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Abstract

Support Vector Machines (SVM) have been used successfully in many Natural Lan-
guage Processing (NLP) tasks. This paper investigates two techniques to help SVM
deal with the two unique features of NLP problems, namely imbalanced training data
and the difficulty of obtaining sufficient training data. Firstly, the uneven margins SVM
is introduced as an adaptation of the standard SVM model for imbalanced training
data. Secondly, SVM active learning is investigated, sinceit achieves a given perfor-
mance level with fewer training examples than conventionalpassive learning. The two
algorithms were evaluated on several Information Extraction (IE) tasks, where both
achieved better performance than the standard SVM and the SVM with passive learn-
ing, respectively. Moreover, by combining the uneven margins SVM with the active
learning algorithm, we achieved the best results on the Seminars corpus, a benchmark
dataset for IE. The uneven margins SVM also obtained the bestresults on another IE
benchmarking dataset – the Jobs corpus. Due to the similarities between IE and other
NLP tasks, the two techniques are likely to be beneficial in a wide number of appli-
cations. In addition, we also compare several approaches ofconverting multi-class
problem into binary classification problems with respect tothe standard SVM and the
uneven margins SVM, respectively. We found that one approach achieved best results
on the three datasets when using the uneven margins SVM, which is also computation-
ally more efficient than others.

1 Introduction

Support Vector Machines (SVM) is a supervised machine learning algorithm, which has
achieved state-of-the-art performance on many learning tasks. In particular, SVM is a pop-
ular learning algorithm for Natural Language Processing (NLP) tasks such as POS (Part-
of-speech) tagging [22, 31], word sense disambiguation [25], NP (noun phrase) chunking
[23], information extraction[21, 27], relation extraction [45], semantic role labeling [19],
and dependency analysis [24, 43]. Almost all these applications adopt the same steps: first
they transform the problem into a multi-class classification task; then convert the multi-
class problem into several binary classification problems;then an SVM classifier is trained
for each binary classification1; and finally, the classifiers’ results are combined to obtain

1The SVM has been formulated as multi-class classifier in various forms so that it can solve multi-class prob-
lem directly (see e.g. [8]), Recently researchers (see e.g.[39]) have applied the multi-class SVM to some NLP
problems and obtained better results than using binary SVM.Therefore, applying multi-class SVM to multi-class
problem is a promising research area. On the other hand, the implementation of the multi-class SVM is more
complicated than that of binary SVM. [20] compared the binary SVM with one form of multi-class SVM pre-
sented in [8] on several standard machine learning datasetsand their results showed no clearly difference of the
performances between binary SVM performed and multi-classSVM. More investigations are needed for evaluat-
ing multi-class SVM for NLP applications. This paper only considers the binary SVM classifier, which has been
used in most applications.
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the solution to the original NLP problem.

SVM is an optimal classifier in the sense that, given trainingdata, it learns a classifica-
tion hyperplane in the feature space which has the maximal distance (or margin) to all the
training examples (except a small number of examples as outliers) (see e.g. [9]). Conse-
quently, on classification tasks the SVM tends to have bettergeneralisation capability on
unseen data than other distance- or similarity-based learning algorithms such as k-nearest
neighbour (KNN) or decision trees. Another feature of the SVM is that, by using different
types of kernel function, the SVM can explore different kinds of combinations of the given
features without increasing computational complexity. Incontrast, it would be difficult
for many other learning algorithms to deal with a huge numberof feature combinations
efficiently.

On the other hand, NLP tasks typically represent instances by very high dimensional but
very sparse feature vectors, which leads to positive and negative examples being distributed
into two distinctly different areas of the feature space. This is particularly helpful for the
SVM to search a classification hyperplane in feature space and for the generalisation capa-
bility of the classifier as well. That is a main reason why the SVM can achieve very good
results in a variety of NLP tasks. Such very high dimensionalrepresentation is achieved by
forming the feature vector explicitly from text using a hugeamount of linguistic features
and in many cases by exploring the so-called kernel functionto map the feature vector into
higher dimensional space (see below).

Furthermore, as the SVM is optimal margin classifier, the distance of an example to the
SVM classification hyperplane indicates how important of the example to the SVM learn-
ing. The examples being close to the SVM hyperplane are crucial for the learning. The
SVM active learning is based on the distance of unlabelled example to the SVM hyper-
plane (see e.g. [2])

In the applications, the SVM can select the useful features effectively from a large number
of features for a particular classification problem. This isbecause the SVM learns a clas-
sifier by combining all the features (or feature combinations) with different weights. If a
feature occurs almost equally in both positive and negativetraining examples and hence is
irrelevant to the classification, its learned weight would have little contribution to the clas-
sifier. In contrast, many other algorithms require careful manual feature selection. This is
advantageous when applying the SVM to NLP problem. As there exists many types of NLP
features from morphology, syntax, semantics as well as fromdifferent knowledge sources
like thesaurus and gazetteers, in the application of SVM to NLP, those different kinds of
features are just put together to form one feature vector forone example as input to SVM
and the learning would automatically determine which features and/or combinations of
features are useful for the task.

