of these tasks draw on work done finding the semantic orien-
tation of words.

2.1 Objectivity classification
The task of separating reviews from other types of content is a

genre or style classification problem. It involves identifying sub-
jectivity, which Finn et al. [3] attempted to do on a set of articles
spidered from the web. A classifier based on the relative frequency
of each part of speech in a document outperformed bag-of-words
and custom-built features.

519

But determining subjectivity can be, well, subjective. Wiebe et
al. [25] studied manual annotation of subjectivity at the expression,
sentence, and document level and showed that not all potentially
subjective elements really are, and that readers’ opinions vary.

2.2 Word classification
Trying to understand attributes of a subjective element—such as

whether it is positive or negative (polarity or semantic orientation)
or has different intensities (gradability)—is even more difficult.
Hatzivassiloglou and McKeown [5] used textual conjunctions such
as “fair and legitimate” or “simplistic but well-received” to separate
similarly- and oppositely-connoted words. Other studies showed
that restricting features used for classification to those adjectives
that come through as strongly dynamic, gradable, or oriented im-
proved performance in the genre-classification task [6, 24].

Turney and Littman [23] determined the similarity between two
words by counting the number of results returned by web searches
joining the words with a NEAR operator. The relationship between
an unknown word and a set of manually-selected seeds was used to
place it into a positive or negative subjectivity class.

This area of work is related to the general problem of word clus-
tering. Lin [9] and Pereira et al. [16] used linguistic colocations to
group words with similar uses or meanings.

2.3 Sentiment classification

2.3.1 Affect and direction
Using fuzzy logic was one interesting approach to classifying

sentiment. Subasic and Huettner [20] manually constructed a lex-
icon associating words with affect categories, specifying an inten-
sity (strength of affect level) and centrality (degree of relatedness
to the category). For example, “mayhem” would belong, among
others, to the category violence with certain levels of intensity and
centrality. Fuzzy sets are then used to classify documents.

Another technique uses a manually-constructed lexicon to derive
global directionality information (e.g. “Is the agent in favor of,
neutral or opposed to the event?”) which converts linguistic pieces
into roles in a metaphoric model of motion, with labels like BLOCK
or ENABLE [7].

Recently, Liu et al. [10] used relationships from the Open Mind
Commonsense database and manually-specified ground truth to as-
sign scalar affect values to linguistic features. These corresponded
to six basic emotions (happy, sad, anger, fear, disgust, surprise).
Several techniques were applied to classify passages using this knowl-
edge, and user studies were conducted with an email composer that
presented face icons corresponding to the inferred emotion.

2.3.2 Recommendations
At a more applied level, Das and Chen [1] used a classifier on

investor bulletin boards to see if apparently positive postings were
correlated with stock price. Several scoring methods were em-
ployed in conjunction with a manually crafted lexicon, but the best
performance came from a combination of techniques. Another
project, using Usenet as a corpus, managed to accurately determine
when posters were recommending a URL in their message [21].

Recently, Pang et al. [15] attempted to classify movie reviews
posted to Usenet, using accompanying numerical ratings as ground
truth. A variety of features and learning methods were employed,
but the best results came from unigrams in a presence-based fre-
quency model run through a Support Vector Machine (SVM), with
82.9 percent accuracy. Limited tests on this corpus1 using our own
1Available online at http://www.cs.cornell.edu/people/pabo/movie-
review-data/

TRAIN

TEST

MINE

spider
review

site

web search
and

filtering

feature
selection:
tokenizing,
initial stats,

thresholding,
language�

processing,
subsitution,
colocation

score words
from stats
smoothing,
weighting

use scores
for

classifying
group under

attributes

check
performance

Figure 1: Overview of project architecture and flow.

Reviews
C

�
net category Products Pos. Neg.

Networking kits 13 191 144
TVs 143 743 119
Laser printers 74 1,088 439
Cheap laptops 147 3,057 683
PDAs 83 3,335 896
MP3 players 118 5,418 2,108
Digital cameras 173 12,078 1,275

Table 1: Breakdown of C
�
net categories. Positive reviews are

ones marked by their authors with a “thumbs-up”, negative
reviews are those given a “thumbs-down”. (Numbers are re-
stricted to unique reviews containing more than 1 token.)

classifier yielded only 80.6 percent accuracy using our baseline bi-
grams method. As we discuss later, comparisons are less clear-cut
on our own corpus. We believe this is due to differences in the
problems we are studying; among other things, the messages in our
corpus are smaller and cover a different domain.

2.3.3 Commercial projects
Two commercial solutions to opinion mining use proximity mea-

sures and word lists to fit data into templates and construct models
of user opinion. The first is from Opion, now part of Planetfeed-
back.com [8, 22]. The second is from NEC Japan [14].

Finally, there is much relevant work in the general area of infor-
mation extraction and pattern-finding for classification. One tech-
nique uses linguistic units called relevancy signatures as part of
CIRCUS, a tool for sorting documents [19].

3. APPROACH
Our approach, as shown in Figure 1, begins with training a classi-

fier using a corpus of self-tagged reviews available from major web
sites. We then refine our classifier using this same corpus before
applying it to sentences mined from broad web searches.

3.1 Corpus
User reviews from large web sites where authors provide quan-

tiative or binary ratings are perfect for training and testing a clas-
sifier for sentiment or orientation. The range of language used in
such corpora is exactly what we want to focus our future mining ef-
forts on. The two sites we chose were C

�
net and Amazon, based on

the number of reviews, number of products, review quality, avail-
able metadata, and ease of spidering.

