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Abstract.
This chapter investigates NLP techniques for ontology population, using a com-

bination of rule-based approaches and machine learning. We describe a method for
term recognition using linguistic and statistical techniques, making use of contex-
tual information to bootstrap learning. We then investigate how term recognition
techniques can be useful for the wider task of information extraction, making use
of similarity metrics and contextual information. We describe two tools we have
developed which make use of contextual information to help the development of
rules for named entity recognition. Finally, we evaluate our ontology-based infor-
mation extraction results using a novel technique we have developed which makes
use of similarity-based metrics first developed for term recognition.
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1. Introduction

In semantic web applications, ontology development and population are tasks of
paramount importance. The manual performance of these tasks is labour- and therefore
cost-intensive, and would profit from a maximum level of automation. For this purpose,
the identification and extraction of terms that play an important role in the domain under
consideration, is a vital first step.

Automatic term recognition (also known as term extraction) is a crucial component
of many knowledge-based applications such as automatic indexing, knowledge discov-
ery, terminology mining and monitoring, knowledge management and so on. It is particu-
larly important in the healthcare and biomedical domains, where new terms are emerging
constantly.

Term recognition has been performed on the basis of various criteria. The main
distinction we can make is between algorithms that only take the distributional properties
of terms into account, such as frequency and tf/idf [1], and extraction techniques that use
the contextual information associated with terms. The work described here concentrates
on the latter task, and describes algorithms that compare and measure context vectors,
exploiting semantic similarity between terms and candidate terms. We then proceed to
investigate a more general method for information extraction, which is used, along with
term extraction, for the task of ontology population.
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Ontology population is a crucial part of knowledge base construction and mainte-
nance that enables us to relate text to ontologies, providing on the one hand a customised
ontology related to the data and domain with which we are concerned, and on the other
hand a richer ontology which can be used for a variety of semantic web-related tasks such
as knowledge management, information retrieval, question answering, semantic desktop
applications, and so on.

Ontology population is generally performed by means of some kind of ontology-
based information extraction (OBIE). This consists of identifying the key terms in the
text (such as named entities and technical terms) and then relating them to concepts
in the ontology. Typically, the core information extraction is carried out by linguistic
pre-processing (tokenisation, POS tagging etc.), followed by a named entity recognition
component, such as a gazetteer and rule-based grammar or machine learning techniques.
Named entity recognition (using such approaches) and automatic term recognition are
thus generally performed in a mutually exclusive way: i.e. one or other technique is used
depending on the ultimate goal. However, it makes sense to use a combination of the two
techniques in order to maximise the benefits of both. For example, term extraction gen-
erally makes use of frequency-based information whereas typically named entity recog-
nition uses a more linguistic basis. Note also that a "term" refers to a specific concept
characteristic of a domain, so while a named entity such as Person or Location is generic
across all domains, a technical term such as "myocardial infarction" is only considered a
relevant term when it occurs in a medical domain: if we were interested in sporting terms
then it would probably not be considered a relevant term, even if it occurred in a sports
article. As with named entities, however, terms are generally formed from noun phrases
(in some contexts, verbs may also be considered terms, but we shall ignore this here).

The overall structure of the chapter covers a step by step description of the natural
task extension from term extraction into more general purpose information extraction,
and therefore brings together the whole methodological path from extraction, through
annotation to ontology population.

2. A Similarity-based Approach to Term Recognition

The TRUCKS system [2] introduced a novel method of term recognition which identified
salient parts of the context surrounding a term from a variety of sources, and measured
their strength of association with relevant candidate terms. This was used in order to
improve on existing methods of term recognition such as the C/NC-Value approach [3]
which used largely statistical methods, plus linguistic (part-of-speech) information about
the candidate term itself. The NC-Value method extended on the C-Value method by
adding information about frequency of co-occurrence with context words. The SNC-
Value used in TRUCKS includes contextual and terminological information and achieves
improved precision (see [4] for more details).

In very small and/or specialised domains, as are typically used as a testbed for term
recognition, statistical information may be skewed due to data sparsity. On the other
hand, it is also difficult to extract suitable semantic information from such specialised
corpora, particularly as appropriate linguistic resources may be lacking. Although con-
textual information has previously been used, e.g. in general language [5], and in the NC-
Value method, only shallow semantic information is used in these cases. The TRUCKS



approach, however, identifies different elements of the context which are combined to
form the Information Weight [2], a measure of how strongly related the context is to the
candidate term. This Information Weight is then combined with statistical information
about a candidate term and its context, acquired using the NC-Value method. Note that
both approaches, unlike most other term recognition approaches, result in a ranked list of
terms rather than making a binary decision about termhood. This introduces more flexi-
bility into the application, as the user can decide at what level to draw the cut-off point.
Typically, we found that the top 1/3 of the list produces the best results.

The idea behind using the contextual information stems from the fact that, just as a
person’s social life can provide valuable insight about their personality, so we can gather
much information about a term by analysing the company it keeps. In general, the more
similar context words are to a candidate term, the stronger the likelihood of the term
being relevant. We can also use this same kind of criteria to perform term disambiguation,
by choosing the meaning of the term closest to that of its context [6].

2.1. Acquiring Contextual Information

The TRUCKS system builds on the NC-Value method for term recognition, by incorpo-
rating contextual information in the form of additional weights. We acquire three differ-
ent types of knowledge about the context of a candidate term: syntactic, terminological,
and semantic. The NC Value method is first applied to the corpus to acquire an initial set
of candidate terms.