When compared to other classification problems, NLP classification tasks have several
unique characteristics, which were seldom considered in applications. Perhaps the most
important one is that NLP tasks tend to have imbalanced training data, in which positive
examples are vastly outnumbered by negative ones. This is particularly true for smaller data
sets where often there are thousands of negative training examples and only few positive
ones. Another unique characteristic is that annotating text for training the algorithm is a
time-consuming process, while at the same time unlabelled data is abundant.

Moreover, since the SVM is usually used as binary classifier for solving an NLP problem
and an NLP problem in most case is equivalent to a multi-classclassification problem,
we need to transform the multi-class problem into binary classification problems. Several
methods have been proposed for the transformation. [20] compared some of those methods
using standard SVM model on some standard problems for machine learning. But none of
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their problems was for NLP.

Therefore, when the SVM is applied to NLP tasks, these particular aspects should be taken
into account in order to obtain a practical system with good performance. In this paper
we study two techniques to adapt SVM to NLP problems:(i) use an uneven margins SVM
model (see [29]) to deal with imbalanced training data;(ii) employ SVM active learning
to alleviate the difficulty in obtaining labeled training data. The algorithms are presented
and tested on several Information Extraction (IE) tasks, however we believe that they could
also improve SVM performance on other NLP tasks. We also evaluate different methods of
converting multi-class problem into binary classificationproblems for the NLP applications
and particularly for the uneven margins SVM.

The rest of paper is structured as follows. Section 2 introduces the IE tasks and describes in
further detail the unique characteristics of NLP applications in the context of IE. We present
our classifier based IE framework, the uneven margins SVM andSVM active learning for
IE in Section 3. Section 4 tests the algorithms and the framework on three benchmarking
corpora for IE. Section 5 discusses related work and Section6 summarises our findings.

2 Machine Learning for Information Extraction

Information Extraction (IE) is a technology based on analysing natural language in order
to extract snippets of information. The process takes texts(and sometimes speech) as input
and produces fixed-format, unambiguous data as output, e.g., events, entities or relations
can be extracted automatically from text such as newswire articles or Web pages. IE is use-
ful in many applications, such as information gathering in avariety of domains, automatic
annotations of web pages for Semantic Web, and knowledge management.

A wide range of machine learning techniques have been used for IE and achieved state-of-
the-art results, comparable to manually engineered IE systems. The learning algorithms for
IE can be classified broadly into two main categories: rule learning and statistical learning
ones. The former induce a set of rules from training examples. There are many such rule-
based learning systems, e.g. SRV [15], RAPIER [1], WHISK [36], BWI [17], and(LP )2

[5]. Statistical systems learn a statistical model or classifiers, such as HMMs [14], Maximal
Entropy [4], SVM [21, 30], and Perceptron [3].

IE systems also differ from each other in the NLP features that they use. These include
simple features such as token form and capitalisation information, linguistic features such
as part-of-speech, semantic information from gazetteer lists, and genre-specific informa-
tion such as document structure. In general, the more features the system uses, the better
performance it can achieve.

Since we uses binary SVM classifier, we concentrate on classifier-based learning for IE,
which typically converts the recognition of each information entity into a set of classifica-
tion problems. There exists several methods for using binary classifier for solving multi-
classes problem. We will describe in detail those methods inSection 3.1 and experimen-
tally compare them in Section 4.2. We are particularly interested in one method which was
rarely used in the NLP applications of SVM in comparison withother methods. It trains
two binary classifier for each type of information entity: one for recognising the entity’s
start token and the other for the entity’s end token. It need less computing resources than
other methods. Our experiments showed that it also has better performances than other
methods when using the uneven margins SVM model.

The classification problem derived from IE usually has imbalanced training data, which is
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particularly true for smaller data sets where often there are thousands of negative training
examples and only few positive ones. Two approaches have been studied so far to deal with
imbalanced data in IE. The first one under-samples the majority class or over-samples the
minority class in order to obtain a relatively balanced training data [44]. However, under-
sampling can potentially remove certain important examples, and over-sampling can lead
to over-fitting and a larger training set. The second approach is to divide the problem into
several sub-problems in two layers, each of which has less imbalanced training set than the
original one [3, 35]. The output of the classifier in the first layer is used as the input to
the classifiers in the second layer. As a result, this approach needs more classifiers than
the original problem. Moreover, the classification errors in the first layer will affect the
performance of the second one.