C
�
net allows users to input a text review, a title, and a thumbs-up

or thumbs-down rating. Additional data available but not used in
this project include date and time, author name, and ratings from
1-5 for “support”, “value”, “quality”, and “features.” A range of

520

Reviews
Amazon category Products Pos. Neg.
Entertainment laptops 29 110 29
MP3 players 201 979 411
PDAs 169 842 173
Top digital cameras 100 1,410 251

Top books 100 578 120
Alternative music 25 210 7
Top movies 100 719 81

Table 2: Breakdown of Amazon categories. We arbitrarily con-
sider positive reviews to be those where authors give a score of
3 stars or higher out of 5. (Numbers are restricted to unique
reviews containing more than 1 token.)

computer and consumer electronics products were chosen arbitrar-
ily from those available, providing a diverse but constrained set of
documents, as shown in Table 1. Editorial reviews by C

�
net’s writ-

ers were not included in the corpus.
Amazon, meanwhile, has one scalar rating per product (number

of stars), enabling more precise training, and tends to have longer
reviews, which are easier to classify. Unfortunately, electronics
products generally have fewer reviews than at C

�
net, visible in Ta-

ble 2. Reviews of movies, music and books were more plentiful,
but attempting to train classifiers for these more subjective domains
is a more difficult problem. One reason for this is that review-like
terms are often found in summaries (e.g. “The character finds life
boring.” vs. “This book is boring.”).

3.2 Evaluation
Two tests were decided on. Test 1 tests on each of the 7 C

�
net

categories in turn, using the remaining 6 as a training set, and takes
the macroaverage of these results. This evaluates the ability of the
classifier to deal with new domains and retains the skews of the
original corpus. There are five times as many positive reviews as
negative ones, and certain products have many more reviews: MP3
players have 13,000 reviews, but networking kits have only 350.
Half of the products have fewer than 10 reviews, and a fifth of the
reviews have fewer than 10 tokens. Additionally, there are some
duplicate or near-duplicate reviews, including one that had been
posted 23 times.

Test 2 used 10 randomly selected sets of 56 positive and 56 neg-
ative reviews from each of the 4 largest C

�
net categories, for a total

of 448 reviews per set. Each review in the test was unique and had
more than ten tokens. Using one set for testing and the remainder
for training, we conducted 10 trials and took their average. This
was a much cleaner test of how well the classifier classified the
domains it had learned.

Although there are various ways of breaking down classifica-
tion performance—such as precision and recall—and weighting
performance—using values like document length or confidence—
these values did not seem to provide any better differentiation than
simple accuracy.

Our baseline algorithm is described in sub-sections 3.6 and 3.8.
Throughout this section, we examine the efficacy of introducing a
number of more sophisticated strategies.

3.3 Feature selection
Starting with a raw document (a portion of a web page in test-

ing and training, and a complete web page for mining), we strip
out HTML tags and separate the document into sentences. These
sentences are optionally run through a parser before being split into

Substitutions Bigrams Trigrams
Global Cat. Prod. Test 1 Test 2 Test 1 Test 2

88.3% 84.6% 88.7% 84.5%
Y 88.3% 84.7% 88.4% 84.2%

Y 88.3% 88.8% 84.2%
Y 88.2% 84.7% 88.9% 84.6%

Y Y 88.3% 88.7%
Y Y Y 88.3%

Table 3: Results of using substitutions to generalize over dis-
tracting words in different scopes, compared to n-gram base-
lines. Rare words were replaced globally, domain-specific
words were replaced for categories, and product names were
replaced for products. The table is sparse because no suitable
method for finding category substitutions was available for Test
2. In all cases, we substitute NUMBER for numbers. The one
statistically significant substitution is in bold (t=2.448).

single-word tokens. A variety of transformations can then be ap-
plied to this ordered list of lists.

3.3.1 Metadata and statistical substitutions
One problem with many features is that they may be overly spe-

cific. For example, “I called Nikon” and “I called Kodak” would
ideally be grouped together as “I called X.” Substitutions have been
used to solve these sorts of problems in subjectivity identification,
text classification, and question answering [18, 19, 26], but, as in-
dicated in Table 3, they are mostly ineffective for our task.

We begin by replacing any numerical tokens with NUMBER. Al-
though this does not have a significant net effect on performance, it
helps eliminate misclassifications where a stand-alone number like
“64” carries a strong positive weight from appearing in strings like
“64 MB.”

In some cases, we find a second substitution to be helpful. All
instances of a token from the product’s name, as derived from the
crawler or search string, are replaced by productname. This pro-
duces the desired effect in our “I called X” example.

Two additional substitutions were considered. The first occurs
in a global context, replacing low-frequency words that would oth-
erwise be thresholded out with unique. Thus, in an actual exam-
ple from camera reviews, “peach fuzz” and “pollen fuzz” become
“ unique fuzz.” This substitution degraded performance, however,
apparently due to overgeneralization.

The other replaces words that seem to occur only in certain prod-
uct categories with producttypeword. Thus, “the focus is poor”
and “the sound is poor” could be grouped in a general template for
criticism. However, finding good candidates for replacement is dif-
ficult. Our first attempt looked for words that were present in many
documents but almost exclusively in one category. Something like
“color,” which might occur in discussions of both digital cameras
and PDA’s would not be found by this method. A second try looked
at the information gain provided by a given word when separating
out categories. Neither yielded performance improvements.