Syntactic knowledge is based on boundary words, i.e. the words immediately before
and after a candidate term. A similar method (the barrier word approach [7,8]) has been
used previously to simply accept or decline the presence of a term, depending on the
syntactic category of the barrier or boundary word. Our system takes this a stage further
by - rather than making a binary decision - allocating a weight to each syntactic cate-
gory based on a co-occurrence frequency analysis, to determine how likely the candidate
term is to be valid. For example, a verb occurring immediately before a candidate term
is statistically a much better indicator of a true term than an adjective is. By a "better
indicator", we mean that a candidate term occurring with this context is more likely to be
valid. Each candidate term is then assigned a syntactic weight, calculated by summing
the category weights for all the context boundary words occurring with it.

Terminological knowledge concerns the terminological status of context words. A
context word which is also a term (which we call a context term) is likely to be a better
indicator of a term than one which is not also a term itself. This is based on the premise
that terms tend to occur together. Context terms are determined by applying the NC-
Value method to the whole corpus and selecting the top 30% of the resulting ranked list
of terms. A context term (CT) weight is produced for each candidate term, based on its
total frequency of occurrence with other context terms.

The CT weight is formally described as follows:

CT (a) =

∑
dεTa

fa(d) (1)

where
a is the candidate term,
Ta is the set of context terms of a,



d is a word from Ta ,
fa(d) is the frequency of d as a context term of a.

Semantic knowledge is based on the idea of incorporating semantic information
about terms in the context. We predict that context words which are not only terms, but
also have a high degree of similarity to the candidate term in question, are more likely
to be relevant. This is linked to the way in which sentences are constructed. Semantics
indicates that words in the surrounding context tend to be related, so the more similar a
word in the context is to a term, the more informative it should be.

Our claim is essentially that if a context word has some contribution towards the
identification of a term, then there should be some significant correspondence between
the meaning of that context word and the meaning of the term. This should be realised as
some identifiable semantic relation between the two. Such a relation can be exploited to
contribute towards the correct identification and comprehension of a candidate term. A
similarity weight is added to the weights for the candidate term, which is calculated for
each term / context term pair. This similarity weight is calculated using a new metric to
define how similar a term and context term are, by means of their distance in a hierarchy.
For the experiments carried out in [4], the UMLS semantic network was used [9].

While there exist many metrics and approaches for calculating similarity, the choice
of measure may depend considerably on the type of information available and the in-
tended use of the algorithm. A full discussion of such metrics and their suitability can be
found in [4], so we shall not go into detail here. Suffice it to say that:

• Thesaurus-based methods seem a natural choice here, because to some extent they
already define relations between words.

• Simple thesaurus-based methods fail to take into account the non-uniformity of
hierarchical structures, as noted by [10].

• Methods such as information content [10] have the drawback that the assessment
of similarity in hierarchies only involves taxonomic (is-a) links. This means that
they may exclude some potentially useful information.

• General language thesauri such as WordNet and Roget’s Thesaurus are only really
suitable for general-language domains, and even then have been found to contain
serious omissions. If an algorithm is dependent on resources such as this, it can
only be as good as is dictated by the resource.

2.2. Similarity Measurement in the TRUCKS System

Our approach to similarity measurement in a hierarchy is modelled mainly on the EBMT
(Example-Based Machine Translation)-based techniques of Zhao [11] and Sumita and
Iida [12]. This is based on the premise that the position of the MSCA (Most Specific
Common Abstraction)2 within the hierarchy is important for similarity. The lower down
in the hierarchy the MSCA, the more specific it is, and therefore the more information
is shared by the two concepts, thus making them more similar. We combine this idea
with that of semantic distance [13,14,15]. In its simplest form, similarity is measured by
edge-counting – the shorter the distance between the words, the greater their similarity.
The MSCA is commonly used to measure this. It is determined by tracing the respective
paths of the two words back up the hierarchy until a common ancestor is found. The

2also known as Least Common Subsumer or LCS



Figure 1. Fragment of a food network

average distance from node to MSCA is then measured: the shorter the distance to the
MSCA, the more similar the two words. We combine these two ideas in our measure by
calculating two weights: one which measures the distance from node to MSCA, and one
which measures the vertical position of the MSCA. Note that this metric does of course
have the potential drawback mentioned above, that only involving taxonomic links does
mean the potential loss of information. However, we claim that this is quite minimal,
due to the nature of the quite restricted domain-specific text that we deal with, because
other kinds of links are not so relevant here. Futhermore, distance-based measures such
as these are dependent on a balanced distribution of concepts in the hierarchy, so it is
important to use a suitable ontology or hierarchy.

To explain the relationship between network position and similarity, we use the ex-
ample of a partial network of fruit and vegetables, illustrated in Figure 1. Note that this
diagram depicts only a simplistic is-a relationship between terms, and does not take into
account other kinds of relationships or multidimensionality (resulting in terms occurring
in more than one part of the hierarchy due to the way in which they are classified). We
claim that the height of the MSCA is significant. The lower in the hierarchy the two items
are, the greater their similarity. In the example, there would be higher similarity between
lemon and orange than between fruit and vegetable. Although the average distance from
lemon and orange to its MSCA (citrus) is the same as that from fruit and vegetable to
its MSCA (produce), the former group is lower in the hierarchy than the latter group.
This is also intuitive, because not only do lemon and orange have the produce feature in
common, as fruit and vegetable do, but they also share the features fruit and citrus.