In this paper we explore another approach to handling the imbalanced data in IE, namely,
adapting the learning algorithm for balanced classification to deal better with imbalanced
data. In particular, we use the uneven margins SVM model for imbalanced training sets.

In addition to the problem with imbalanced training sets, there is also the problem of ob-
taining sufficient training data for IE. In general, a learning algorithm derives a model from
a set of documents which have been manually annotated by the user. Then the model can
be used to extract information from new documents. However,manual annotation for IE is
a labour-intensive and time-consuming process due to the complexity of the task. Hence,
frequently the machine learning system trains only on a small number examples, which are
selected from a pool of unlabelled documents.

One way to overcome this problem is to useactive learningwhich minimises the number
of labeled examples required to achieve a given level of performance. It is usually imple-
mented as a module in the learning system, which selects an unlabelled example based on
the current model and/or properties of the example. Then thesystem asks the user to label
the selected example, adds the new labeled example into the training set, and updates the
model using the extended training set. Active learning is particularly useful in IE, where
there is an abundance of unlabeled text, among which only themost informative instances
need to be found and annotated.

SVM active learning is an SVM-specific algorithm [2, 34], which uses the margin (or the
distance) from the unlabelled example to the classificationhyperplane as a measure for the
importance of the example for learning. SVM active learninghas been applied successfully
in applications, such as text classification [38], spoken language understanding [40], named
entity recognition [41] and Japanese word segmentation [33]. These experiments have
shown that SVM active learning clearly outperformed the SVMwith passive learning. In
this paper we investigate SVM active learning for IE tasks, with focus on the algorithm
settings which are specific to NLP tasks. We also explore the uneven margins SVM model
for active learning. In contrast, previous works on the SVM active learning only used the
standard SVM model.

3 SVM Learning for IE

3.1 The SVM Based IE System

Classifier-based framework. The classifier-based framework we adopted for applying
SVM to IE consists of three stages: pre-processing of the documents to obtain feature
vectors, learning classifiers or applying classifiers to test documents, and finally post-
processing the results to tag the documents.
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Since we consider the IE as a multi-class classification problem where each token in text is
check to see whether or not it belong to an entity with a particular type, and we use the SVM
as a binary classifier, we need to adopt some strategy to transform the multi-class problem
to binary classification problems. The key part of the framework we use is to convert the
recognition of each type of information entity into two binary classification tasks — one
to decide whether a token is the start of an entity and anotherone for the end token. In
contrast, previous work adopted slightly different frameworks for SVM classification for
IE. For instance, [21] trained four SVM classifiers for each entity type – besides the two
SVMs for start and end (like ours), also one for middle tokens, and one for single token
entities. They also trained an extra SVM classifier to recognise tokens which do not belong
to any named entity. In other words, they learned one classifier for each part of entity and
for non-entity. Another approach is to train an SVM classifier for every possible transition
of tags [30]. Depending on the number of entities, this approach may result in a large
number of SVM classifiers. Hence, in comparison, our approach is simpler than the other
two SVM-based systems, in terms of requiring the lowest number of SVM classifiers.

In fact there are two main frameworks for applying the SVM or other binary classifier to
the IE and other NLP tasks. They can be seen as learning one classifier for each type of
tag (or pair of tags) in two different schemes of tagging entities in text, respectively. One
tagging scheme assigns every token a tag. The possible tag ofone token is the beginning,
middle or end token of a multi-token entity with particular type, or the single token of a
single-token entity, or non-entity (or other )token which does not belong to any entity. We
call this tagging scheme asBMESOscheme. Alternatively, we can only tag the beginning
and end tokens of entity, and regard the token in single-token entity as both the beginning
and end token of the entity. We call this tagging scheme asBE scheme. Correspondingly,
one framework of converting multi-class problem into binary classification problems learns
a classifier for each type of tag (or pair of tags) in the BMESO tagging scheme. Another
framework only learns the classifiers for the beginning or end token of entity of certain
type in the BE tagging scheme. For the sake of convenience, wecall the first framework as
BMESO frameworkand the second asBE framework.

In the implementation of the BMESO framework, two approaches have been used. Sup-
pose there areK classes in the multi-class problem, one approach, calledone vs. others,
learnsK classifiers each of which separates one class from all others. Another approach is
calledpairwise classificationthat learnsK(K − 1)/2 binary classifiers corresponding to
all pairs of classes. In the application of the learned classifiers, the one vs. others approach
compares the outputs of all classifiers (before thresholding) for one instance and assign
the instance the class which classifier has the maximal output. In contrast, in the pairwise
approach, for one instance, one classifier votes for one class or another class according to
its output and final class decision for the instance is made bymajority voting.