3.3.2 Linguistic substitutions
At this point, we can pass our document through Lin’s MINIPAR

linguistic parser sentence by sentence, yielding the part of speech
of each word and the relationships between parts of the sentence.
This computationally-expensive operation enables some interesting
features, but unfortunately none of them improve performance on
our tests, as shown in Table 4.

Knowing the part of speech, we can run words through Word-

521

Features Test 1 Test 2
Unigram baseline 84.9% 82.2%

WordNet 81.5% 80.2%
Colocation 83.3% 77.3%
Stemming 84.5% 83.0% (t=3.787)
Negation 81.9% 81.5%

Table 4: Results of linguistic features.

Net, a database for finding similarities of meaning. But, like any
such tool, it suffers from our inability to provide word sense disam-
biguation. Because each word has several meanings, it belongs to
several synsets. Lacking any further information, we make a given
instance of the word an equally-likely member of each of them. Un-
fortunately, this can produce more noise than signal. False correla-
tions can occur, such as putting “duds” and “threads” together, even
though in the context of electronics reviews neither refers to cloth-
ing. Furthermore, using WordNet causes feature sets to grow to
unmanageable size. Attempts to develop a custom thesaurus from
word colocations in the corpus were also unsuccessful.

Used directly, colocations produce an effect opposite that of Word-
Net. Triplets of the form Word(part-of-speech):Relation:Word(part-
of-speech) can qualify a term’s occurrence. This seems like it would
be particularly useful for pulling out adjective-noun relationships
since they can occur several words apart, as in “this stupid ugly
piece of garbage” (stupid(A):subj:piece(N)) or as part of a modal
sentence as in “this piece of garbage is stupid and ugly” (piece(N):-
mod:ugly(A)). However, using colocations as features, even after
putting noun-adjective relationships into a canonical form, was in-
effective.

3.3.3 Language-based modifications
Two less costly attempts to overcome the variations and depen-

dencies in language were also tried with limited success.
Stemming removes suffixes from words, causing different forms

of the same word to be grouped together. When Porter’s stemmer
[17] was applied, our classifier performed below the baseline in
Test 1, but better in Test 2. Again, the problem seems to be over-
generalization. The corpus of reviews is highly sensitive to minor
details of language, and these may be glossed over by the stemmer.
For example, negative reviews tend to occur more frequently in the
past tense, since the reviewer might have returned the product.

We then tried to identify negating phrases such as “not” or “never”
and mark all words following the phrase as negated, such as turning
“not good or useful” into “NOTgood NOTor NOTuseful.” While
Pang et al. noted a slight improvement from this heuristic, our
implementation only hurt performance. It may be that simple sub-
strings do a more accurate job of capturing negated phrases.

3.3.4 N-grams and proximity
Once tokenization and substitution are complete, we can com-

bine sets of � adjacent tokens into � -grams, a standard technique
in language processing. For example, “this” followed by “is” be-
comes “this is” in a bigram. Examples of high-scoring n-grams are
shown in Table 5, and performance results are shown in Table 3. In
our task, n-grams proved quite powerful. In Test 1, trigrams per-
formed best, while in Test 2, bigrams did marginally better. Includ-
ing lower-order features (e.g. including unigrams with bigrams)
degraded performance unless these features had smaller weights
(as little as a quarter of the weight of the larger features). Ex-
periments using lower-order features for smoothing when a given
higher-order feature had not been present in the training set also

Unigrams Bigrams Trigrams Distance 3
Top positive features

great easy to easy to use . great
camera the best i love it easy to
best . great . great camera camera great
easy great camera is the best best the
support to use . i love . not
excellent i love first digital easy use

camera
back love it for the price .camera
love a great to use and i love
not this camera is a great to use
digital digital camera my first digital camera this

Top negative features
waste returned it taking it back return to
tech after NUMBER time and money customer

service
sucks to return it doesn’t work poor quality
horrible customer send me a . returned

service
terrible . poor what a joke the worst
return the worst back to my i returned
worst back to . returned it support tech
customer tech support . why not not worth
returned not worth something else . . poor
poor it back . the worst back it

Table 5: Top n-gram features from C
�
net, ordered by informa-

tion gain. Note how the dominance of positive camera reviews
skews the global features. “.” is the end-of-sentence marker.

proved unsuccessful.
A related technique simulates a NEAR operator by putting to-

gether words that occur within � words of each other into a single
feature. While improving performance, this was not as effective
as trigrams. Somewhat similar effects are produced by allowing
wildcards in the middle of n-gram matches.

3.3.5 Substrings
Noting the varied benefits of n-grams, we developed an algo-

rithm that attempts to identify arbitrary-length substrings that pro-
vide “optimal” classification. We are faced with a tradeoff: as sub-
strings become longer and generally more discriminatory, their fre-
quency decreases, so there is less evidence for considering them
relevant. Simply building a tree of substrings up to a cutoff length,
treating each sufficiently-frequent substring as relevant, yields no
better than 88.5 percent accuracy on the first test using both our
baseline and Naive Bayes.