Our second claim is that the greater the horizontal distance between words in the
network, the lower the similarity. By horizontal distance, we mean the distance between
two nodes via the MSCA. This is related to the average distance from the MSCA, since
the greater the horizontal distance, the further away the MSCA must be in order to be
common to both. In the food example, carrot and orange have a greater horizontal dis-
tance than lemon and orange, because their MSCA (produce) is further away from them



Figure 2. Fragment of the Semantic Network

than the MSCA of lemon and orange (citrus). Again, it is intuitive that the former are
less similar than the latter, because they have less in common.

Taking these criteria into account, we define the following two weights to measure
the vertical position of the MSCA and the horizontal distance between the nodes:

• positional: measured by the combined distance from root to each node
• commonality: measured by the number of shared common ancestors multiplied

by the number of words (usually two).

The nodes in the Semantic Network are coded such that the number of digits in the
code represents the number of leaves descended from the root to that node, as shown
in Figure 2, which depicts a small section of the UMLS Semantic Network. Similarity
between two nodes is calculated by dividing the commonality weight by the positional
weight to produce a figure between 0 and 1, 1 being the case where the two nodes are
identical, and 0 being the case where there is no common ancestor (which would only
occur if there were no unique root node in the hierarchy). This can formally be defined
as follows:

sim(w1...wn) =
com(w1...wn)

pos(w1...wn)
(2)



where
com(w1...wn) is the commonality weight of words 1...n
pos(w1...wn) is the positional weight of words 1...n.

It should be noted that the definition permits any number of nodes to be compared, al-
though usually only two nodes would be compared at once. Also, it should be made
clear that similarity is not being measured between terms themselves, but between the
semantic types (concepts) to which the terms belong. So a similarity of 1 indicates not
that two terms are synonymous, but that they both belong to the same semantic type.

3. Moving from Term to Information Extraction

There is a fairly obvious relationship between term recognition and information extrac-
tion, the main difference being that information extraction may also look for other kinds
of information than just terms, and it may not necessarily be focused on a specific do-
main. Traditionally, methods for term recognition have been strongly statistical, while
methods for information extraction have focused largely on either linguistic methods or
machine learning, or a combination of the two. Linguistic methods for information ex-
traction (IE), such as those used in GATE [16], are generally rule-based, and in fact use
methods quite similar to those for term extraction used in the TRUCKS system, in that
they use a combination of gazetteer lists and hand-coded pattern-matching rules which
use contextual information to help determine whether such "candidate terms" are valid, or
to extend the set of candidate terms. We can draw a parallel between the use of gazetteer
lists containing sets of "seed words" and the use of candidate terms in TRUCKS: the
gazetteer lists act as a starting point from which to establish, reject, or refine the final
entity to be extracted.

3.1. Information Extraction with ANNIE

GATE, the General Architecture for Text Engineering, is a framework providing support
for a variety of language engineering tasks. It includes a vanilla information extraction
system, ANNIE, and a large number of plugins for various tasks and applications, such
as ontology support, information retrieval, support for different languages, WordNet,
machine learning algorithms, and so on. There are many publications about GATE and
ANNIE – see for example [17]. This is not the focus of this paper, however, so we simply
summarise here the components and method used for rule-based information extraction
in GATE.

ANNIE consists of the following set of processing resources: tokeniser, sentence
splitter, POS tagger, gazetteer, finite state transduction grammar and orthomatcher. The
resources communicate via GATE’s annotation API, which is a directed graph of arcs
bearing arbitrary feature/value data, and nodes rooting this data into document content
(in this case text).

The tokeniser splits text into simple tokens, such as numbers, punctuation, symbols,
and words of different types (e.g. with an initial capital, all upper case, etc.), adding a
"Token" annotation to each. It does not need to be modified for different applications or
text types.



The sentence splitter is a cascade of finite-state transducers which segments the text
into sentences. This module is required for the tagger. Both the splitter and tagger are
generally domain and application-independent.

The tagger is a modified version of the Brill tagger, which adds a part-of-speech tag
as a feature to each Token annotation. Neither the splitter nor the tagger is a mandatory
part of the NE system, but the annotations they produce can be used by the semantic
tagger (described below), in order to increase its power and coverage.

The gazetteer consists of lists such as cities, organisations, days of the week, etc. It
contains some entities, but also names of useful key words, such as company designators
(e.g. "Ltd."), titles (e.g. "Dr."), etc. The lists are compiled into finite state machines,
which can match text tokens.

The semantic tagger (or JAPE transducer) consists of hand-crafted rules written in
the JAPE pattern language [18], which describe patterns to be matched and annotations
to be created. Patterns can be specified by describing a specific text string or annotation
(e.g. those created by the tokeniser, gazetteer, document format analysis, etc.).

The orthomatcher performs coreference, or entity tracking, by recognising rela-
tions between entities. It also has a secondary role in improving NE recognition by as-
signing annotations to previously unclassified names, based on relations with existing
entities.