Most of previous works in the application of SVM to NLP used the one vs. others ap-
proach in the BMESO framework. For instance, [22], [21] and [45] adopted the framework
for POS tagging, IE and relation extraction, respectively.A few works used the pairwise
method, such as [23] for NP chunking. [27, 18] adopted the BE framework in the applica-
tion of the SVM to IE. [17, 5] also used the BE framework for IE but they both explored
rule learning algorithms rather than statistical learningsuch as the SVM. [20] compared
the one vs. others and the pairwise method with some other method, but not including the
BE framework. It used the standard SVM model on some standardproblems for machine
learning. But none of their problem was from NLP.

One advantage of the BE framework over the BMESO framework isthat the BE framework
learns less classifier, resulting in less computation time and less computer memory for
storing learned model. Suppose the SVM is applied to an IE task with N types of entity. In
the BMESO framework it is a multi-class problem with4 ∗ N + 1 classes. It needs learn
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4 ∗ N + 1 SVM classifiers if using the one vs. other method, and learn(4 ∗ N + 1) ∗ (4 ∗
N)/2 classifiers if using pairwise method. In contrast, the BE framework only need learn
2 ∗ N SVM classifiers. In other words, the one vs. other method needs more than twice
classifiers of the BE method. The pairwise method needs much more classifiers than other
two methods ifn is not very small.

Another advantage is that the BE framework may achieve better results, because the frame-
work selected some specific labels for learning, which are more characteristic than other
labels so that the resulting classification problems may be easier than the problems for other
labels. For example, for multi-token entity, the start and end tokens may not only make
contribution to the meaning of the entity, but also have the responsibility to distinguish the
entity from the surrounding tokens2. In contrast, a middle token just bear the meaning of
the entity. Therefore, the boundary tokens of an entity is more characteristic for the type
of the entity than the middle token(s). Consequently the classifier learned for the boundary
token have better generalisation capability than the classifier for middle token3.

In Section 4.2 we will experimentally compare the two frameworks by using the standard
SVM and the uneven margins SVM, respectively.

Pre- and post-processing. The aim of the pre-processing is to form input vectors from doc-
uments. In our IE system each document is first processed using the open-source ANNIE
system, which is part of GATE4 [10]. This produces a number of linguistic (NLP) fea-
tures, including token form, capitalisation information,token kind, lemma, part-of-speech
(POS) tag, semantic classes from gazetteers, and named entity types according to ANNIE’s
rule-based recogniser.

Based on the linguistic information, a feature vector is constructed for each token, as we it-
erate through the tokens in each document (including word, number, punctuation and other
symbols) to see if the current token belongs to an information entity or not. The feature
vector derived from one token is binary vector, each dimension of which corresponds to one
of those features collected from training set and each binary component indicates whether
or not the corresponding feature exists for the token. Hence, the feature vector is very
high dimensional but very sparse because the total number offeatures is very large and the
number of features one particular token has is quite small. For example, one feature vector
for the Seminars corpus used in our experiments had approximately 20000 dimensions but
only at most 7 non-zero components.

Since in IE the context of the token is usually as important asthe token itself, the SVM
input vector needs to take into account features of the preceding and following tokens, in
addition to those of the given token. In our experiments the same number of left and right
tokens was taken as a context. In other words, the current token was at the centre of a
window of tokens from which the features are extracted. Thisis called a window size.
Therefore, for example, when the window size is 3, the algorithm uses features derived
from 7 tokens: the 3 preceding, the current, and the 3 following tokens. Due to the use
of a context window, the SVM input vector is the combination of the feature vector of the
current token and those of its neighboring tokens. We concatenated the feature vector of
the current token and the feature vectors of the surroundingtokens as the input vector to
the SVM.

2In comparison with English or other western language, the function of token for separating the entity from
surrounding token is more important in oriental languages such as Chinese, Japanese or Korean where there is
no delimiter between two consecutive words in a sentence. Infact, the major function of some tokens in these
languages is to separate one entity from the preceding or following entity.

3In the case of Chinese, [28] showed that the classifiers for the start and end tokens of Chinese word has clearly
better performances than the classifier for middle token.

4Freely available from http://www.gate.ac.uk/
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As the input vector incorporates information from the context surrounding the current to-
ken, features from different tokens can be weighted differently, based on their position in
the context. The weighting scheme we used was thereciprocal scheme, which weights the
surrounding tokens reciprocally to the distance to the token in the centre of the context win-
dow. This reflects the intuition that the nearer a neighbouring token is, the more important
it is for classifying the given token. Our experiments showed that such a weighting scheme
obtained better results than the commonly used equal weighting [27].