A more complicated approach, which compares each node on
the tree to its children to see if its evidence-differentiation tradeoff
is better than its child, sometimes outperforms n-grams. We exper-
imented with several criteria for choosing not to pursue a subtree
any further, including its information gain relative to the complete
set, the difference between the scores that would be given to it and
its parent, and its document frequency. We settled on a threshold
for information gain relative to a node’s parent. A second issue was
how these features would be then assigned scores. Results from
different feature schemes are shown in Table 6. Ways of matching
testing data to the scored features are discussed later.

To improve performance, we drew on Church’s suffix array algo-
rithm [27]. Future work might incorporate techniques from proba-
bilistic suffix trees [2].

522

Scoring method Test 1 Test 2
Trigram baseline 88.7% 84.5%

int 87.7% 84.9%
int * df 87.8% 85.1% (t=2.044)

int * df * len 86.0% 84.2%
int * log(df) 62.8% 77.0%

int 58.3% 77.3%
int * len 87.0% 83.9%

int * log(df) * len 60.3% 77.8%
int * df * log(len) 80.0% 81.0%

Table 6: Results of some scoring metrics for variable-length
substrings. Intensity is ����� � ���	� ������
 � ���

, df is document fre-
quency, len is substring length.

Base freq. Value Test 1 Test 2
Unigram baseline 85.0% 82.2%

product 2 84.9% 82.2%
product 3 85.1% 82.2%
product 4 85.0% 82.1%
product 7 84.9% 82.4%
product 10 84.4% 82.2%

document 1 85.3% 82.0%
document 2 85.1% 82.3%
document 5 85.0% 82.3%
document 10 84.7% 82.0%

product type 2 84.9% 82.2%
product type 4 85.0% 82.3%
product type 5 84.9% 82.3%

max. document .50 83.9% 82.6% (t=1.486)
max. document .75 84.9% 82.2%
max. document .25 82.1% 81.5%

Table 7: Results of thresholding schemes on baseline perfor-
mance. All defaults are 1, except for a minimum document
frequency of 3.

3.4 Thresholding
Our features complete, we then count their frequencies—the num-

ber of times each term occurs, the number of documents each term
occurs in, the number of categories a term occurs in, and the num-
ber of categories a term occurs in. To overcome the skew of Test
1, we can also normalize the counts. We then set upper and lower
limits for each of these measures, constraining the number of fea-
tures we look at. This improves relevance of the remaining features
and reduces the amount of required computation. In some applica-
tions, dimensionality reduction is accomplished by vector methods
such as SVD or LSI. However, it seemed that doing so here might
remove minor but important features.

Results are shown in Table 7. Although not providing maximal
accuracy, our default only used terms appearing in at least 3 doc-
uments, greatly reducing the term space. Although some higher
thresholds show better results, this is deceptive; some documents
that were being misclassified now have no known features and are
ignored during classification. Attempts to normalize the document
frequencies by class did not help thresholding, apparently because
the testing set had the same skew the training set did. The need
for such a low threshold also points to the wide variety of language
employed in these reviews and the need to maximize the number of
features we capture, even with sparse evidence.

Test 1 Test 2
Method Unigrams Bigrams Unigrams Bigrams
Baseline 85.0% 88.3% 82.2% 84.6%

SVM 81.1% 87.2% 84.4% 85.8%

Table 8: Results from SVM ��
������ . For bigrams on Test 1, a poly-
nomial kernel was used, all other settings were defaults.

3.5 Smoothing
Before assigning scores based on term frequencies, we can try

smoothing these numbers, assigning probabilities to unseen events
and making the known probabilities less “sharp.” Although not
helpful for our baseline metric, improvements were seen with Naive
Bayes.

The best results came from Laplace smoothing, also known as
add-one. We add one to each frequency, making the frequency of
a previously-unseen word non-zero. We adjust the denominator
appropriately. Therefore, ��� �

�	� ������� �����! �"$#�%&(' *)!+ �,�-�.� �����! �"$#0/ where 1 is

the number of unique words.
Two other methods were also tried. The Witten-Bell method

takes %2 #3/ , where 4 is the number of tokens observed, and as-
signs that as the probability of an unknown word, reassigning the
remaining probabilities proportionally.

Good-Turing, which did not even do as well as Witten-Bell, is
more complex. It orders the elements by their ascending frequen-
cies 5 , and assigns a new probability equal to 57698�4 where 576 �
�:5(;=< � 23>@? +2 > and 4BA is the number of features having frequency
5 . The probability of an unseen element is equal to the probability
of words that were seen only once, i.e. C � � AED�F �E�,�,� AEA
 � � �����HGC � �JI�GH� F . Be-
cause some values of 4 A are unusually low or high in our sample,
pre-smoothing is required. We utilized the Simple Good-Turing
code from Sampson where the values are smoothed with a log-
linear curve [4]. We also used add-one smoothing so that all fre-
quencies were non-zero; this worked better than using only those
data points that were known.

3.6 Scoring
After selecting a set of features K %�L�L�L�L K � and optionally smooth-

ing their probabilities, we must assign them scores, used to place
test documents in the set of positive reviews � or negative reviews
�
 . We tried some machine-learning techniques using the Rainbow
text-classification package [11], but Table 9 shows the performance
was no better than our method.