ANNIE has been adapted to many different uses and applications: see [19,20,21] for
some examples. In terms of adapting to new tasks, the processing resources in ANNIE
fall into two main categories: those that are domain-independent, and those that are not.
For example, in most cases, the tokeniser, sentence splitter, POS tagger and orthographic
coreference modules fall into the former category, while resources such as gazetteers and
JAPE grammars will need to be modified according to the application. Similarly, some
resources, such as the tokeniser and sentence splitter, are largely language-independent
(exceptions may include some Asian languages, for example), and some resources are
more language-dependent, such as gazetteers.

3.2. Using contextual information to bootstrap rule creation

One of the main problems with using a rule-based approach to information extraction
is that rules can be slow and time-consuming to develop, and an experienced language
engineer is generally needed to create them. This language engineer typically needs also
to have a detailed knowledge of the language and domain in question. Secondly, it is easy
with a good gazetteer list and a simple set of rules to achieve reasonably accurate results
in most cases in a very short time, especially where recall is concerned. For example, our
work on surprise languages [20] achieved a reasonable level of accuracy on the Cebuano
language with a week’s effort and with no native speaker and no resources provided.
Similarly, [22] achieved high scores for recognition of locations using only gazetteer
lists. However, achieving very high precision requires a great deal more effort, especially
for languages which are more ambiguous than English.

It is here that making use of contextual information is key to success. Gazetteer
lists can go a long way towards initial recognition of common terms; a set of rules can
boost this process by e.g. combining elements of gazetteer lists together, using POS
information combined with elements of gazetteer lists (e.g. to match first names from a
list with probable surnames indicated by a proper noun), and so on. In order to resolve



ambiguities and to find more complex entity types, context is necessary. Here we build on
the work described in Section 2, which made use of information about contextual terms
to help decide whether a candidate term (extracted initially through syntactic tagging)
should be validated.

There are two tools provided in GATE which enable us to make use of contextual in-
formation: the gazetteer lists collector and ANNIC. These are described in the following
two sections.

3.3. Gazetteer lists collector

The GATE gazetteer lists collector [23] helps the developer to build new gazetteer lists
from an initial set of annotated texts with minimal effort. If the list collector is combined
with a semantic tagger, it can be used to generate context words automatically. Suppose
we generate a list of Persons occurring in our training corpus. Some of these Persons
will be ambiguous, either with other entity types or even with non-entities, especially in
languages such as Chinese. One way to improve Precision without sacrificing Recall is
to use the lists collector to identify from the training corpus a list of e.g. verbs which
typically precede or follow Persons. The list can also be generated in such a way that
only verbs with a frequency above a certain threshold will be collected, e.g. verbs which
occur less than 3 times with a Person could be discarded.

The lists collector can also be used to improve recognition of entities by enabling
us to add constraints about contextual information that precedes or follows candidate en-
tities. This enables us to recognise new entities in the texts, and forms part of a devel-
opment cycle, in that we can then add such entries to the gazetteer lists, and so on. In
this way, noisy training data can be rapidly created from a small seed corpus, without
requiring a large amount of annotated data initially.

Furthermore, using simple grammar rules, we can collect not only examples of enti-
ties from the training corpus, but also information such as the syntactic categories of the
preceding and following context words. Analysis of such categories can help us to write
better patterns for recognising entities. For example, using the lists collector we might
find that definite and indefinite articles are very unlikely to precede Person entities, so we
can use this information to write a rule stipulating that if an article is found preceding a
candidate Person, that candidate is unlikely to be a valid Person. We can also use lexical
information, by collecting examples of verbs which typically follow a Person entity. If
such a verb is found following a candidate Person, this increases the likelihood that such
a candidate is valid, and we can assign a higher priority to such a candidate than one
which does not have such context.

3.4. ANNIC

The second tool, ANNIC (ANNotations In Context) [24], enables advanced search and
visualisation of linguistic information. This provides an alternative method of searching
the textual data in the corpus, by identifying patterns in the corpus that are defined both
in terms of the textual information (i.e. the actual content) and of metadata (i.e. linguistic
annotation and XML/TEI markup). Essentially, ANNIC is similar to a KWIC (KeyWords
In Context) index, but where a KWIC index provides simply text in context in response
to a search for specific words, ANNIC additionally provides linguistic information (or
other annotations) in context, in response to a search for particular linguistic patterns.



Figure 3. ANNIC Viewer

ANNIC can be used as a tool to help users with the development of JAPE rules by
enabling them to search the text for examples using an annotation or combination of
annotations as the keyword. Language engineers have to use their intuition when writing
JAPE rules, trying to strike the ideal balance between specificity and coverage. This
requires them to make a series of informed guesses which are then validated by testing
the resulting ruleset over a corpus. ANNIC can replace the guesswork in this process
with a live analysis of the corpus. Each pattern intended as part of a JAPE rule can easily
be tested directly on the corpus and have its specificity and coverage assessed almost
instantaneously.

Figure 3 shows a screenshot of ANNIC in use. The bottom section in the window
contains the patterns along with their left and right context concordances, while the top
section shows a graphical visualisation of the annotations. ANNIC shows each pattern
in a separate row and provides a tool tip that shows the query that the selected pattern
refers to. Along with its left and right context, it also lists the name of documents that
the patterns come from. The tool is interactive, and different aspects of the search results
can be viewed by clicking on appropriate parts of the GUI.

