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Abstract

Support Vector Machines (SVM) have been used successfuthany Natural Lan-
guage Processing (NLP) tasks. This paper investigatesawmniques to help SVM
deal with the two unique features of NLP problems, namelyalaced training data
and the difficulty of obtaining sufficient training data. $tly, the uneven margins SVM
is introduced as an adaptation of the standard SVM modelnfilmalanced training
data. Secondly, SVM active learning is investigated, siheehieves a given perfor-
mance level with fewer training examples than conventigaalsive learning. The two
algorithms were evaluated on several Information Extoac{iE) tasks, where both
achieved better performance than the standard SVM and thé8ith passive learn-
ing, respectively. Moreover, by combining the uneven nrea@VM with the active
learning algorithm, we achieved the best results on the B&sicorpus, a benchmark
dataset for IE. The uneven margins SVM also obtained therbsstts on another IE
benchmarking dataset — the Jobs corpus. Due to the singfabétween IE and other
NLP tasks, the two techniques are likely to be beneficial indewmumber of appli-
cations. In addition, we also compare several approachesmferting multi-class
problem into binary classification problems with respedhi® standard SVM and the
uneven margins SVM, respectively. We found that one apjbraabieved best results
on the three datasets when using the uneven margins SVMhvghédso computation-
ally more efficient than others.

1 Introduction

Support Vector Machines (SVM) is a supervised machine Iagralgorithm, which has
achieved state-of-the-art performance on many learnsigtdn particular, SVM is a pop-
ular learning algorithm for Natural Language ProcessingRNtasks such as POS (Part-
of-speech) tagging [22, 31], word sense disambiguatioh [2B (noun phrase) chunking
[23], information extraction[21, 27], relation extraati¢45], semantic role labeling [19],
and dependency analysis [24, 43]. Almost all these apphicatadopt the same steps: first
they transform the problem into a multi-class classificatiask; then convert the multi-
class problem into several binary classification problahes an SVM classifier is trained
for each binary classificatidnand finally, the classifiers’ results are combined to obtain

1The SVM has been formulated as multi-class classifier irouarforms so that it can solve multi-class prob-
lem directly (see e.g. [8]), Recently researchers (see[83]) have applied the multi-class SVM to some NLP
problems and obtained better results than using binary SMidrefore, applying multi-class SVM to multi-class
problem is a promising research area. On the other handnplementation of the multi-class SVM is more
complicated than that of binary SVM. [20] compared the bin&/M with one form of multi-class SVM pre-
sented in [8] on several standard machine learning datasedt¢heir results showed no clearly difference of the
performances between binary SVM performed and multi-cBA#ll. More investigations are needed for evaluat-
ing multi-class SVM for NLP applications. This paper onlyns@lers the binary SVM classifier, which has been
used in most applications.
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the solution to the original NLP problem.

SVM is an optimal classifier in the sense that, given trairdatg, it learns a classifica-
tion hyperplane in the feature space which has the maxirstdmite (or margin) to all the
training examples (except a small number of examples agem)t(see e.g. [9]). Conse-
guently, on classification tasks the SVM tends to have bgteeralisation capability on
unseen data than other distance- or similarity-baseditegaigorithms such as k-nearest
neighbour (KNN) or decision trees. Another feature of thevBi¥ that, by using different
types of kernel function, the SVM can explore different ldred combinations of the given
features without increasing computational complexity.ctmtrast, it would be difficult
for many other learning algorithms to deal with a huge nundfdeature combinations
efficiently.

On the other hand, NLP tasks typically represent instangesehy high dimensional but
very sparse feature vectors, which leads to positive andtivegexamples being distributed
into two distinctly different areas of the feature spaceisTi$ particularly helpful for the
SVM to search a classification hyperplane in feature spadéarihe generalisation capa-
bility of the classifier as well. That is a main reason why thBcan achieve very good
results in a variety of NLP tasks. Such very high dimensioeptesentation is achieved by
forming the feature vector explicitly from text using a huemount of linguistic features
and in many cases by exploring the so-called kernel fun¢tionap the feature vector into
higher dimensional space (see below).

Furthermore, as the SVM is optimal margin classifier, théatise of an example to the
SVM classification hyperplane indicates how important & ¢éixample to the SVM learn-
ing. The examples being close to the SVM hyperplane are arémi the learning. The
SVM active learning is based on the distance of unlabelledrpte to the SVM hyper-
plane (see e.g. [2])

In the applications, the SVM can select the useful featuifestd/ely from a large number
of features for a particular classification problem. Thibégause the SVM learns a clas-
sifier by combining all the features (or feature combinatjonith different weights. If a
feature occurs almost equally in both positive and negataiaing examples and hence is
irrelevant to the classification, its learned weight wouddidnlittle contribution to the clas-
sifier. In contrast, many other algorithms require carefahmal feature selection. This is
advantageous when applying the SVM to NLP problem. As thestsemany types of NLP
features from morphology, syntax, semantics as well as ftiff@rent knowledge sources
like thesaurus and gazetteers, in the application of SVMIt® Nhose different kinds of
features are just put together to form one feature vectoorfierexample as input to SVM
and the learning would automatically determine which fezguand/or combinations of
features are useful for the task.

When compared to other classification problems, NLP classifin tasks have several
unique characteristics, which were seldom considered jiGgtions. Perhaps the most
important one is that NLP tasks tend to have imbalanceditigidata, in which positive

examples are vastly outhnumbered by negative ones. Thistisydarly true for smaller data

sets where often there are thousands of negative trainiagnebes and only few positive
ones. Another unique characteristic is that annotatingftexraining the algorithm is a

time-consuming process, while at the same time unlabel¢alid abundant.

Moreover, since the SVM is usually used as binary classifiesélving an NLP problem
and an NLP problem in most case is equivalent to a multi-otéessification problem,
we need to transform the multi-class problem into binargsifécation problems. Several
methods have been proposed for the transformation. [20peoed some of those methods
using standard SVM model on some standard problems for maddérning. But none of
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their problems was for NLP.

Therefore, when the SVM is applied to NLP tasks, these pdai@spects should be taken
into account in order to obtain a practical system with goediggmance. In this paper
we study two techniques to adapt SVM to NLP problefijsuse an uneven margins SVM
model (see [29]) to deal with imbalanced training d4tg;employ SVM active learning
to alleviate the difficulty in obtaining labeled trainingtda The algorithms are presented
and tested on several Information Extraction (IE) taskesdwer we believe that they could
also improve SVM performance on other NLP tasks. We alsaataldifferent methods of
converting multi-class problem into binary classificatmnblems for the NLP applications
and particularly for the uneven margins SVM.

The rest of paper is structured as follows. Section 2 intceduhe IE tasks and describes in
further detail the unique characteristics of NLP applimasiin the context of IE. We present
our classifier based |IE framework, the uneven margins SVM3\d active learning for
IE in Section 3. Section 4 tests the algorithms and the fraonlewn three benchmarking
corpora for IE. Section 5 discusses related work and Se6tearmmarises our findings.

2 Machine Learning for Information Extraction

Information Extraction (IE) is a technology based on analysatural language in order
to extract snippets of information. The process takes {@xts8 sometimes speech) as input
and produces fixed-format, unambiguous data as output,evgnts, entities or relations
can be extracted automatically from text such as newswiiges or Web pages. IE is use-
ful in many applications, such as information gathering iradety of domains, automatic
annotations of web pages for Semantic Web, and knowledgageament.

A wide range of machine learning techniques have been uséf tmd achieved state-of-
the-art results, comparable to manually engineered IEEBYst The learning algorithms for
IE can be classified broadly into two main categories: ruderieng and statistical learning
ones. The former induce a set of rules from training examglasre are many such rule-
based learning systems, e.g. SRV [15], RAPIER [1], WHISK] [BWI [17], and (LP)?
[5]. Statistical systems learn a statistical model or df&ss, such as HMMs [14], Maximal
Entropy [4], SVM [21, 30], and Perceptron [3].