We also tried SVM ��
������ , the package2 used by Pang et al. When
duplicating their methodology (normalizing, presence model, fea-
ture space constraining), the SVM outperformed our baseline met-
ric on Test 2 but underperformed it on Test 1, as shown in Table
8. Furthermore, our best scoring result using simple bigrams on
Test 2, the odds ratio metric, has an accuracy of 85.4%, statistically
indistinguishable from the SVM result (t=.527).

On the other hand, our implementation of Naive Bayes with
Laplace smoothing does better on Test 1 for unigrams and worse
on Test 2 or when bigrams are used. The results are shown in Table
10. To prevent underflow, the implementation used the sum of MON�P s,
yielding the document score formula below.

Q

R�SUT �����
 � K

�V� Q

R�SUT ����� � K

� ; R�SUT �����
 �
����� �

2http://svmlight.joachims.org

523

Method Test 2
Unigram baseline 82.2%

Maximum entropy 82.0%
Expectation maximization 81.2%

Table 9: Results of machine learning using Rainbow.

Method Test 1 Test 2
Unigram baseline 84.9% 82.2%

Naive Bayes 77.0% 80.1%
NB w/ Laplace 87.0% (t=2.486) 80.1%

NB w/ Witten-Bell 83.1% 80.3%
NB w/ Good-Turing 76.8% 80.1%

NB w/ Bigrams + Lap 86.9% 81.9%

Table 10: Results of tests using Naive Bayes.

We obtain more consistent performance across tests with less
computation when we use the various calculated frequencies and
techniques from information retrieval, which we compare in Table
11. Our scoring method, which we refer to as the baseline, was
fairly simple.

��� N�5��7��K

� � ����K

� � �V� ����K

� �
 �

����K

� � � ; ����K

� �
 �
We determine ����K

� � �
, the normalized term frequency, by taking

the number of times a feature K
 occurs in � and dividing it by the
total number of tokens in � . A term’s score is thus a measure of
bias ranging from –1 to 1.

Several alternatives fail to perform as well. For example, we
can use the total number of terms remaining after thresholding as
the denominator in calculating ����K

� � �
, which makes each value

larger. This improves performance on Test 2, but not on Test 1. Or
we can completely redefine the event model for ����K

� � �
, making

it use presence and document frequency instead of term frequency.
Here, we take the number of documents K
 occurs in from � di-
vided by the number of documents in � . This performs better on
Test 2 but does worse as a result of the skew in Test 1.

A similar measure, the odds ratio [12] is calculated as

����K

� � � �H< � ����K

� ��
 �@�
����K

� �
 � �H< � ����K

� � �@�

Although discussed as a method for thresholding features prior to
machine learning, we found that it does well on Test 2 as an actual
score assignment, performing on par with the SVM. Unfortunately,
this metric is sensitive to differences in class sizes, and thus per-
forms poorly on Test 1. When using term instead of document
probabilities, performance is more consistent, but worse than our
measure.

Other metrics did poorly on both tests. One option was the Fisher
discriminant, which looks at the differences in the average term
frequency of a word in different classes, normalized by the term’s
intra-class variance. If � ����� �
	��7N � �

 , and � � is the average
term frequency of K
 in class � , and � ��� is the count of K
 in mes-
sage � of class � ,

� ��K

�	� %� ����� ����0I ��� � � � I ���

� � %��� � � ��� ��� � � � � �
But this measure is not well-suited to the noisy, binary classification
problem we are confronted with.

Features Test 1 Test 2
Unigram baseline 85.0% 82.2%

All positive baseline 76.3% 50.0%

Odds ratio (presence model) 53.3% 83.3% (t=3.553)
Odds ratio 84.7% 82.6%

Probabilities after thresholding 76.3% 82.7% (t=2.474)
Baseline (presence model) 59.8% 83.1% (t=3.706)

Fisher discriminant 76.3% 56.9%
Counting 75.5% 73.2%

Information gain 81.6% 80.6%

Table 11: Results of alternative scoring schemes.

A second method used information theory to assign each fea-
ture a score. As in the failure of reweighting, it may be that these
methods are simply too sensitive to term frequency when simple
absence or presence is more important. The definition of entropy
for a binary classification is

 ���!	-�
 � � � ������� � R�SUT ����� � ; �����
 � R�SUT �����
 �@�

Information gain is calculated as

 ���!	-�
 �V�#" ����K

� ���$	E�
 � K

� ; ���&%K

� ���!	-�
 � %K

�('

where each event is a document. Words are assigned a sign based
on which class had the highest normalized term frequency.

We also tried using Jaccard’s measure of similarity as an ultra-
simple benchmark, which takes the number of words � has in com-
mon with � , divided by the number of words in �*)+� . But this
works quite poorly due to the skew in the data set. We also found
that setting ��,&- M,���

� � � �/.0� � � � ��
1.2� �
produced accuracy below

simply assigning everything to the positive set.

3.7 Reweighting
One interesting property of the baseline measure is that it does

not incorporate the strength of evidence for a given feature. Thus,
a rare term, like “friggin”, which occurs in 3 negative documents in
one set, has the same score, –1, as “livid”, which occurs 23 times
in the same set. Table 12 shows that most attempts to incorporate
weighting were unsuccessful.

Although information retrieval traditionally utilizes inverse doc-
ument frequency (IDF) to help identify rare words which will point
to differences between sets, this does not make sense in classifica-
tion. Multiplying by document frequency, dampened by MON9P , did
provide better results on Test 1.