After classification, the start and end tags of the entities are obtained and need to be com-
bined into one entity tag. Therefore some post-processing is needed to guarantee tag con-
sistency and to try to improve the results by exploring otherinformation. The currently
implemented procedure has three stages. First, in order to guarantee the consistency of the
recognition results, a document is scanned from start to endto remove start tags without
matching end tags and end tags without preceding start tags.The second stage filters out
candidate entities from the output of the first stage, based on their length. Namely, a candi-
date entity tag is removed if the entity’s length (i.e., the number of tokens) is not equal to
the length of any entity of the same type in the training set. The third stage puts together all
possible tags for a sequence of tokens and chooses the best one according to the probability
which was computed from the output of the classifiers (beforethresholding) via a Sigmoid
function. See [27] for details, which also showed that the system’s performance was im-
proved significantly after the first stage of post-processing and improved slightly after the
second and third stages.

3.2 Uneven Margins SVM

A binary SVM classifier corresponds to a hyperplane in feature space with maximal margin,
which would separate positive training examples from negative ones. The margin is the
distance from the training examples to the hyperplane. The margin can be regarded as a
measure of the error-tolerance ability of the classifier, since a classifier is more likely to
classify a test instance correctly if it has a larger margin.Generally, if a training set is
representative of the whole dataset, a classifier with a larger margin with respect to the
training set would have a better generalisation performance. However, if the training set is
unrepresentative, we should take great care of the margin inthe margin learning algorithms
such as SVM, because the maximal margin classifier learned from an unrepresentative
training set may have poor generalisation performance, as illustrated in Figure 1.

Figure 1 shows a toy 2-dimensional binary classification problem together with two kinds
of training sets and the corresponding SVM classifiers. The training examples in the left
part of Figure 1 are representative of the whole dataset, andtherefore the maximal margin
classifier learned from the training set can classify correctly most of the unseen test data,
meaning that the SVM classifier has a good generalisation capability. In contrast, the right
graph illustrates a situation where the training set is not representative of the distribution
of all positive examples due to the very small number of available training examples (only
three). In this case, the SVM classifier with maximal margin would mistakenly classify
many unseen positive examples as negative ones. Unfortunately, many imbalanced classi-
fication problems, such as those arising in IE, have quite small number of positive training
examples, resulting in an SVM classifier with poor generalisation capability. As a matter of
fact, previous work has demonstrated that SVM classifiers trained on imbalanced training
data have poor generalisation performance (see e.g. [26, 29])

However, as can be seen in Figure 1, if the classification hyperplane could be moved away
from the positive training examples in imbalanced dataset,then the classifier would classify
more unseen data correctly, i.e., it would have better generalisation performance. There-
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Figure 1: A toy 2-dimensional classification problem and twoSVM classifiers. The two
graphs illustrate two different kinds of training sets. Thetraining set on the left is represen-
tative of the whole dataset, whereas the positive examples in the training set on the right
are not. In both figures a ’+’ represents a positive example and a ’x’ – a negative example.
The solid line ’+’ and ’x’ are the training examples and thosewith dashed lines are the test
ones.

fore, if an SVM classifier has to be learned from an imbalancedtraining set which has only
a few positive examples, it may be beneficial to require the learning algorithm to set the
margin with respect to the positive examples (the positive margin) to be somewhat larger
than the margin with respect to the negative examples (the negative margin). In other words,
in order to achieve better generalisation performance, oneneeds to distinguish the positive
margin from the negative margin when training the SVM. Therefore, we introduced a mar-
gin parameterτ into the SVM optimisation problem to control the ratio of thepositive
margin over the negative margin (for details see [29]).

Formally, given a training setZ = ((x1, y1), . . . , (xm, ym)),wherexi is then-dimensional
input vector andyi (= +1 or −1) its label, the SVM with uneven margins is obtained by
solving the quadratic optimisation problem:

minw, b, ξ 〈w,w〉 + C
m∑

i=1

ξi

s.t. 〈w,xi〉 + ξi + b ≥ 1 if yi = +1

〈w,xi〉 − ξi + b ≤ −τ if yi = −1

ξi ≥ 0 for i = 1, ..., m

where a parameterτ was added to the constraints of the optimisation problem forthe stan-
dard SVM formation.τ is the ratio of negative margin to the positive margin of the clas-
sifier. It is equal to1 in the standard SVM, which treats positive and negative examples
equally. However, for imbalanced training data (as is the case with IE), where the posi-
tive examples are so rare that they are not representative ofthe genuine distribution of all
positive examples, a larger positive margin than negative one (namelyτ < 1) would be
beneficial for the generalization of the SVM classifier.