IE systems also differ from each other in the NLP features ttiey use. These include

simple features such as token form and capitalisation mébion, linguistic features such

as part-of-speech, semantic information from gazettsts, land genre-specific informa-
tion such as document structure. In general, the more fesathe system uses, the better
performance it can achieve.

Since we uses binary SVM classifier, we concentrate on &kasbased learning for IE,
which typically converts the recognition of each infornoatientity into a set of classifica-
tion problems. There exists several methods for using biokssifier for solving multi-
classes problem. We will describe in detail those metho®eiction 3.1 and experimen-
tally compare them in Section 4.2. We are particularly ies¢éed in one method which was
rarely used in the NLP applications of SVM in comparison wither methods. It trains
two binary classifier for each type of information entity:eofor recognising the entity’s
start token and the other for the entity’s end token. It nesd tomputing resources than
other methods. Our experiments showed that it also hasrlpestérmances than other
methods when using the uneven margins SVM model.

The classification problem derived from IE usually has irabakd training data, which is
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particularly true for smaller data sets where often theeetlhousands of negative training
examples and only few positive ones. Two approaches havedbedied so far to deal with
imbalanced data in IE. The first one under-samples the ntyajdess or over-samples the
minority class in order to obtain a relatively balancedrtiag data [44]. However, under-
sampling can potentially remove certain important exasy@ad over-sampling can lead
to over-fitting and a larger training set. The second apgrisato divide the problem into
several sub-problems in two layers, each of which has lekalanced training set than the
original one [3, 35]. The output of the classifier in the fiyér is used as the input to
the classifiers in the second layer. As a result, this approaeds more classifiers than
the original problem. Moreover, the classification errarghie first layer will affect the
performance of the second one.

In this paper we explore another approach to handling theliamzed data in IE, namely,
adapting the learning algorithm for balanced classificatdeal better with imbalanced
data. In particular, we use the uneven margins SVM modehiiralanced training sets.

In addition to the problem with imbalanced training setgréhis also the problem of ob-
taining sufficient training data for IE. In general, a leagnalgorithm derives a model from
a set of documents which have been manually annotated bystre Then the model can
be used to extract information from new documents. Howewanual annotation for IE is
a labour-intensive and time-consuming process due to tmplexity of the task. Hence,
frequently the machine learning system trains only on alsmiahber examples, which are
selected from a pool of unlabelled documents.

One way to overcome this problem is to wssive learningwhich minimises the number
of labeled examples required to achieve a given level ofgperénce. It is usually imple-
mented as a module in the learning system, which selectslabelled example based on
the current model and/or properties of the example. Thesykem asks the user to label
the selected example, adds the new labeled example intoaihéng set, and updates the
model using the extended training set. Active learning igi@aarly useful in IE, where
there is an abundance of unlabeled text, among which onlyntiet informative instances
need to be found and annotated.

SVM active learning is an SVM-specific algorithm [2, 34], whiuses the margin (or the
distance) from the unlabelled example to the classificatigrerplane as a measure for the
importance of the example for learning. SVM active learriiag been applied successfully
in applications, such as text classification [38], spokeglege understanding [40], named
entity recognition [41] and Japanese word segmentatioh [FBese experiments have
shown that SVM active learning clearly outperformed the Swih passive learning. In
this paper we investigate SVM active learning for IE taski&hwocus on the algorithm
settings which are specific to NLP tasks. We also explore teeen margins SVM model
for active learning. In contrast, previous works on the S\Vié#ve learning only used the
standard SVM model.

3 SVM Learning for IE

3.1 The SVM Based IE System

Classifier-based framework The classifier-based framework we adopted for applying
SVM to IE consists of three stages: pre-processing of theimients to obtain feature
vectors, learning classifiers or applying classifiers ta texuments, and finally post-
processing the results to tag the documents.
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Since we consider the IE as a multi-class classificationlprolivhere each token in text is
check to see whether or not it belong to an entity with a paldictype, and we use the SVM
as a binary classifier, we need to adopt some strategy tdaramghe multi-class problem
to binary classification problems. The key part of the framewwe use is to convert the
recognition of each type of information entity into two bipalassification tasks — one
to decide whether a token is the start of an entity and anatherfor the end token. In
contrast, previous work adopted slightly different franoeks for SVM classification for

IE. For instance, [21] trained four SVM classifiers for eacititg type — besides the two
SVMs for start and end (like ours), also one for middle tokeamal one for single token
entities. They also trained an extra SVM classifier to reggtokens which do not belong
to any named entity. In other words, they learned one clas$di each part of entity and
for non-entity. Another approach is to train an SVM classifite every possible transition
of tags [30]. Depending on the number of entities, this apphomay result in a large
number of SVM classifiers. Hence, in comparison, our apgraasimpler than the other
two SVM-based systems, in terms of requiring the lowest nemolb SVM classifiers.

In fact there are two main frameworks for applying the SVM tires binary classifier to
the IE and other NLP tasks. They can be seen as learning osfigafor each type of
tag (or pair of tags) in two different schemes of taggingtegiin text, respectively. One
tagging scheme assigns every token a tag. The possible tagedbken is the beginning,
middle or end token of a multi-token entity with particulgpé, or the single token of a
single-token entity, or non-entity (or other )token whiabed not belong to any entity. We
call this tagging scheme &MESOscheme. Alternatively, we can only tag the beginning
and end tokens of entity, and regard the token in singlert@keity as both the beginning
and end token of the entity. We call this tagging schemBEscheme. Correspondingly,
one framework of converting multi-class problem into binelassification problems learns
a classifier for each type of tag (or pair of tags) in the BME&@ging scheme. Another
framework only learns the classifiers for the beginning ait &aken of entity of certain
type in the BE tagging scheme. For the sake of conveniencealivthe first framework as
BMESO frameworknd the second &E framework

In the implementation of the BMESO framework, two approachave been used. Sup-
pose there ar& classes in the multi-class problem, one approach, caltedvs. others
learnsK classifiers each of which separates one class from all otAesther approach is
calledpairwise classificatiorthat learnsiK (K — 1)/2 binary classifiers corresponding to
all pairs of classes. In the application of the learned @iass, the one vs. others approach
compares the outputs of all classifiers (before threshg)dior one instance and assign
the instance the class which classifier has the maximal tulipeontrast, in the pairwise
approach, for one instance, one classifier votes for ons olaanother class according to
its output and final class decision for the instance is madadiprity voting.

Most of previous works in the application of SVM to NLP usee tne vs. others ap-
proach in the BMESO framework. For instance, [22], [21] a6l [adopted the framework
for POS tagging, IE and relation extraction, respectivélyfew works used the pairwise
method, such as [23] for NP chunking. [27, 18] adopted theEéwork in the applica-

tion of the SVM to IE. [17, 5] also used the BE framework for I&t bhey both explored

rule learning algorithms rather than statistical learréngh as the SVM. [20] compared
the one vs. others and the pairwise method with some othdragbut not including the

BE framework. It used the standard SVM model on some stangtatilems for machine

learning. But none of their problem was from NLP.

One advantage of the BE framework over the BMESO framewadhaitsthe BE framework
learns less classifier, resulting in less computation time lass computer memory for
storing learned model. Suppose the SVM is applied to an lEwéh N types of entity. In
the BMESO framework it is a multi-class problem with« N + 1 classes. It needs learn
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4% N + 1 SVM classifiers if using the one vs. other method, and léamN + 1) x (4 *
N)/2 classifiers if using pairwise method. In contrast, the BEeavork only need learn
2« N SVM classifiers. In other words, the one vs. other method siesare than twice
classifiers of the BE method. The pairwise method needs much olassifiers than other
two methods ifn is not very small.