ANNIC can also be used as a more general tool for corpus analysis, because it en-
ables querying the information contained in a corpus in more flexible ways than simple
full-text search. Consider a corpus containing news stories that have been processed with
a standard NE system such as ANNIE. A query like
{Organization} ({Token})*3 ({Token.string==’up’}|{Token.string==’down’}) ({Money}
| {Percent})
would return mentions of share movements like “BT shares ended up 36p” or “Marconi
was down 15%”. Locating this type of useful text snippets would be very difficult and
time consuming if the only tool available were text search. Clearly it is not just infor-
mation extraction and rule writing that benefits from the visualisation of contextual in-
formation in this way. When combined with the TRUCKS term extraction technique,
we can use it to visualise the combinations of term and context term, and also to in-
vestigate other possible sources of interesting context which might provide insight into
further refinement of the weights. We can also very usefully combine ANNIC with the



gazetteer list collector described in Section 3.3 in order to again visualise other sources
of contextual information worth collecting.

4. From Traditional to Ontology-Based Information Extraction

Ontology-Based IE (OBIE) is one of the technologies used for semantic annotation,
which is essentially about assigning to entities in the text links to their semantic descrip-
tions. This sort of metadata provides both class and instance information about the en-
tities. One of the important differences between traditional IE and OBIE is the use of a
formal ontology rather than a flat lexicon or gazetteer structure. This may also involve
reasoning.

4.1. OBIE Systems

There are a number of what we describe as ontology-oriented IE systems, which, unlike
ontology-based ones, do not incorporate ontologies into the system, but either use them
as a bridge between the IE output and the final annotation (as with AeroDAML) or rely
on the user to provide the relevant information through manual annotation (as with the
Amilcare-based tools).

AeroDAML [25] applies IE techniques to automatically generate DAML annota-
tions from web pages. It links proper nouns and common types of relations with classes
and properties in a DAML ontology. It makes use of an ontology in order to translate the
extraction results into a corresponding RDF model.

Amilcare [26] is an IE system which has been integrated in several different seman-
tic annotation tools, such as OntoMat [27], which combines a manual annotation tool
with an IE system running in the background. It uses supervised rule learning to adapt to
new domains and applications given human annotated texts (training data). It treats the
semantic annotations as a flat set of labels, thus ignoring the further knowledge in the on-
tology. Amilcare uses GATE’s NLP components in order to obtain linguistic information
as features for the learning process.

One of the problems with these annotation tools is that they do not provide the user
with a way to customise the integrated language technology directly. While many users
would not need or want such customisation facilities, users who already have ontologies
with rich instance data will benefit if they can make this data available to the IE compo-
nents. However, this is not possible when traditional IE methods like Amilcare are used,
because they are not aware of the existence of the user’s ontology.

The more serious problem however, as discussed in the S-CREAM system [27], is
that there is often a gap between the IE output annotations and the classes and properties
in the user’s ontology. The solution proposed by the developers was to write logical rules
to resolve this. For example, an IE system would typically annotate London and UK
as locations, but extra rules are needed to specify that there is a containment relation-
ship between the two. However, rule writing of this kind is too difficult for most users
and therefore ontology-based IE is needed, as it annotates directly with the classes and
instances from the user’s ontology.

In response to these problems, a number of OBIE systems have been developed.
Magpie [28] is a suite of tools which supports semantic annotation of web pages. It is



fully automatic and works by matching the text against instances in the ontology. The
SemTag system [29] is similar in approach to Magpie as it annotates texts by performing
lookup against the TAP ontology. It also has a second, disambiguation phase, where
SemTag uses a vector-space model to assign the correct ontological class or determine
that this mention does not correspond to a class in TAP. The problem with both systems is
that they are not able to discover new instances and are thus restricted in terms of recall.

The PANKOW system [30] exploits surface patterns and the redundancy on the Web
to categorise automatically named entities found in text with respect to a given ontol-
ogy. Its aim is thus primarily ontology population rather than annotation. PANKOW has
recently been integrated with MAGPIE [31].

OntoSyphon [32] is similar to PANKOW and uses the ontology as the starting point
in order to carry out web mining to populate the ontology with instances. It uses the
ontology structure to determine the relevance of the candidate instances. However, it
does not carry out semantic annotation of documents as such.

The KIM system [33] produces annotations linked both to the ontological class and
to the exact individual in the instance base. For new (previously unknown) entities, new
identifiers are allocated and assigned; then minimal descriptions are added to the seman-
tic repository. KIM has a rule-based, human-engineered IE system based on GATE’s
ANNIE, which uses the ontology structure during pattern matching and instance disam-
biguation. The only shortcoming of this approach is that it requires human intervention
in order to adapt it to new ontologies.

To summarise, all these systems use the ontology as their target output, and the
ontology-based ones also use class and instance information during the IE process. While
KIM and OntoSyphon do make use of the ontology structure, the former is a rule-based,
not a learning approach, whereas the latter does not perform semantic annotation, only
ontology population.