We tried assigning weights using a Gaussian weighting scheme,
where weights decrease polynomially with distance from a certain
mean frequency. This decreases the importance of both infrequent
and too-frequent terms. Though the mean and variance must be
picked arbitrarily (since the actual frequencies are in a Zipf distri-
bution), some of the parameters we tried seemed to work.

We also tried using the residual inverse document frequency as
described by Church, which looks at the difference between the
IDF and the IDF predicted by the Poisson model for a random word
(i.e. 5435�,K � � R�S.T ���,K 846 � ; MON9P �H< �87:9<; � �>= K 8?6 �@�

). However,
no improvements resulted.

3.8 Classifying
Once each term has a score, we can sum the scores of the words

in an unknown document and use the sign of the total to determine

524

Base freq. Transform Test 1 Test 2
Unigram baseline 85.0% 82.2%

document 81.1% 65.4%
document log 85.5% (t=1.376) 81.6%
document sqrt 85.3% 77.4%
document inverse 84.7% 79.7%
document normalized 82.0% 65.4%
document log norm. 84.7% 81.7%

term 84.9% 82.2%
term log 84.9% 82.2%
term gauss (3,.5) 85.7% (t=2.525) 81.7%

product 85.6% 77.6%
product log 85.0% 80.7%

product type 84.7% 65.4%
product type sqrt 84.8% 82.2%

document + term ridf 82.2% 80.8%

Bigram baseline 88.3% 84.6%
bigram term gauss (4,.5) 88.3% 84.6%
bigram doc. log 88.4% 84.3%

Table 12: Results of weighting schemes. Mean and deviation
for Gaussian listed in parentheses.

a class. In other words, if document �

� K % L�L�L�L K � ,

� M - ��� ���

�	� � � ��,&- M����

�����
��
 ��,&- M����

�����
where

��,&- M,���

� � Q

�
��� N.54�7��K � �

When we have variable-length features from our substring tree,
there are several options for choosing matching tokens. The most
effective technique is to find the longest possible feature matches
starting at each token. Although it appears this may lead longer
features to carry more weight (e.g. “I returned this” will be counted
again as “returned this”), this turns out to not be a problem since
the total score is still linear in the number of tokens. When we tried
disallowing nested matches or using dynamic programming to find
the highest-confidence non-overlapping matches, the results were
not as good. We also experimented with allowing wildcards in the
middle of tokens.

One trick tried during classification was a sort of bootstrapping,
sometimes called transductive learning. As the test set was classi-
fied, the words in the test set were stored and increasingly used to
supplement the scores from the training set. However, no method
of weighting this learning seemed to actually improve results. At
best, performance was the same as having no bootstrapping at all.

3.9 Scalar ratings
In our preliminary work with the Amazon corpus, different tech-

niques were needed. The intuitive approach was to give each word
a weight equal to the average of the scores of the documents it ap-
pears in. Then we could find the average word score in a test doc-
ument in order to predict its classification. In practice, this tends
to cluster all of the documents in the center. Trying to assign each
word a score based on the slope of the best fit line along its distri-
bution had the same result.

Two solutions to this problem were tried: exponentially “stretch-
ing” the assigned score using its difference from the mean, and
thresholding the feature set so only those with more extreme scores

Training Method Scoring Acc. w/o �
Test 2 Substring Baseline 62%
Test 2 Substring No nesting 57%
Test 2 Substring Dynamic prog. 65%
Test 2 Substring Dyn. prog. by class 68%
Test 1 Substring Baseline 61%
Test 2 Substring + Baseline 59%

productname
Test 1 Bigram Baseline 62%

Table 13: Results of mining methods. Unlike our classifica-
tion test, substitutions did not improve results, while a different
scoring method actually worked better, showing that further
work must be done on this specific problem.

Group Accuracy Accuracy w/o I’s
First 200 42% 76%

Second 200 21% 58%
Last 200 50% 34%

Table 14: Results of mining ordered by confidence. Confidence
has a positive correlation with accuracy once we remove irrel-
evant or indeterminate cases. Although the breakdown is not
provided here, this relationship is the result of accuracy trends
in both the positive and negative sentences.

were included. Both worked moderately well, but a Naive Bayes
classification system, with separate probabilities maintained for each
of the 5 scoring levels, actually worked even better.

Of course, the absolute classification is only one way of evaluat-
ing performance, and ideally a classifier should get more credit for
mis-rating a 4 review as a 5 than as a 1, analogous to confidence
weighting in the binary classification problem.

Mooney et al. [13] faced a similar problem when trying to use
Amazon review information to train book recommendation tools.
They used three variations: calculating an expected value from
Naive Bayes output, reducing the classification problem to a bi-
nary problem, and weighting binary ratings based on the extremity
of the original score.

3.10 Mining
As a follow-on task, we crawl search engine results for a given

product’s name and attempt to identify and analyze product reviews
within this set. Initially, we use a set of heuristics to discard some
pages, paragraphs, and sentences that are unlikely to be reviews
(such as pages without “review” in their title, paragraphs not con-
taining the name of the product, and excessively long or short sen-
tences). We then use the classifiers trained on C

�
net to rate each

sentence in each page. We hoped that the features from the simple
classification problem would be useful, although the task and the
types of documents under analysis are quite different.