Another advantage is that the BE framework may achievetetsalts, because the frame-
work selected some specific labels for learning, which areensharacteristic than other
labels so that the resulting classification problems mayalseethan the problems for other
labels. For example, for multi-token entity, the start and éokens may not only make
contribution to the meaning of the entity, but also have #sponsibility to distinguish the
entity from the surrounding tokefsin contrast, a middle token just bear the meaning of
the entity. Therefore, the boundary tokens of an entity isemoharacteristic for the type
of the entity than the middle token(s). Consequently thesilier learned for the boundary
token have better generalisation capability than the iflasfor middle toker.

In Section 4.2 we will experimentally compare the two frareks by using the standard
SVM and the uneven margins SVM, respectively.

Pre- and post-processingThe aim of the pre-processing is to form input vectors frac-d
uments. In our IE system each document is first processed tienopen-source ANNIE
system, which is part of GATE[10]. This produces a number of linguistic (NLP) fea-
tures, including token form, capitalisation informati¢oken kind, lemma, part-of-speech
(POS) tag, semantic classes from gazetteers, and namsdigpéis according to ANNIE’s
rule-based recogniser.

Based on the linguistic information, a feature vector isstnrcted for each token, as we it-
erate through the tokens in each document (including wanshlrer, punctuation and other
symbols) to see if the current token belongs to an informagiatity or not. The feature
vector derived from one token is binary vector, each dinmemnsf which corresponds to one
of those features collected from training set and each bic@mponent indicates whether
or not the corresponding feature exists for the token. Hetiee feature vector is very
high dimensional but very sparse because the total numideatifres is very large and the
number of features one particular token has is quite smaflekample, one feature vector
for the Seminars corpus used in our experiments had appabeip?0000 dimensions but
only at most 7 non-zero components.

Since in IE the context of the token is usually as importarthastoken itself, the SVM
input vector needs to take into account features of the giegeand following tokens, in
addition to those of the given token. In our experiments #maesnumber of left and right
tokens was taken as a context. In other words, the curreettelas at the centre of a
window of tokens from which the features are extracted. Tisalled a window size.
Therefore, for example, when the window size is 3, the atboriuses features derived
from 7 tokens: the 3 preceding, the current, and the 3 foligvtbkens. Due to the use
of a context window, the SVM input vector is the combinatidrihe feature vector of the
current token and those of its neighboring tokens. We cenedéd the feature vector of
the current token and the feature vectors of the surrourtdikens as the input vector to
the SVM.

2In comparison with English or other western language, tinetfan of token for separating the entity from
surrounding token is more important in oriental languageshsas Chinese, Japanese or Korean where there is
no delimiter between two consecutive words in a sentencdacin the major function of some tokens in these
languages is to separate one entity from the preceding lonfiolg entity.

3In the case of Chinese, [28] showed that the classifiers éostirt and end tokens of Chinese word has clearly
better performances than the classifier for middle token.

4Freely available from http://www.gate.ac.uk/




As the input vector incorporates information from the cahsurrounding the current to-
ken, features from different tokens can be weighted diffdyebased on their position in
the context. The weighting scheme we used wasehiprocal schemewhich weights the
surrounding tokens reciprocally to the distance to thertokéhe centre of the context win-
dow. This reflects the intuition that the nearer a neighbautoken is, the more important
it is for classifying the given token. Our experiments shdweat such a weighting scheme
obtained better results than the commonly used equal wegf27].

After classification, the start and end tags of the entitresobtained and need to be com-
bined into one entity tag. Therefore some post-processingéded to guarantee tag con-
sistency and to try to improve the results by exploring othésrmation. The currently
implemented procedure has three stages. First, in orderaiagtee the consistency of the
recognition results, a document is scanned from start tot@memove start tags without
matching end tags and end tags without preceding start Tdgssecond stage filters out
candidate entities from the output of the first stage, basdteair length. Namely, a candi-
date entity tag is removed if the entity’s length (i.e., thenber of tokens) is not equal to
the length of any entity of the same type in the training st third stage puts together all
possible tags for a sequence of tokens and chooses the leestaarding to the probability
which was computed from the output of the classifiers (betaresholding) via a Sigmoid
function. See [27] for details, which also showed that theteay’s performance was im-
proved significantly after the first stage of post-procassind improved slightly after the
second and third stages.

3.2 Uneven Margins SVM

A binary SVM classifier correspondsto a hyperplane in feaspace with maximal margin,
which would separate positive training examples from niegaines. The margin is the
distance from the training examples to the hyperplane. Tagim can be regarded as a
measure of the error-tolerance ability of the classifiercsia classifier is more likely to
classify a test instance correctly if it has a larger mardsenerally, if a training set is
representative of the whole dataset, a classifier with setamgargin with respect to the
training set would have a better generalisation perforrmaHowever, if the training set is
unrepresentative, we should take great care of the margfireimargin learning algorithms
such as SVM, because the maximal margin classifier learrd &m unrepresentative
training set may have poor generalisation performancdussrated in Figure 1.

Figure 1 shows a toy 2-dimensional binary classificatiorbfmm together with two kinds
of training sets and the corresponding SVM classifiers. Taieing examples in the left
part of Figure 1 are representative of the whole datasetitmrdfore the maximal margin
classifier learned from the training set can classify cdlyanost of the unseen test data,
meaning that the SVM classifier has a good generalisatioabifty. In contrast, the right
graph illustrates a situation where the training set is eptasentative of the distribution
of all positive examples due to the very small number of aldd training examples (only
three). In this case, the SVM classifier with maximal margwuld mistakenly classify
many unseen positive examples as negative ones. Unfoetynaiany imbalanced classi-
fication problems, such as those arising in IE, have quitdlsramber of positive training
examples, resulting in an SVM classifier with poor geneadilis capability. As a matter of
fact, previous work has demonstrated that SVM classifi@iagéd on imbalanced training
data have poor generalisation performance (see e.g. [26, 29

However, as can be seen in Figure 1, if the classification fpy@ee could be moved away
from the positive training examples in imbalanced datdket) the classifier would classify
more unseen data correctly, i.e., it would have better gdisation performance. There-
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Figure 1: A toy 2-dimensional classification problem and 8¥M classifiers. The two
graphsillustrate two different kinds of training sets. Ttening set on the left is represen-
tative of the whole dataset, whereas the positive examplései training set on the right
are not. In both figures a '+’ represents a positive exampieeaix’ — a negative example.
The solid line '+ and 'x’ are the training examples and thesth dashed lines are the test
ones.

fore, if an SVM classifier has to be learned from an imbalariEding set which has only
a few positive examples, it may be beneficial to require tlaeniimg algorithm to set the
margin with respect to the positive examples (the positiaegim) to be somewhat larger
than the margin with respect to the negative examples (thative margin). In other words,
in order to achieve better generalisation performanceneeels to distinguish the positive
margin from the negative margin when training the SVM. Thene we introduced a mar-
gin parameter into the SVM optimisation problem to control the ratio of thesitive
margin over the negative margin (for details see [29]).

Formally, given a training sét = ((x1,%1), - - -, (Xm, Ym)),Wherex; is then-dimensional
input vector andy; (= +1 or —1) its label, the SVM with uneven margins is obtained by
solving the quadratic optimisation problem:

m

minw, b, € <W,W> + CZ&

i=1
st (w,x,)+&+b>1 if y;=+1
(W, x;) =& +b<—7 if yi=—1

&>0 0 fori=1,....m

where a parameterwas added to the constraints of the optimisation problenti@stan-
dard SVM formation.r is the ratio of negative margin to the positive margin of these
sifier. It is equal tal in the standard SVM, which treats positive and negative ¢tas
equally. However, for imbalanced training data (as is theeoaith IE), where the posi-
tive examples are so rare that they are not representative @fenuine distribution of all
positive examples, a larger positive margin than negatie (mamelyr < 1) would be
beneficial for the generalization of the SVM classifier.