5. Evaluation of Ontology-Based Information Extraction

Traditionally, information extraction is evaluated using Precision, Recall and F-Measure.
However, when dealing with ontologies, such methods are not really sufficient because
they give us a binary decision of correctness, i.e. they classify the result as either right or
wrong. This is fine for traditional IE, because an element identified as a Person is either
correct or incorrect (measured by Precision), and elements which should be identified as
Person are either identified or not (measured by Recall). When making an ontological
classification, however, the distinction is a bit more fuzzy. For example if we misclassify
an instance of a Researcher as a Lecturer, we are clearly less wrong than missing the
identification (and classification) altogether, and we are also somehow less wrong than
if we had misclassified the instance as a Location. Credit should therefore be given for
partial correctness. Traditionally, this is sometimes achieved by allocating a half weight
to something deemed partially correct, but this is still insufficient to give a proper distinc-
tion between degrees of correctness. We therefore adopt an approach based on similarity
between Key (the gold standard) and Response (the output of the system).



5.1. A Distance-based Metric for Evaluation

We developed the Balanced Distance Metric (BDM) [34] in order to address this prob-
lem. This metric has been designed to replace the traditional "exact match or fail" met-
rics with a method which yields a graded correctness score by taking into account the
semantic distance in the ontological hierarchy between the compared nodes (Key and
Response).

The semantic distance is adapted from the semantic weight used in the TRUCKS
system, but takes into account also some normalisation – something which was not con-
sidered in the original TRUCKS weight. In the BDM, each of the paths has been nor-
malised with two additional measurements, of which the first is the average length of
the chains in which key and response concepts occur. The longer a particular ontological
chain is, the more difficult it is to consistently pick out a particular class for annotation
[35]. The second normalization is the introduction of the branching factor (i.e. number
of descendants) of the relevant nodes in the ontology. This is also an indication of the
level of difficulty associated with the selection of a particular ontlogical class relative
to the size of the set of candidates. These normalizations will make the penalty that is
computed in terms of node traversal within our metric relative to the semantic density of
the chains.

Another similar metric which has been proposed for this task is Learning Accuracy
(LA) [36], which was originally developed to measure how well an item had been clas-
sified in an ontology. Learning Accuracy has a major flaw for our purposes, however, in
that it does not take into account the depth of the key concept in the hierarchy, consider-
ing essentially only the height of the MSCA (Most Specific Common Abstraction) and
the distance from the response to the MSCA. This means that however far away the key
is from the MSCA, the metric will give the same outcome. The BDM is more balanced in
this respect, because it takes the relative specificity of the taxonomic positions of the key
and response into account in the score, but it does not distinguish between the specificity
of the key concept on the one hand, and the specificity of the response concept on the
other. For instance, the key can be a specific concept (e.g. ’car’), whereas the response
can be a more general concept (e.g. ’relation’), or vice versa, and the result will be the
same. This is not the case with the Learning Accuracy metric.

The BDM is computed on the basis of the following measurements:

• CP = the shortest length from root to the most specific common parent, i.e. the
most specific ontological node subsuming both Key and Response)

• DPK = shortest length from the most specific common parent to the Key concept
• DPR = shortest length from the most specific common parent to the Response

concept
• n1: average chain length of all ontological chains containing Key and Response.
• n2: average chain length of all ontological chains containing Key.
• n3: average chain length of all ontological chains containing Response.
• BR: the branching factor of each relevant concept, divided by the average branch-

ing factor of all the nodes from the ontology, excluding leaf nodes.

The complete BDM formula is as follows:

B DM =
B R(C P/n1)

B R(C P/n1) + (D P K/n2) + (D P R/n3)
(3)



As with the similarity weight described in Section 2.2, the measure provides a score
somewhere between 0 and 1 for the comparison of key and response concepts with re-
spect to a given ontology. If a concept is missing or spurious, BDM is not calculated
since there is no MSCA. If the key and response concepts are identical, the score is 1
(as with Precision and Recall). Overall, in case of an ontological mismatch, this method
provides an indication of how serious the error is, and weights it accordingly.

The BDM itself is not sufficient to evaluate our populated ontology, because we need
to preserve the useful properties of the standard Precision and Recall scoring metric.
Our APR metric (Augmented Precision and Recall) combines the traditional Precision
and Recall with a cost-based component (namely the BDM). We thus combine the BDM
scores for each instance in the corpus, to produce Augmented Precision, Recall and F-
measure scores for the annotated corpus, calculated as follows:

AP =
B DM

n + Spurious
and AR =

B DM
n + Missing

(4)

while F-measure is calculated from Augmented Precision and Recall as:

F − measure =
AP ∗ AR

0.5 ∗ (AP + AR)
(5)

5.2. Experiments with OBIE evaluation

The BDM metric has been evaluated in various ways in order to compare it with other
metrics for evaluation and to test scalability issues. For the evaluation, a semantically
annotated corpus was created for use as a gold standard. This is known as the OntoNews
corpus [37]. This semantically annotated corpus consists of 292 news articles from three
news agencies (The Guardian, The Independent and The Financial Times), and covers
the period of August to October, 2001. The articles belong to three general topics or
domains of news gathering: International politics, UK politics and Business.

The ontology used in the generation of the ontological annotation process is the
PROTON ontology3, which has been created and used in the scope of the KIM platform4

for semantic annotation, indexing, and retrieval [33]. The ontology consists of around
250 classes and 100 properties (such as partOf, locatedIn, hasMember and so on). PRO-
TON has a number of important properties: it is domain-independent, and therefore suit-
able for the news domain, and it is modular (comprising both a top ontology and a more
specific ontology).