When applying the uneven margins SVM to a problem, we first have to determine a value
for the uneven margins parameterτ . If the problem has just a few positive training examples
and many negative ones, thenτ < 1 would be helpful. However, the optimal value ofτ is
not entirely dependent upon the number of positive examplesin the training set — instead it
is actually dependent upon the distribution of positive training examples among all positive
examples. Like other parameters of learning algorithms, the value ofτ can be empirically
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determined by, for example, n-fold cross-validation on thetraining set or using a hold-out
development set. On the other hand, Table 7 in Section 4.3 shows that the performance
of the uneven margins SVM is robust with respect to the value of the uneven margins
parameter, probably because the SVM classifier was learned in a very high dimensional
space where the positive training examples may possibly be far away from the negative
ones. Therefore, a reasonable estimation ofτ is able to help the uneven margins SVM to
achieve significantly better results than the standard SVM model.

As showed in [29], for the SVM model with bias term, the solution of uneven margins
SVM can be obtained from a related standard SVM via a transformation. The transforma-
tion is simple — basically it amounts to adding aτ related term to the bias termb of the
corresponding standard SVM model. Therefore, in order to achieve computational gains,
the uneven margins SVM problem is not solved directly. Instead, a corresponding stan-
dard SVM problem is solved first by using an existing SVM implementation, (e.g., a pub-
licly available SVM package5), and then the solution of uneven margins SVM is obtained
through a transformation.

On the other hand, the transformation means that the uneven margins SVM is the same as
the standard SVM except for a shift of bias term or equivalently, a shift of SVM’s output
before thresholding. Note that in our experiments we use thesame value of uneven margin
parameter for all the SVM classifiers computed. Hence all theclassifiers’ outputs have
the same amount of shift with respect to the uneven margin parameter. As a result, the
uneven margins SVM would have the same behaviour as the standard SVM if used in the
one vs. others approach of the BMESO framework (see Section 3.1). This is because
the class decision in the one vs. others approach is made by comparing the outputs of
all classifiers (before thresholding) which is not effectedby the same amount of shift on
the outputs of all the classifiers resulted from using the uneven margins parameter. In
contrast, the uneven margins SVM does have effect when used in theBE framework, or
pairwise classificationapproach, because they both take into account binary outputof every
individual SVM classifier and the shift of the SVM’s output before thresholding does make
difference in the binary output.

3.3 SVM Active Learning for IE

Apart from handling imbalanced training data, the margin ofthe SVM classifier to one
individual example can also be used for measuring how informative the example is for
training the SVM classifier – this forms the basis for theSVM active learningalgorithm.

Given an SVM classifier (in primal form)W = {w1, . . . , wl} andb and an exampleX =
{x1, . . . , xl}, the margin of the exampleX to the SVM is as

m(X, W ) =< X, W > +b =

l∑

i=1

xiwi + b (1)

which measures how close the example is to the hyperplane andcan be regarded as a confi-
dence of the SVM classifyingX . The smaller the marginm(X, W ) is, the less confidence
the SVM has for classifying the exampleX . In other words, the smaller the margin of an
example to the SVM classifier is, the more informative the example might be for training
the SVM. Therefore, the SVM active learning algorithm is based on the margin – it selects
the example(s) with the smallest margin (least confidence).

5The SVMlight package, available from http://svmlight.joachims.org/,was used to learn the SVM classifiers
in our experiments.
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SVM active learning has been successfully used for text categorisation and image retrieval,
which are essentially classification problems. Since IE tasks can be transformed into sev-
eral classification problems, SVM active learning could be used for IE as well. The follows
is a general scheme for applying SVM active learning to IE:

1. Randomly choosen0 documents and manually annotate them as the initial training
setS0. Train the SVM classifiers onS0 for the IE task.

2. Apply the SVM classifiers to un-annotated documents, and select then examples
with the smallest margins from the un-annotated documents.Label them and add
them into the training set.

3. Use the extended training set to re-train the SVM classifiers.

4. Repeat the steps 2 and 3 for a pre-defined number of loops or until the system obtains
a pre-defined level of performance.

In the implementation of the above scheme several issues need to be considered. The first
one is that which type of example is selected in IE active learning (Step 2), because three
types of examples could be used – just one token, a token with its surrounding context
and the whole document. We will present experimental results evaluating the three types
of examples in our experiments. The margin of a token can be used directly for token
examples. On the other hand, selecting documents as examples has to be based on the
average confidence of the tokens in the document. In detail, if there arem classifiers
in one IE task and for every classifierCi we selectm0 tokens with the smallest margins
(mi1, . . . , mim0

), then we compute the average confidence of the documentd as the double
sum

cd =

m∑

i=1

m0∑

j=1

mij (2)

The document with the smallest average confidence would be selected.

The second issue is the optimal setting of parameters in the algorithm. We test different
values of the three parameters,n0 (the number of initial documents for training),n (the
number of documents selected in active learning loop), andm0 (the number of tokens
chosen in one document for calculating the average confidence of the document).