When applying the uneven margins SVM to a problem, we firsehiaxdetermine a value
for the uneven margins parameteilf the problem has just a few positive training examples
and many negative ones, then< 1 would be helpful. However, the optimal value ofs

not entirely dependent upon the number of positive exaniplé® training set — instead it

is actually dependent upon the distribution of positivenireg examples among all positive
examples. Like other parameters of learning algorithmesytiue ofr can be empirically
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determined by, for example, n-fold cross-validation ontta@ing set or using a hold-out
development set. On the other hand, Table 7 in Section 4 ®sstiat the performance
of the uneven margins SVM is robust with respect to the valuth® uneven margins
parameter, probably because the SVM classifier was leamadvery high dimensional
space where the positive training examples may possiblabeway from the negative
ones. Therefore, a reasonable estimation &f able to help the uneven margins SVM to
achieve significantly better results than the standard S\tdeh

As showed in [29], for the SVM model with bias term, the sadatiof uneven margins
SVM can be obtained from a related standard SVM via a transdtion. The transforma-
tion is simple — basically it amounts to adding-aelated term to the bias terinof the
corresponding standard SVM model. Therefore, in order hdexe computational gains,
the uneven margins SVM problem is not solved directly. ladtea corresponding stan-
dard SVM problem is solved first by using an existing SVM inmpéntation, (e.g., a pub-
licly available SVM packag®, and then the solution of uneven margins SVM is obtained
through a transformation.

On the other hand, the transformation means that the unesegims SVM is the same as
the standard SVM except for a shift of bias term or equiviyeatshift of SVM’s output
before thresholding. Note that in our experiments we ussdh®e value of uneven margin
parameter for all the SVM classifiers computed. Hence allclassifiers’ outputs have
the same amount of shift with respect to the uneven margianpeter. As a result, the
uneven margins SVM would have the same behaviour as thesth&Y/M if used in the
one vs. others approach of the BMESO framework (see Sectin Jhis is because
the class decision in the one vs. others approach is maderbparing the outputs of
all classifiers (before thresholding) which is not effechsdthe same amount of shift on
the outputs of all the classifiers resulted from using thevanemargins parameter. In
contrast, the uneven margins SVM does have effect when ustte BE framework or
pairwise classificatiompproach, because they both take into account binary ooftpuery
individual SVM classifier and the shift of the SVM'’s outputfore thresholding does make
difference in the binary output.

3.3 SVM Active Learning for IE

Apart from handling imbalanced training data, the margiriref SVM classifier to one
individual example can also be used for measuring how inébirre the example is for
training the SVM classifier — this forms the basis for 8%M active learninglgorithm.

Given an SVM classifier (in primal form/ = {wy,...,w;} andb and an exampl& =
{z1,..., 2}, the margin of the exampl¥ to the SVM is as

l
m(X, W) =< X,W > +b=> _zjw; +b (1)

=1

which measures how close the example is to the hyperplanesamioe regarded as a confi-
dence of the SVM classifying’. The smaller the margim (X, W) is, the less confidence
the SVM has for classifying the exampk. In other words, the smaller the margin of an
example to the SVM classifier is, the more informative thengpda might be for training
the SVM. Therefore, the SVM active learning algorithm isdzhen the margin — it selects
the example(s) with the smallest margin (least confidence).

5The SVM9"t package, available from http://svmlight.joachims.omgés used to learn the SVM classifiers
in our experiments.



SVM active learning has been successfully used for texgeoaisation and image retrieval,
which are essentially classification problems. Since Ikga&sn be transformed into sev-
eral classification problems, SVM active learning could bedsfor IE as well. The follows
is a general scheme for applying SVM active learning to IE:

1. Randomly choose, documents and manually annotate them as the initial trginin
setSy. Train the SVM classifiers o8, for the IE task.

2. Apply the SVM classifiers to un-annotated documents, ahectthen examples
with the smallest margins from the un-annotated documdrakel them and add
them into the training set.

3. Use the extended training set to re-train the SVM classifie

4. Repeat the steps 2 and 3 for a pre-defined number of loopgibthe system obtains
a pre-defined level of performance.

In the implementation of the above scheme several issuestod® considered. The first
one is that which type of example is selected in IE activerlieay (Step 2), because three
types of examples could be used — just one token, a token tgitburrounding context
and the whole document. We will present experimental reayaluating the three types
of examples in our experiments. The margin of a token can bd diectly for token
examples. On the other hand, selecting documents as examgdeto be based on the
average confidence of the tokens in the document. In detdthere arem classifiers
in one IE task and for every classifi€l, we selectmn tokens with the smallest margins
(mi1, ..., mim,), then we compute the average confidence of the docudressithe double
sum

m  mo

Cd — Z Z Mg (2)

i=1 j=1

The document with the smallest average confidence wouldlbetsd.

The second issue is the optimal setting of parameters inltjogitam. We test different
values of the three parameters, (the number of initial documents for training), (the
number of documents selected in active learning loop), apdthe number of tokens
chosen in one document for calculating the average confédeinttie document).

The third issue is related to the SVM model. We use the unevargims SVM in our
experiments and obtain the uneven margins SVM classifierobying a standard SVM
problem. However, the margin for each token in the unlabedlecuments was computed
using the standard SVM classifier. That is because we agtlegin a standard SVM
and the unlabelled examples which are close to the standétl Gassifier rather than
the deduced uneven margins SVM would have important eftetttet next round learning
in which a standard SVM will be learned as well. As a matteraaftf we did use the
margin computed with respect to the uneven margin SVM irvaddiarning and the results
were clearly worse than those using margin of the standaid,S¥hich verified the above
arguments. We will discuss the three issues in the expetspeasented below.
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4 Experiments

4.1 Experimental Datasets and Methodology

We evaluated the approaches of converting multi-classl@nolnto binary classification
problems, the uneven margins SVM, and the SVM active legramthree IE benchmark-
ing corpora covering different |E tasks — named entity rextgn (CoNLL-2003) and tem-
plate filling or scenario templates in different domainsn@@ers and Jobs). CoNLL-2083
is the most recent corpus for named entity recognition. TémiBars and Jobs corpdra
have been used to evaluate active learning techniques forsé&veral papers: [12], [1] and

[6].

In detail, we used the English part of the CoNLL-2003 shaastt ataset, which consists
of 946 documents in the Training Set, 216 document in the Deweent Set, and 231

documents in the Test Set, all of which are Reuters newdestithe corpus contains four
types of named entities — person, location, organisatiaimaiscellaneous.

In the other two corpora domain-specific information wasaeted into a number of slots.
The Seminars Corpus contains 485 seminar announcemente@andlots — start time
(stime), end time (etime), speaker and location of the semihe Jobs corpus includes
300 software related job postings and 17 slots encoding @téaild, such as title, salary,
recruiter, computer language, application, and platform.

Unless stated otherwise, the experiments in this paperhesparameter settings for the
uneven margins SVM, as derived empirically in [27]. Tablerégents the values of three
important parameters: the size of the context window, th&1&ernel type and the uneven
margins parameter, used in our experiments for the thrg@cayrrespectively.

Table 1: The values of the three important parameters usibe iexperiments for the three
datasets, respectively.refers to the uneven margins parameter for the SVM.