3.10.1 Evaluation
In fact, the training results give us some misdirection: negatively

weighted features can be anything from “headphones” (not worth
mentioning if they are okay) to “main characters” (used only in
negative reviews in our Amazon set) even though none of these
strongly mark review content in documents at large. There are also
issues with granularity, since a review containing “the only problem
is” is probably positive, but the sentence containing it is probably
not.

On the web, a product is mentioned in a wide range of contexts:

525

Figure 2: Initial search results screen lists categories and assessments.

passing mentions, lists, sales, formal reviews, user reviews, tech-
nical support sites, articles previewing the product. Most of these
contain subjective statements of some sort, but only some of these
would be considered reviews and only some of them are relevant to
our target product. Any of these could be red herrings that match
the features strongly. For example, results like “View all 12 reviews
on Amstel Light” sometimes come to the fore based on the strength
of strong generic features.

To quantify this performance, we randomly selected 600 sen-
tences (200 for each of 3 products) as parsed and thresholded by
the mining tool. These were manually tagged as positive (�) or
negative (4). This process was highly subjective, and future work
should focus on developing a better corpus. We placed 173 sen-
tences in � and 71 in 4 . The remaining 356 were placed in � ,
meaning they were ambiguous when taken out of context, did not
express an opinion at all, or were not describing the product. Clearly,
a specialized genre classifier to take a first pass at identifying sub-
sentence or multi-sentence fragments that express coherent, topical
opinions is needed.

On the reduced positive-negative task, our classifier does much
better. Table 14 shows that when we exclude sentences placed in� , the trend validates our method of assigning confidence. In the
most-confident tercile, accuracy reaches 76 percent. The best per-
forming classification methods, as Table 13 shows, used our sub-
string method.

3.10.2 Presentation
Finally, we try to group sentences under attribute headings as

shown in Figure 2. We attempted to use words matching the product-
typeword substitution as potential attributes of a product around
which to cluster the scored sentences. Although this did reason-
ably well (for “Amstel Light,” we got back “beer,” “bud,” “taste,”
“adjunct,” “other,” “brew,” “lager,” “golden,” “imported”) we found
that simply looking for bigrams starting with “the” and applying
some simple thresholds and the same stopwords worked even bet-

ter (for Amstel, we got “the taste”, “the flavor”, “the calories”, “the
best”). For each attribute, we displayed review sentences contain-
ing the bigram, as well as an overall score for that attribute. The
interface also shows the amount each feature contributed to a sen-
tence’s score and the context of a sentence, as seen in Figure 3.

4. SUMMARY AND CONCLUSIONS
We were able to obtain fairly good results for the review classifi-

cation task through the choice of appropriate features and metrics,
but we identified a number of issues that make this problem diffi-
cult.

1. Rating inconsistency. Similar qualitative descriptions can
yield very different quantitative reviews from reviewers. In
the most extreme case, reviewers do not understand the rating
system and give a 1 instead of a 5.

2. Ambivalence and comparison. Some reviewers use terms
that have negative connotations, but then write an equivo-
cating final sentence explaining that overall they were satis-
fied. Others compare a negative experience with one product
with a positive experience using another. It is difficult to
separate out the core assessment that should actually be cor-
related with the document’s score. Mixed reviews introduce
significant noise to the problem of scoring words.

3. Sparse data. Many of the reviews are very short, and there-
fore we must be able to recognize a broad range of very spe-
cific features. Thresholding out the shorter reviews helps
classification performance. Reviews from Amazon, when
turned into a binary classification problem, are much easier
to classify, at least in part because of their generally longer
size. In the C

�
net corpus, more than two-thirds of words oc-

curred in fewer than 3 documents.

4. Skewed distribution. On both sites, we find that positive re-
views were predominant, and certain products and product

526

Figure 3: Screen shot of scored sentences with context and breakdown.

types have more reviews. This is why, for example, the word
“camera” is listed as a top positive feature: the word appears
in a large portion of the reviews, and most of those are posi-
tive. Although negative reviews were often longer, their lan-
guage was often more varied, and achieving good recall on
the negative set was difficult.

These challenges may be why traditional machine learning tech-
niques (like SVMs) and common metrics (like mutual information)
do not do as well as our bias measure with n-grams on the two tests.
Few refinements improved performance in both cases. Encourag-
ingly, two key innovations—metadata substitutions and variable-
length features—were helpful. Coupling the productname substi-
tution with the best substring algorithm yielded 85.3 percent accu-
racy, higher than the 84.6 percent accuracy of bigrams. However,
high variance and small sample size leave us just short of 90 percent
confidence in a t-test.

Extraction proved more difficult. It may be that features that are
less successful in classification, like substrings, do better in mining
because they are more specific. More work is needed on separating
genre classification from attribute and sentiment separation.

A variety of steps can be taken to extend this work:
� Develop a corpus of more finely-tagged documents. Without

a set of documents tagged at the sentence or expression level,
it has been difficult to design for or evaluate extraction per-
formance. Precision should be greatly improved by having
multiple granularities of tags available.

� Conduct tests using a larger number of sets. Because of the
high variability—the standard errors were around 1.5 for Test
1 and .6 for Test 2—it was difficult to yield significant results.

� Continue to experiment with combinations and parameters.
The possibilities for combining and tuning the features and
metrics discussed here have certainly not been exhausted.

� Find ways to decrease overfitting and generate features more
useful for extracting opinions and attributes from web searches.

� Learn ways to separate out types of reviews and parts within
reviews and treat them differently.