The aim of the experiments carried out on the OntoNews corpus was, on the one
hand, to evaluate a new learning algorithm for OBIE, and, on the other hand, to compare
the different evaluation metrics (LA, flat traditional measure, and the BDM).

The OBIE algorithm learns a Perceptron classifier for each concept in the ontology.
Perceptron [38] is a simple yet effective machine learning algorithm, which forms the
basis of most on-line learning algorithms. Meanwhile, the algorithm tries to keep the dif-
ference between two classifiers proportional to the cost of their corresponding concepts
in the ontology. In other words, the learning algorithm tries to classify an instance as cor-
rectly as it can. If it cannot classify the instance correctly, it then tries to classify it with

3http://proton.semanticweb.org
4http://www.ontotext.com/kim



another concept with the least cost associated with it relative to the correct concept. The
algorithm is based on the Hieron, a large margin algorithm for hierarchical classification
proposed in [39]. See [40] for details about the learning algorithm and experiments.

We experimentally compared the Hieron algorithm with the SVM learning algorithm
(see e.g. [41]) for OBIE. The SVM is a state of the art algorithm for classification. [42]
applied SVM with uneven margins, a variant of SVM, to the traditional information
extraction problem and achieved state of the art results on several benchmarking corpora.
In the application of SVM to OBIE, we learned one SVM classifier for each concept in
the ontology separately and did not take into account the structure of the ontology. In
other words, the SVM-based IE learning algorithm was a flat classification in which the
structure of concepts in the ontology was ignored. In contrast, the Hieron algorithm for
IE is based on hierarchical classification that exploits the structure of concepts.

As the OntoNews corpus consists of three parts (International politics, UK politics
and Business), for each learning algorithm two parts were used as training data and
another part as test data. Note that although the tripartition of the corpus indicates three
distinct and topically homogeneous parts of the corpus, these parts are used as training
and testing data for the comparison of different algorithms, and not their performance.
For this purpose, semantic homogeneity does not play a role.

For each experiment we computed three F1 values to measure the overall perfor-
mance of the learning algorithm. One was the conventional micro-averaged F1 in which
a binary reward was assigned to each prediction of instance — the reward was 1 if the
prediction was correct, and 0 otherwise. We call this flat_F1 since it does not consider the
structure of concepts in the ontology. The other two measures were based on the BDM
and LA values, respectively, which both take into account the structure of the ontology.

flat_F1 BDM_F1 LA_F1

SVM 73.5 74.5 74.5
Hieron 74.7 79.2 80.0

Table 1. Comparison of Hieron and SVM for OBIE

Table 1 presents the experimental results for comparing the two learning algorithms
SVM and Hieron. We used three measures: conventional micro-averaged flat_F1 (%),
and the two ontology-sensitive augmented F1 (%) based respectively on the BDM and
LA, BDM_F1 and LA_F1. In this experiment, the International-Politics part of the On-
toNews corpus was used as the test set, and the other two parts as the training set.

Both the BDM_F1 and LA_F1 are higher than the flat_F1 for the two algorithms,
reflecting the fact that the latter only counts the correct classifications, while the former
two not only count the correct classifications but also the incorrect ones. However, the
difference for Hieron is more significant than that for SVM, demonstrating an impor-
tant difference between the two methods — the SVM based method just tried to learn a
classifier for one concept as well as possible, while the Hieron based method not only
learned a good classifier for each individual concept but also took into account the rela-
tions between the concepts in the ontology during the learning.

In terms of the conventional flat_F1, the Hieron algorithm performed slightly better
than the SVM. However, if the results are measured by using the ontology-sensitive
measure BDM_F1 or LA_F1, we can see that Hieron performed significantly better than



SVM. Clearly, the ontology-sensitive measures such as the BDM_F1 and LA_F1 are
more suitable than the conventional flat_F1 to measure the performance of an ontology-
dependent learning algorithm such as Hieron.

In order to analyse the difference between the three measures, Table 2 presents some
examples of entities predicted incorrectly by the Hieron based learning system, their key
labels, and the similarity between the key label and predicted label measured respectively
by the BDM and the LA. Note that in all cases, the flat measure produces a score of 0,
since it is not an exact match.

No. Entity Predicted label Key label BDM LA

1 Sochi Location City 0.724 1.000
2 Federal Bureau of Investigation Organization GovernmentOrganization 0.959 1.000
3 al-Jazeera Organization TVCompany 0.783 1.000
4 Islamic Jihad Company ReligiousOrganization 0.816 0.556
5 Brazil Object Country 0.587 1.000
6 Senate Company PoliticalEntity 0.826 0.556
7 Kelly Ripa Man Person 0.690 0.667

Table 2. Examples of entities misclassified by the Hieron based system

Figure 4. Subset of the PROTON ontology

All the concepts and their relations involved in Table 2 are illustrated in Figure 4,
which presents a part of the PROTON ontology. This ontology section starts with the root
node Thing, and has 10 levels of concepts with TVCompany as the lowest level concept.
Note that the graph does not show all the child concepts for most of the nodes presented.