Context window size  SVM kernel 7

Conllo3 4 qguadratic 0.5
Seminars 5 quadratic 0.4
Jobs 3 linear 0.4

4.2 Comparisons of Different Classifier-based Framework folE

In Section 3.1 we have discussed two frameworks for appliiegoinary SVM classifier
to multi-class problem derived from IE problem. TBBIESOframework requires to learn
classifier(s) for each part of entity and for non-entity toké which two different ap-
proaches were usually used in the implementation. drfeevs. otherapproach trains one
classifier to separate one class from all other classespaineise classificatiompproach
learns one classifier for every pair of classes. Another éwmank, theBE framework only
trains classifiers for the start and end tokens of entity haddken in a single-token entity
is regarded as both the start token and end token of the entity

We carried out experiments to evaluate these methods ohrésedorpora. Table 2 presents
the results for the three methods, one vs. others, pairmdére BE framework. We used
the standard SVM and the uneven margins SVM for each of théaudst respectively.

6See http://cnts.uia.ac.be/conll2003/ner/
“See http://www.isi.edu/info-agents/RISE/repositaiph
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Table 2: Comparisons of the three methods using the sta®dévtiand the uneven margins
SVM on the three corpora, respectively. The best performéigares for each of the three
corpora appear in bold. The 95% confidence intervals fortesn the Seminars and Jobs
corpora are also presented.

One vs. others Pairwise BE
SVM SVM SVMUM SVM SVMUM
Conll 86.1 85.3 85.0 85.1 86.3
Seminars 81.80.6 81.4+0.7 84.2+0.7 80.0+0.4 84.5+0.6
Jobs 80.8+1.4 80.3+t1.0 80.3t1.2 79.0+1.0 80.8+0.7

Note that, as we used the same value of uneven margins paidioredll classifiers in one
experiment and by doing so the uneven margins SVM had thelgxsmme results as the
standard SVM for the one vs. others method, the table doegrasent the results of the
uneven margins SVM for that method.

For the BE scheme, we used the values of uneven margins pradisted in Table 1 for
each dataset when using uneven margins SVM, because thiggpesamples were always
much less than the negative ones in training set. As for thevisa method, the situation
became a bit complicated as the number of positive trainkagngles may be much less,
or much more than, or roughly close to the number of negakaegles. Hence, we set
as the values listed in Table 1 if the positive training exiamas at most half of negative
ones, set as the reciprocal of the values in Table 1 if the negativaingi examples was at
most half of positive ones, and sets 1 (corresponding to the standard SVM) in all other
cases. For the CoNLL-2003 data we used the training set &onileg SVM classifiers
and presented results on the test set. For each of the otberampora, we used half of
documents randomly selected for training and other doctsrientesting, one experiment
carried on ten runs and the results were obtained by averagir the ten runs.

First, if using the standard SVM model, the one vs. othershowigave better results
than other two methods on all the three corpbrét was significantly better than the BE
framework on the two corpora. There is no significant diffe@between the one vs. others
method and the pairwise on the Seminars and Jobs corpordh®ahe vs. other method
performed clearly better than the pairwise method on thel@eRD03 data. So, we think
that is why the one vs. others method was mostly used in thicapipns of the SVM to
NLP problems.

However, when using the uneven margins SVM, the resulthfBE scheme were signif-
icantly improved in the three datasets. For the pairwiséhoktthe results became better
on the Seminar data, remained the same for the Jobs data,anslightly worse on the
CoNLL-2003 corpus. As we discussed, the results of the unavargins SVM were al-
ways the same as the standard SVM for the one vs. others mdtleotb its particular
mechanism. On the other hand, when using the uneven maryikls the BE method
obtained better results than the pairwise method and thesreher method.

Table 3 presents the computation time and the number of S\ékkiflers needed for each
method and each corpus, respectively. Note that the SVMUMaviake almost the same
time as the standard SVM since we obtained the SVMUM by sigfthe bias of SVM
model. We can see that the BE method needed the least clessiflee pairwise method
required large number of classifiers especially for the dlaita where there were 17 entity
types. Consequently the BE method ran much faster than tbenethods.

8In contrast, [20] compared the one vs. others method wittwise method on a variety of machine learning
benchmarking datasets and found that the former methodrpeet! better than the latter on half of datasets and
performed worse on other datasets. Note that none of theelatéhey used was from NLP application.
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Table 3: Computation time and number of SVM classifiers nédgjeeach of the three
methods.

One vs. others Pairwise BE
Time  #Classifier Time  #Classifier Time  #Classifier
Conll 46308s 17 30400s 136 20544s 8
Seminars 68378s 17 50510s 136 23460s 8
Jobs 45448s 69 70590s 2346 18587s 34

In conclusion, the BE framework with the uneven margins SVidel performed best
consistently on the three corpora among all the methods ele@ed. Moreover, it needs
least computation time and least computer memory than hetbrte vs. others method and
the pairwise method. Therefore, the BE framework and theemenargins SVM model
is the best combination in the application of SVM to IE prableWe will adopt it in the
experiments presented in follows.

4.3 Experiments for Uneven Margins SVM

Named Entity RecognitionAs already discussed above, we evaluated the uneven margins
SVM on the CoNLL-2003 dataset. Since this corpus comes witle\eelopment set for
tuning the learning algorithm, different settings weredrin order to obtain the best per-
formance Different SVM kernel types, window sizes (namély humber of tokens to the

left or right of the token at the centre of window), and thewaremargins parameterwere
tested. We found that quadratic kernel, window sizndr = 0.5 produced best results

on the development set. These settings were used in alliexgrets on the CoNLL-2003
dataset in this paper, unless stated otherwise.

Table 4 presents the results of our system using two leaalgayithms, the uneven mar-
gins SVM and the standard SVM on the CONLL-2003 test set,ttmgewith the results
of two participating systems in the CoNLL-2003 shared tdkk:best system [13] and the
SVM-based system [30].

Table 4: Comparison to other systems on CoNLL-2003 corgusneasure(%) on each
entity type and the overall micro-averaged F-measure. B3¢ €onfidence intervals for
results of the two participating systems are also preserftbd best performance figures
for each entity type and overall appear in bold.

System LOC MISC ORG PER Overall
Our SVM with uneven margins 89.25 77.79 82.29 90.92 86.30
Systems Standard SVM 88.86 77.32 80.16 88.93 85.05
Participating| Best one 91.15 80.44 84.67 93.85 88%6.7
Systems Another SVM 88.77 74.19 79.00 90.67 84460

Our uneven margins SVM system performed significantly Ibdtian the participating

SVM-based system. However, the two systems are differemt feach other not only
in the SVM models used but also in other aspects such as Nlt&résaand classification
framework. Therefore, in order to make a fair comparisonwken the uneven margins
SVM and the standard SVM model, we also present the resulisest two algorithms,

both using the same framework and the same features. As c@ehdrom Table 4, under
the same experimental settings, the uneven margins SVMpstilormed better than the
standard SVM model.
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Template Filling The Seminar corpusas been used to evaluate quite a few learning sys-
tems. Those include rule learning approaches such as SRVW#6sk [36], Rapier [1],
BWI [17], SNoW [32] and(L P)? [5], as well as statistical learning systems such as HMM
[14] and maximum entropy (MaxEnt) [4].

The major problem with carrying out comparisons on the samaorpus is that the dif-

ferent systems used different experimental setups. Ftarins, SRV, SNoW and MaxEnt
reported results averaged over 5 runs. In each run the dataseandomly divided into

two partitions of equal size — one used for training and omédfsting. Furthermore, SRV
used a randomly selected third of the training set for véilsa WHISK'’s results were

from 10-fold cross validation on a randomly selected setGfif documents. Rapier’s and
(LP)?s results were averaged over 10 runs. Finally, BWI's and Hvédults were ob-

tained via standard cross validation.