� Create intermediate test scenarios that have fewer indepen-
dent variables. Although using radically different tests helped
identify useful features, we now want to identify why certain
features only work in certain settings.

� Try to improve the efficiency of the algorithms. At present,
the substring algorithms take several minutes on even the
smaller second test case and require over a gigabyte of mem-
ory. There should be ways to make this more reasonable.

5. REFERENCES

[1] Sanjiv Ranjan Das and Mike Y. Chen. Yahoo! for Amazon:
Sentiment parsing from small talk on the web. In
Proceedings of the 8th Asia Pacific Finance Association
Annual Conference, 2001.

[2] Fernando Pereira et al. Beyond word N-grams. In David
Yarovsky and Kenneth Church, editors, Proceedings of the
Third Workshop on Very Large Corpora, pages 95–106,
Somerset, New Jersey, 1995. Association for Computational
Linguistics.

[3] Aidan Finn, Nicholas Kushmerick, and Barry Smyth. Genre
classification and domain transfer for information filtering.
In Fabio Crestani, Mark Girolami, and Cornelis J. van
Rijsbergen, editors, Proceedings of ECIR-02, 24th European
Colloquium on Information Retrieval Research, Glasgow,
UK. Springer Verlag, Heidelberg, DE.

[4] W. Gale. Good-Turing smoothing without tears. Journal of
Quantitative Linguistics, 2:217–37, 1995.

[5] Vasileios Hatzivassiloglou and Kathleen R. McKeown.
Predicting the semantic orientation of adjectives. In
Proceedings of the 35th Annual Meeting of ACL, 1997.

[6] Vasileios Hatzivassiloglou and Janyce M. Wiebe. Effects of
adjective orientation and gradability on sentence subjectivity.
In Proceedings of the 18th International Conference on
Computational Linguistics, 2000.

[7] M. Hearst. Direction-Based Text Interpretation as an
Information Access Refinement. 1992.

[8] David Holtzmann. Detecting and tracking opinions in on-line
discussions. In UCB/SIMS Web Mining Workshop, 2001.

[9] Dekang Lin. Automatic retrieval and clustering of similar
words. In Proceedings of COLING-ACL, pages 768–774,
1998.

[10] Hugo Liu, Henry Lieberman, and Ted Selker. A model of
textual affect sensing using real-world knowledge. In
Proceedings of the Seventh International Conference on
Intelligent User Interfaces, pages 125–132, 2003.

[11] Andrew Kachites McCallum. Bow: A toolkit for statistical
language modeling, text retrieval, classification and
clustering. http://www.cs.cmu.edu/ mccallum/bow, 1996.

[12] Dunja Mladenic. Feature subset selection in text-learning. In
European Conference on Machine Learning, pages 95–100,
1998.

[13] R. Mooney, P. Bennett, and L. Roy. Book recommending
using text categorization with extracted information. In
Proceedings of the AAAI Workshop on Recommender
Systems, 1998.

527

[14] Satoshi Morinaga, Kenji Yamanishi, Kenji Tateishi, and
Toshikazu Fukushima. Mining product reputions on the web.
In KDD 2002.

[15] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
Thumbs up? Sentiment classification using machine learning
techniques. In Proceedings of the 2002 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 79–86.

[16] Fernando C. N. Pereira, Naftali Tishby, and Lillian Lee.
Distributional clustering of English words. In Meeting of the
Association for Computational Linguistics, pages 183–190,
1993.

[17] M.F. Porter. An algorithm for suffix stripping. In Program,
volume 14, pages 130–137, 1980.

[18] Deepak Ravichandran and Eduard Hovy. Learning surface
text patterns for a question answering system. In ACL
Conference, 2002.

[19] Ellen Riloff. Automatically generating extraction patterns
from untagged text. In Proceedings of AAAI/IAAI, Vol. 2,
pages 1044–1049, 1996.

[20] P. Subasic and A. Huettner. Affect analysis of text using
fuzzy semantic typing. IEEE-FS, 9:483–496, Aug. 2001.

[21] Loren Terveen, Will Hill, Brian Amento, David McDonald,
and Josh Creter. PHOAKS: A system for sharing

recommendations. Communications of the ACM,
40(3):59–62, 1997.

[22] Richard M. Tong. An operational system for detecting and
tracking opinions in on-line discussion. In SIGIR Workshop
on Operational Text Classifiation, 2001.

[23] P.D. Turney and M.L. Littman. Unsupervised learning of
semantic orientation from a hundred-billion-word corpus.
Technical Report ERB-1094, National Research Council
Canada, Institute for Information Technology, 2002.

[24] Janyce Wiebe. Learning subjective adjectives from corpora.
In AAAI/IAAI, pages 735–740, 2000.

[25] Janyce Wiebe, Rebecca Bruce, Matthew Bell, Melanie
Martin, and Theresa Wilson. A corpus study of evaluative
and speculative language. In Proceedings of the 2nd ACL
SIGdial Workshop on Discourse and Dialogue, 2001.

[26] Janyce Wiebe, Theresa Wilson, and Matthew Bell.
Identifying collocations for recognizing opinions. In
Proceedings of ACL/EACL 2001 Workshop on Collocation.

[27] Mikio Yamamoto and Kenneth Church. Using suffix arrays
to compute term frequency and document frequency for all
substrings in a corpus. In Proceedings of the 6th Workshop
on Very Large Corpora.

528