The third issue is related to the SVM model. We use the uneven margins SVM in our
experiments and obtain the uneven margins SVM classifier by solving a standard SVM
problem. However, the margin for each token in the unlabelled documents was computed
using the standard SVM classifier. That is because we actually learn a standard SVM
and the unlabelled examples which are close to the standard SVM classifier rather than
the deduced uneven margins SVM would have important effect to the next round learning
in which a standard SVM will be learned as well. As a matter of fact, we did use the
margin computed with respect to the uneven margin SVM in active learning and the results
were clearly worse than those using margin of the standard SVM, which verified the above
arguments. We will discuss the three issues in the experiments presented below.
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4 Experiments

4.1 Experimental Datasets and Methodology

We evaluated the approaches of converting multi-class problem into binary classification
problems, the uneven margins SVM, and the SVM active learning on three IE benchmark-
ing corpora covering different IE tasks – named entity recognition (CoNLL-2003) and tem-
plate filling or scenario templates in different domains (Seminars and Jobs). CoNLL-20036

is the most recent corpus for named entity recognition. The Seminars and Jobs corpora7

have been used to evaluate active learning techniques for IEin several papers: [12], [1] and
[6].

In detail, we used the English part of the CoNLL-2003 shared task dataset, which consists
of 946 documents in the Training Set, 216 document in the Development Set, and 231
documents in the Test Set, all of which are Reuters news articles. The corpus contains four
types of named entities — person, location, organisation and miscellaneous.

In the other two corpora domain-specific information was extracted into a number of slots.
The Seminars Corpus contains 485 seminar announcements andfour slots – start time
(stime), end time (etime), speaker and location of the seminar. The Jobs corpus includes
300 software related job postings and 17 slots encoding job details, such as title, salary,
recruiter, computer language, application, and platform.

Unless stated otherwise, the experiments in this paper use the parameter settings for the
uneven margins SVM, as derived empirically in [27]. Table 1 presents the values of three
important parameters: the size of the context window, the SVM kernel type and the uneven
margins parameter, used in our experiments for the three corpora, respectively.

Table 1: The values of the three important parameters used inthe experiments for the three
datasets, respectively.τ refers to the uneven margins parameter for the SVM.

Context window size SVM kernel τ
Conll03 4 quadratic 0.5
Seminars 5 quadratic 0.4
Jobs 3 linear 0.4

4.2 Comparisons of Different Classifier-based Framework for IE

In Section 3.1 we have discussed two frameworks for applyingthe binary SVM classifier
to multi-class problem derived from IE problem. TheBMESOframework requires to learn
classifier(s) for each part of entity and for non-entity token, in which two different ap-
proaches were usually used in the implementation. Theone vs. othersapproach trains one
classifier to separate one class from all other classes. Thepairwise classificationapproach
learns one classifier for every pair of classes. Another framework, theBE framework only
trains classifiers for the start and end tokens of entity and the token in a single-token entity
is regarded as both the start token and end token of the entity.

We carried out experiments to evaluate these methods on the three corpora. Table 2 presents
the results for the three methods, one vs. others, pairwise and the BE framework. We used
the standard SVM and the uneven margins SVM for each of the methods, respectively.

6See http://cnts.uia.ac.be/conll2003/ner/
7See http://www.isi.edu/info-agents/RISE/repository.html.
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Table 2: Comparisons of the three methods using the standardSVM and the uneven margins
SVM on the three corpora, respectively. The best performance figures for each of the three
corpora appear in bold. The 95% confidence intervals for results on the Seminars and Jobs
corpora are also presented.

One vs. others Pairwise BE
SVM SVM SVMUM SVM SVMUM

Conll 86.1 85.3 85. 0 85.1 86.3
Seminars 81.8±0.6 81.4±0.7 84.2±0.7 80.0±0.4 84.5±0.6
Jobs 80.8±1.4 80.3±1.0 80.3±1.2 79.0±1.0 80.8±0.7

Note that, as we used the same value of uneven margins parameter for all classifiers in one
experiment and by doing so the uneven margins SVM had the exactly same results as the
standard SVM for the one vs. others method, the table does notpresent the results of the
uneven margins SVM for that method.

For the BE scheme, we used the values of uneven margins parameter listed in Table 1 for
each dataset when using uneven margins SVM, because the positive examples were always
much less than the negative ones in training set. As for the pairwise method, the situation
became a bit complicated as the number of positive training examples may be much less,
or much more than, or roughly close to the number of negative examples. Hence, we setτ
as the values listed in Table 1 if the positive training examples was at most half of negative
ones, setτ as the reciprocal of the values in Table 1 if the negative training examples was at
most half of positive ones, and setτ as 1 (corresponding to the standard SVM) in all other
cases. For the CoNLL-2003 data we used the training set for learning SVM classifiers
and presented results on the test set. For each of the other two corpora, we used half of
documents randomly selected for training and other documents for testing, one experiment
carried on ten runs and the results were obtained by averaging over the ten runs.