The SVM results reported here are the average over ten lftsying the methodology of
Rapier and L P)?. Table 5 presents the results of our system on seminar caqmether
with the results of the other systems. As far as it was passited use the same features as
the other systems to enable a more informative comparisgpaiticular, the results listed
in Table 5, including our system, did not use any gazettderimation and named entity
recogniser output. The only features in this case are waalsitalisation information,
token types, lemmas, and POS tags. The settings for the S\dreders are shown in
Table 1, namely window size 5, quadratic kernel, and 0.4.

We present thé; measure for each slot together with the macro-averagéol the overall
performance of the system. Note that the majority of systemasuated on the seminars
and jobs corpora only reported per slot F-measures, witbeertall results. However, an
overall measure is useful when comparing different systemthe same dataset. Hence,
we computed the macro-averagEdfor the other systems from their per-slgt.

Table 5: Comparison to other systems on the Seminar corpu$%) on each slot and
overall performance (macro-averaged (MA)). The 95% confidential interval for the
MA F; of our system is also presented. The best results for eatlastbthe overall

performance appear in bold font.

Speaker Location Stime Etime ME;
SVMUM 69.0 81.3 94.8 92.7 8446

(LP)? 77.6 75.0 99.0 955 86.8
SNoW 73.8 752 99.6 96.3 86.2
MaxEnt 65.3 823 99.6 945 85.4
BWI 67.7 76.7 99.6 93.9 84.6
HMM 71.1 83.9 99.1 595 78.4
Rapier 53.1 73.4 959 946 79.1
Whisk 18.3 66.6 926 86.1 65.7
SRV 56.3 72.2 985 77.9 76.0

Table 5 shows that the best results on the different slotachieved by different systems
and that the best overall performance is achieved/b§)?. While the uneven margins
SVM did not achieve the best performance, it still outpaerfed many other systems. Also,
it is worth noting that our system using SVM active learninghvuneven margins outper-
forms(LP)? on the Seminars corpus, as shown in Table 10 in Section 4.4.

On theJobs corpusour system is compared to several state-of-the-art leqrsystems,

including the rule based systems Rapier [I]P)? [5] and BWI [17], the statistical system
HMM [17], and the double classification system [35]. As befan order to make the
comparison as informative as possible, the same settingsad®pted in our experiments
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as those used biL. P)2, which previously reported the highest results on this skttain
particular, the results are obtained by averaging the pedace in ten runs, using arandom
half of the corpus for training and the rest for testing. Opdsic NLP features are used:
token form, capitalisation information, token types, a@ghinas.

Table 6: Comparison to other systems on the Jobs corpug%) on each entity type
and overall performance as macro-averaged (MA) The 95% confidential interval for
the MA F; of our system is also presented. The highest score on eachralooverall

performance appears in bold.

Slot SVMUM (LP)?> Rapier DCs BWI HMM semi-CRF
Id 97.7 100 97.5 97 100 - -
Title 49.6 43.9 40.5 35 50.1 57.7 40.2
Company 77.2 71.9 70.0 38 78.2 504 60.9
Salary 86.5 62.8 67.4 67 - - -
Recruiter 78.4 80.6 68.4 55 - - -
State 92.8 84.7 90.2 94 - - -
City 95.5 93.0 90.4 91 - - -
Country 96.2 81.0 93.2 92 - - -
Language 86.9 91.0 81.8 33 - - —
Platform 80.1 80.5 72.5 36 - - -
Application 70.2 78.4 69.3 30 - - -
Area 46.8 53.7 42.4 17 - - -
Reg-years-e  80.8 68.8 67.2 76 - - -
Des-years-e 81.9 60.4 87.5 47 - - -
Reg-degree  87.5 84.7 81.5 45 - - -
Des-degree 59.2 65.1 72.2 33 - - -
Post date 99.2 99.5 995 98 - - -
MA Fy 80.8-0.7 77.2 76.0 579 - - -

Preliminary experiments established that the SVM withdirkeernel obtained better results
than SVM with quadratic kernel on the Jobs corpus [27]. Hemeaused the SVM with
linear kernel in the experiments on the Jobs data.

Table 6 presents the results of our uneven margins SVM syatewell as the other six
systems which have been evaluated on the Jobs corpus. Mbtaéhesults on all 17 slots
are available only for three previous systems: Rapier,)? and double classification. We
computed the macro-averaged(the mean of thé" of all slots) for our system as well as
for the three fully evaluated systems in order to compareteeall performance.

The results show that the overall performance of the unewngims SVM is significantly
better than the other three fully evaluated systems. Théldatlassification system had
much worse overall performance than our system and the wibdully evaluated systems.
HMM was evaluated only on two slots. It achieved the bestltesuone slot but had a
significantly worse performance on the other slot. BWI aldibetter results than ours on
three slots. Unfortunately, BWI results for the other sknts not available, thus making it
impossible to compare the two algorithms on the entire Jakesset.

Effect of the Uneven Margins Parameter A number of experiments were conducted
to investigate the influence of the uneven margins paranoetehe SVM performance.
Table 7 shows the results with several different values efttheven margins parameter
on the three datasets — CoNLL-2003, Seminars and Jobs. TRev@¥ uneven margins
(7 < 1.0) had better results than the standard SVM=£ 1). We can also see that the
results were similar for between 0.6 and 0.4, showing that the results are not plztigu
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Table 7: The effects of uneven margins parameter of the SVitrmaveraged; (%)
on the the three datasets CoNLL-2003 (test set), Semindrdars. The 95% confiden-
tial intervals for the Seminars and Jobs datasets are atseipted, showing the statistical
significances of the results. In bold are the best performéigares for each dataset.

T 1.0 0.8 0.6 0.4 0.2
Conll 85.0 86.0 86.2 85.9 81.6
Seminars 80804 82.3:0.5 84.140.6 84.5:0.6 80.9+0.7
Jobs 79.81.0 79.9t09 81.0+0.6 80.8t0.7 79.0+0.9

sensitive to the value of the uneven margins parameter.

Our conjecture was that the uneven margins parameter wasneve helpful on smaller
training sets, because the smaller a training set is, the mdralanced it could be. There-
fore we carried out experiments on a small numbers of trgidomcuments. Table 8 shows
the results of the standard SVM and the uneven margins SVMiftereht numbers of
training documents from CoNLL-2003, Seminars and Jobsséttarespectively. The per-
formance of both SVMs improves consistently as more trgidiocuments are used. More-
over, compared to the results on the full training sets (sd®el7), the smaller the training
set is, the better the results of the uneven margins SVM atenmarison to the standard
SVM.

Table 8: The performances of the SVM system with small trejréets: macro-averaged
F1 (%) on the three datasets CoNLL-2003 (test set), Seminatdeains. The uneven mar-
gins SVM (r = 0.4) is compared to the standard SVM model with even margins (1).
The 95% confidential intervals for the Seminars and Jobsdttare also presented, show-
ing the statistical significances of the results.

size 10 20 30 40 50
T=04

Conll 60.5 66.6 70.7 72.2 72.3

Seminars 58434 67.1428 73.6+15 76.5-1.8 78.2+-1.6

Jobs 51.619 60.9t1.8 65.741.4 68.6-1.4 71.1+1.8
T=1

Conll 51.8 60.2 66.0 67.4 68.9

Seminars 4153.4 53.1425 60.941.6 65.3+2.1 68.9+1.5

Jobs 47.%22.4 56.5-22 61.4+19 65.4+1.4 68.1+15

4.4 Experiments with SVM Active Learning

As already discussed in Section 3.3, active learning filscse some examples for initial
learning. Then in each learning round, according to thev@déarning algorithm, some
more examples are selected for training.