The conventional flat measure assigned each case a zero similarity because the ex-
amples were misclassified and the measure does not consider the structure of labels. On
the other hand, both the LA and BDM take into account the structure of labels and mea-
sure the degree of a misclassification based on its position in the ontology. Hence they
assign a non-zero value to a misclassification in most cases. Note that zero would be as-
signed in the case where the MSCA is the root node. In our experiments, all the concepts
used were below the node "Entity" and so we used its immediate upper node "Thing"
as root5. This meant that CP (the depth of the MSCA) was always at least 1, and hence
there is no zero value for BDM or LA in our experiments. This is because we consider
that if an entity’s instance is recognised but with the wrong type, the system should have
a non-zero reward because it at least recognised the instance in the first place. However,
this could be changed according to the user’s preference.

However, BDM and LA adopt different mechanisms in consideration of the ontol-
ogy structure. In particular, the LA assigns the maximal value 1 if the predicted label
is an ancestor concept of the key label, regardless of how far apart the two labels are
within the ontological chain. In contrast, the BDM takes into account the similarity of
two concepts in the ontology and assigns a distance-dependent value. The difference is
demonstrated by the examples in the table. For example, in the Proton ontology, the pre-
dicted label Organization is the parent concept of the key label GovernmentOrganization
in the second example, and in the third example the same predicted label Organization is
4 concepts away from the key label TVCompany. Hence, the BDM value of the second
example is higher than the BDM value of the third example. In the first example, the
predicted label Location is 3 concepts away from the key label City but its BDM value
is lower than the corresponding value in the third example, mainly because the concept
Location occupies a higher position in the Proton ontology than the concept Organiza-
tion. Similarity is thus lower because higher concepts are semantically more general, and
therefore less informative.

Another difference between the BDM and LA is that the BDM considers the con-
cept densities around the key concept and the response concept, but the LA does not. The
difference can be shown by comparing the fourth and the sixth examples. They have the
same predicted label Company, and their key labels ReligiousOrganization and Politi-
calEntity are two sub-concepts of Organization. Therefore, the positions of the predicted
and key labels in the two examples are very similar and hence their LA values are the
same. However, their BDM values are different — the BDM value of the fourth example
is a bit lower than the BDM value of the sixth example. This is because the concept Po-
liticalEntity in the sixth example has two child nodes but the concept ReligiousOrgani-
zation in the fourth example has no child node, resulting in different averaged lengths of
chains coming through the two concepts.

The BDM value in the fifth example is the lowest among the examples, mainly
because the concept Object is in the highest position in the ontology among the examples.
These differences in BDM scores show the effects of the adoption of chain density and
branching factor as penalty weights in the computation of the score. These reflect the
level of difficulty associated with the selection of a particular ontlogical class relative to
the size of the set of candidates.

5"Thing" subsumes both "Entity" and "Property"



5.3. Discussion and Future work

The initial observation from our experiments is that binary decisions are not good enough
for ontology evaluation, when hierarchies are involved. We propose an Augmented Pre-
cision and Recall measure that takes into account the ontological distance of the response
to the position of the key concepts in the hierarchy. For this purpose we have developed
an extended variant of Hahn’s Learning Accuracy measure, called Balanced Distance
Metric, and integrated this with a standard Precision and Recall metric. We have per-
formed evaluations of these three metrics based on a gold standard corpus of news texts
annotated according to the PROTON ontology, and conclude that both the BDM and LA
metrics are more useful when evaluating information extraction based on a hierarchical
rather than a flat structure. Furthermore, the BDM appears to perform better than the LA
in that it reflects a better error analysis in certain situations.

Although the BDM gives an intuitively plausible score for semantic similarity on
many occasions, it can be argued that in some cases it does not correlate well with hu-
man judgement. Examples 4 and 6 in Table 2 show counter-intuitively high similarity
values for combinations of key and wrongly predicted labels, particularly in compari-
son with example 7. Note that as mentioned earlier, they are still better than the LA in
that they distinguish different values for the two examples. From a human perspective,
they also seem more wrong than the erroneous classification in Example 7, and slightly
more wrong than those in examples 1 and 3. This indicates a need for further tuning
the BDM score with additional cost-based metrics, in order to meet human judgement
criteria. In such cases, this could entail the integration of a rule which boosts similarity
scores for concepts within the same ontological chain (in a more subtle way than LA),
and which lowers the score for concept pairs that occur in different chains. Work will
continue on further experiments with the integration of such rules, including assessment
of the correlation between BDM scores and human intuition.

6. Conclusion

In this chapter we have investigated NLP techniques for term extraction and ontology
population, using a combination of rule-based approaches and machine learning. Start-
ing from an existing method we developed for term recognition using contextual infor-
mation to bootstrap learning, we have shown how such techniques can be adapted to
the wider task of information extraction. Term recognition and information extraction,
while quite similar tasks in many ways, are generally performed using very different
techniques. While term recognition generally uses primarily statistical techniques, usu-
ally combined with basic linguistic information in the form of part-of-speech tags, in-
formation extraction is usually performed with either a rule-based approach or machine
learning, or a combination of the two. However, the contextual information used in the
TRUCKS system for term recognition can play an important role in the development of
a rule-based system for ontology-based information extraction, as shown by the devel-
opment of the GATE tools described in this chapter. Furthermore, the similarity metric
used in TRUCKS to determine a semantic weight for terms forms the basis for a new
evaluation metric for information extraction (BDM), which uses similarity between the
key and response instances in an ontology to determine the correctness of the extraction.



Experiments with this metric have shown very promising results and clearly demonstrate
a better evaluation technique than the Precision and Recall metrics used for traditional
(non-ontology-based) information extraction applications.
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