For the CoNLL-2003 corpus, the initial training documentrgvchosen randomly from
the Training Set and in each active learning round furthanges were selected from the
remaining documents in the Training Set. The results repart this paper are on the Test
Set.

For each of the other two corpora (Seminars and Jobs), thel imaining set was chosen
randomly from the whole corpus and each active learning k@ected samples from the
remaining documents. Then all documents not used for trgiwiere used for testing. All
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results reported below are the average from ten runs.

The first experiments below use entire documents as samples.other two types of
samples — token and token with context — are discussed anthpaat of this section.

Active Learning vs. Random Selection We first compare SVM active learning with
a random selection baseline. For all three datasets (Co2ld3, Seminars and Jobs),
two documents were chosen as the initial training set ana ¢aeh active learning loop
selected the document with the smallest average confidentieeasource for additional
training data. The average confidence of a document waslasdwsing the confidence
for 5 tokens on both CoNLL-2003 and Seminars corpora and @i®kn the Jobs corpus
(see below discussions about how these values were detsmin

Figure 2 presents the learning curves for active learnimgrandom selection on the three
datasets. Both used the uneven margins SMV. The resulthéostandard SVM with
random selection are also presented at some data pointsrfgrarison.

ces ; :
CoNLL-2003 corpus Seninars corpus o Jobs corpus

Figure 2: Learning curves for overall F1 on the three dasagsttive learning is compared
with random selection for the uneven margins SVM. The resfat the standard SVM
model and random selection are also presented for compaifsee error bars show 95%
confidence intervals. For clarity, only the error bars fdiveclearning are plotted.

First, as expected, the results of active learning are Ilgldastter than those of random
selection on all three datasets. It is also worth noting délgain the uneven margins SVM
performs significantly better than the standard SVM withd@nly selection.

Secondly, the gap between active learning and random melegitdens after the first few
learning loops, however, the difference is dataset-degatnde., smaller on some sets than
on others. The learning curves become flat after approxignaéloops for both active
learning and random selection.

Thirdly, for clarity, only the confidence intervals for atilearning are plotted in Figure 2.
As a matter of fact, the confidence intervals for random $ele@re bigger than the cor-
responding ones for active learning at almost all data pdortall three datasets, showing
that the results of active learning are more stable.

Finally, we can compare our results with those in the previwarks. [12] also used the
Seminars corpus to evaluate several active learning tqubeibased on the learning al-
gorithm (L P)?, and adopted similar experimental settings to ours. TalwerSpares our
results with the results presented in [1.2]

We can see that our active learning had much better perfarentan the best results in
[12]. Actually the results of our active learning are closdtte optimal results presented
there, which was an estimate of the upper bound on the peaforenof any selection strat-

egy.

9Because [12] presented their results in the form of grapsteén of tables, their results listed in Table 9 were
estimated by us from their graphs.
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Table 9: Comparisons of our results with the best resultst@dipper bounds presented
in [12]: the overallF; on the Seminar corpus.

#docs SVMUM+AL Finn03 Upper bound
20 0.730 0.61 0.77
30 0.761 0.66 0.79

Table 10 compares our results with a state of the art systeradaptive IE, Amilcare
based on théLP)? algorithm, on the Seminar corpus [7]. We can see that theamev
margins SVM with random selection performed worse than &an#, but that in turn was
outperformed by the uneven margins SVM with active learning

Our results on the Jobs dataset are better than those adligwenother active learning
method based on the IE system Rapier [1]. For example, wittnadi®ing documents, the
overall I, of the SVM active learning algorithmis 0.71, higher than iRép corresponding
figure (around 0.64).

Table 10: Comparison of our algorithms with Amilcaté; (%) for each slot of the Semi-
nars corpus and the macro averaggdor overall performance. AL+SVMUM refers to the
SVM active learning with uneven margins SVM model. SVMUMaefto the uneven mar-
gins SVM using random selection. The highest score on eatlaist overall performance
appears in bold.

#docs SVMUM+AL SVMUM Amilcare

stime 30 90.5 88.9 84.0
etime 20 89.6 80.6 82.3
speaker 25 53.3 50.5 50.6
location 30 68.9 63.7 70.0
MA F; 75.6 70.9 71.7

Three Parameters in Active Learning As discussed in Section 3.3, three parameters
impact the performance of SVM active learning. The first an¢henumber of tokens
used for computing the average confidence of a document,lpamen Equation (2). As
there may be some outliers in a classification problem, usimgtoken could lead to an
unstable performance. On the other hand, if many tokenssa@, uhe tokens with large
margins would overwhelm the informative tokens with snradt@rgins. Table 11 presents
the results with different values af for the Seminars and Jobs datasets. We can see that
too small or too large value of, produces worse results than using a value 3 or 5.

Table 11: Different number of tokens used for computing trex@ge confidence of docu-
ment: macro averagel, (%) with the 95% confidence interval for the two datasets Semi
nars and Jobs.

mo = 1 3 5 10
Seminars 66.21.6 70.4:1.4 72.0+1.8 69.3+1.7
Jobs 64.21.6 65.2+1.2 65.0£0.7 63.1+1.7

The second parameter is thember of initial documentsandomly chosen for training,
namelyng, as introduced in Section 3.3. On the one hand, the smallés, the earlier

we can take advantage of active learning. On the other haras active learning uses the
current model to choose the next examples, too few initiahgxes could result in a bad
SVM model which in turn would be harmful to the quality of thedected examples. Table
12 shows the results foty=1, 2, 4, and 10, respectively:y=2 obtained the best result
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for Seminars andiy=4 for the Jobs corpus. However, there seems to be no sigttifica
difference between the results on the Jobs dataset.

Table 12: Different number of initial training document 8¥M active learning: macro
averaged; (%) with the 95% confidence interval for the two datasets 8ansiand Jobs.

np= 1 2 4 10
Seminars 7220.7 73.0+09 72.0+1.8 68.3+1.6
Jobs 64.%1.2 65.0+1.1 65.8£0.8 65.2+1.2

The last parameter discussed here isrtheber of documents selected in each active
learning loop. If each loop chooses only one document poioeitraining the model, then
the results will be more accurate than those obtained bygtasdetwo or more documents
each time. On the other hand, the more documents are seiected loop, the fewer loops
the system may need in order to obtain a given performanasthkr words, if the second
best example is not much less informative than the best ooredmactive learning loop, then
we may use the second best example as well as the first oneléntorsave computation
time. Table 13 shows that=1 gave slightly better results than= 2 or 3 for both datasets,
but the computation time farn=2 was half of that fom=1 while still achieving similar
performance.

Table 13: Different number of documents selected in ones@déarning loop: macro
averaged; (%) with the 95% confidence interval for the two datasets &ansiand Jobs.

n= 1 2 3
Seminars 73.0+1.0 72.8:09 71.5+1.2
Jobs 65.0£1.0 64.2£0.7 64.1+1.0

Three Types of Samples When SVM active learning is applied to IE it can select one
or more documents in each loop based on document’s averadidemce. Alternatively,
active learning can select only the most informatmeensfrom the unlabelled documents
or a fragment of text containing the most valuable token &edsurrounding tokens as a
sample.

If a full documentis selected in each loop, the user mustddewhether or not every token
in the document belongs to each type of entity considergdsithe token or text fragment
is selected for one classifier, then the user would only @ewitether the selected token or
each token in the fragment is the start (or end) token of thieyawhich type is specified by
classifier. Therefore, compared to full document samptdrt or text fragment sampling
could save a great deal of manual annotation time in eachedetarning loop. Therefore
we investigated how the performance of token and text franjiseempling compares to full
document sampling.

Figure 3 plots the learning curves for using a token and art@kith context as the sample,

respectively. The learning curve for full document samjdesiso presented for compari-
son. Two initial training documents were used in all experits. We selected 5 or 2 tokens
respectively for Seminars and Jobs datasets in each lgdoap for both token and token

with context samples. The first 40 active learning loops éotgd for all learning curves.

Not surprisingly, the results using document samples &rbitthest and token with context
performed better than token alone in most cases. Howeusmibrth noting that the per-

formance of token with context as sample achieved similaiopmance to full document

sampling in the first few loops. The learning curves for tokamples become flatter in
the late stage of learning, compared to the curve for fulluitioent samples. The learning
curve for token with context is even worse — it decreases attme learning loops.

19



F-measure

-
-
.
.
. - —_
. =
0.4 s
P
Token == =Tokentcontext = = =Doc 0.3
= = wnpeen

o o o 2\ A s s S o e Ao
Nob N BN T I, I P e NN S o B e p e oo o Do
. #Learning Loops 1 N 1
Seminars corpus Jobs corpus #learning loops

Figure 3: Learning curves for active learning using thregetyof sample on the two
datasets, respectively.

On the other hand, while the user has to annotate hundredskerd in full document
sampling, for token or token with context sampling they juséd to decide on just a few
tokens. For example, in the experiments on the Seminarsisgnesented in Figure 3, in
each learning loop the user has to annotate 337 tokens oagevéor full documents, or
decide whether each of 5 or 55 tokens belong to the entity dicpdar type respectively
for the token and the text fragment. The annotation time émutdnent sampling would be
about 67 and 6 times more than that for token and token wittegbsampling, respectively.

5 Related Work

SVM Learning for NLP . SVM has been applied successfully to a variety of NLP prob-
lems. The methodology of applying SVM to IE presented in ffaper was used in most
applications, i.e., transform the NLP task into a numberin&ty classification problems
and train a classifier for each. A very high dimensional hirfaature vector is often con-
structed for each token using the NLP features from the tekemell as some surrounding
tokens.

On some NLP problems SVM with quadratic kernel performsdrdtian linear or other
types of kernel. On the other hand, as linear kernel SVM nemdish less training and
application time than quadratic kernel SVM, some systeresaulinear kernel and mean-
while encode some co-occurrences of features into therieagctor explicitly, which is
equivalent to using some kind of semi-quadratic kernel ésge [22]). This kind of im-
plementation enables the SVM with linear kernel to achiessg@od performance as with
qguadratic kernel but it is much faster than using quadraioél. The SVM performance
on NLP problem is often robust to other SVM parameters.

Once the SVM classifiers are learned for one NLP problem, we b@acombine the re-
sults from the binary SVM classifiers into a solution of thégoral NLP problem. Most
previous works adopted the one vs. others method to learivaih @assifier for each
part of entity and for non-entity as well. They assigned astance the class which SVM
classifier had the maximal output on the instance. For exantipé one vs. others method
was used in [22] for POS tagging, [11] for WSD, [45] for retatiextraction and [19] for
semantic role labeling. However, some works made some roatidhs on the process.
For example a Viterbi search process was used for choosingest combination of tags
for a sequence of tokens respectively in [21] for namedentitognition and in [23] for
Japanese dependency analysis.

There were a few works dealing with imbalanced data in NLRiegfons. [22] constructs
training data from a dictionary extracted from the traingmgpus rather than training on
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the corpus itself. This eliminated many negative exampiasia similar to the under-
sampling method. [24] usq@hirwise classificatiomvhich trains a classifier for each pair of
classes. In pairwise classification the negative and pesittamples are respectively from
two classes, so the training data would be less imbalancetst cases than the one vs.
others method.

SVM active learning. [2] proposed the margin-based approach to SVM active iegrn
and used it for USPS hand-written digit recognition. Theyrfd that SVM active learning
performed much better than SVM with random selection of gdam In the meantime,
[34] studied a similar method for SVM active learning. Theyphked the method to text
categorisation and obtained significantly better reshis tusing random selection. [38]
studied the same algorithms for SVM active learning as tho$84] in similar settings.
They compared SVM active learning with two committee-basettve learning algorithms
and found that the SVM active learning approach obtained#s results. SVM active
learning was also successfully used for image retrievdl, [8@mputer aided drug design
[42] and spoken language understanding [40].

There are several papers studying SVM active learning fd? pitoblems. [33] investigated
SVM active learning for Japanese word segmentation. Helidame basic findings as
ours, namely that SVM active learning can significantly ioy@ performance. He also
found that a small unlabelled data pool was helpful in thdyestages of SVM active
learning and proposed algorithms for determining the gmaite size of this data pool
during learning. We believe that his algorithms would alsohelpful for information
extraction. On the other hand, he did not investigate othitings in SVM active learning,
such as different types of examples and number of initi@hing documents, which are
studied in this paper.

The thesis [41] studied SVM active learning for named em&tgognition and NP chunking.
Similar to [38], Vlachos studied different approaches felesting unlabelled examples
based on the confidence score of the SVM classifier. This wedkesed the CoNLL-2003
share task data, which enables direct comparisons betvigesshilts and ours. Figure 5.5
in the thesis presented the same kind of learning curvesoas th Figure 2 of this paper.
Both figures show that active learning has significantly drgpierformance than passive
learning. On the other hand, our F-measures for both randamihg and active learning
are much higher than the corresponding figures in the th€kisdifference may be due to
the different settings between his experiments and oucs, asl NLP features, framework,
and SVM models. It is worth noting the all previous works onNg¥ctive learning used
the standard SVM model while our work explored the unevergmarSVM.

6 Conclusions

SVM is a popular learning algorithm for solving NLP tasks. Weestigated two advanced
techniques for helping SVM deal with imbalanced trainingadand the difficulty of ob-
taining human-annotated examples — two problems that énttyuarise in NLP datasets.

We present a new approach towards dealing with imbalaneduirig data by introduc-
ing the uneven margins parameter to the SVM model. We alsestinated SVM active
learning and the different strategies that can be used wtliull document, single token,
and tokens in context. We also tested uneven margins SVM il &tive learning to-
gether on several IE tasks, including named entity recmgnénd template filling. The
uneven margins SVM obtained better experimental resudts the standard SVM model.
SVM active learning also achieved better performance tioamentional learning methods.
Moreover, when the two are combined together, we achieviedbieresults on the Seminars
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corpus, a benchmark dataset for IE. The uneven margins S¥d/iaddtains the best results
on the Jobs corpus, another IE benchmark dataset.

For the SVM model with bias term, the uneven margins SVM madalbe obtained from

a related standard SVM classifier by changing the bias teramckl the uneven margins
SVM can be easily solved using any publicly available SVMkzaye. On the other hand,
it performs much better than the standard SVM on imbalan@eding data. We believe

that uneven margins SVM could lead to a similar performamcioP tasks other than IE.

Similarly, SVM active learning for IE presented in this pajgegeneral so that it can also
be used on other NLP problems, where similarly good perfoeds expected.

We also evaluated the approaches of converting multi-dassification problem into bi-
nary classification problems, which is required when ushrgliinary SVM classifier for
the NLP applications. Our experiments showed that the coatioin of the BE framework
with the uneven margins SVM is the best option for applying 8VM to the IE prob-
lem, as they gave the best results among all the combinadimhshe BE framework also
needed much less computation time and computer memory than methods. In com-
parison with the one vs. others method and the pairwise rdethe BE method was rarely
used in the previous applications of the SVM in NLP, mainlgdigse it gave worse results
when using the standard SVM model. However, the uneven maigj/M significantly
improved the results over the SVM in the BE framework for thedsk. We expect that the
uneven margins SVM with the BE framework would give good lsson many other NLP
applications as well.
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