First, if using the standard SVM model, the one vs. others method gave better results
than other two methods on all the three corpora8. It was significantly better than the BE
framework on the two corpora. There is no significant difference between the one vs. others
method and the pairwise on the Seminars and Jobs corpora. Butthe one vs. other method
performed clearly better than the pairwise method on the CoNLL-2003 data. So, we think
that is why the one vs. others method was mostly used in the applications of the SVM to
NLP problems.

However, when using the uneven margins SVM, the results for the BE scheme were signif-
icantly improved in the three datasets. For the pairwise method, the results became better
on the Seminar data, remained the same for the Jobs data, and was slightly worse on the
CoNLL-2003 corpus. As we discussed, the results of the uneven margins SVM were al-
ways the same as the standard SVM for the one vs. others methoddue to its particular
mechanism. On the other hand, when using the uneven margins SVM, the BE method
obtained better results than the pairwise method and the onevs. other method.

Table 3 presents the computation time and the number of SVM classifiers needed for each
method and each corpus, respectively. Note that the SVMUM would take almost the same
time as the standard SVM since we obtained the SVMUM by shifting the bias of SVM
model. We can see that the BE method needed the least classifiers. The pairwise method
required large number of classifiers especially for the Jobsdata where there were 17 entity
types. Consequently the BE method ran much faster than othertwo methods.

8In contrast, [20] compared the one vs. others method with pairwise method on a variety of machine learning
benchmarking datasets and found that the former method performed better than the latter on half of datasets and
performed worse on other datasets. Note that none of the datasets they used was from NLP application.
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Table 3: Computation time and number of SVM classifiers needed by each of the three
methods.

One vs. others Pairwise BE
Time #Classifier Time #Classifier Time #Classifier

Conll 46308s 17 30400s 136 20544s 8
Seminars 68378s 17 50510s 136 23460s 8
Jobs 45448s 69 70590s 2346 18587s 34

In conclusion, the BE framework with the uneven margins SVM model performed best
consistently on the three corpora among all the methods we evaluated. Moreover, it needs
least computation time and least computer memory than both the one vs. others method and
the pairwise method. Therefore, the BE framework and the uneven margins SVM model
is the best combination in the application of SVM to IE problem. We will adopt it in the
experiments presented in follows.

4.3 Experiments for Uneven Margins SVM

Named Entity RecognitionAs already discussed above, we evaluated the uneven margins
SVM on the CoNLL-2003 dataset. Since this corpus comes with adevelopment set for
tuning the learning algorithm, different settings were tried in order to obtain the best per-
formance Different SVM kernel types, window sizes (namely the number of tokens to the
left or right of the token at the centre of window), and the uneven margins parameterτ were
tested. We found that quadratic kernel, window size4 andτ = 0.5 produced best results
on the development set. These settings were used in all experiments on the CoNLL-2003
dataset in this paper, unless stated otherwise.

Table 4 presents the results of our system using two learningalgorithms, the uneven mar-
gins SVM and the standard SVM on the CONLL-2003 test set, together with the results
of two participating systems in the CoNLL-2003 shared task:the best system [13] and the
SVM-based system [30].

Table 4: Comparison to other systems on CoNLL-2003 corpus:F -measure(%) on each
entity type and the overall micro-averaged F-measure. The 95% confidence intervals for
results of the two participating systems are also presented. The best performance figures
for each entity type and overall appear in bold.

System LOC MISC ORG PER Overall
Our SVM with uneven margins 89.25 77.79 82.29 90.92 86.30
Systems Standard SVM 88.86 77.32 80.16 88.93 85.05
Participating Best one 91.15 80.44 84.67 93.85 88.76±0.7
Systems Another SVM 88.77 74.19 79.00 90.67 84.67±1.0

Our uneven margins SVM system performed significantly better than the participating
SVM-based system. However, the two systems are different from each other not only
in the SVM models used but also in other aspects such as NLP features and classification
framework. Therefore, in order to make a fair comparison between the uneven margins
SVM and the standard SVM model, we also present the results ofthese two algorithms,
both using the same framework and the same features. As can beseen from Table 4, under
the same experimental settings, the uneven margins SVM still performed better than the
standard SVM model.
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Template Filling TheSeminar corpushas been used to evaluate quite a few learning sys-
tems. Those include rule learning approaches such as SRV [16], Whisk [36], Rapier [1],
BWI [17], SNoW [32] and(LP )2 [5], as well as statistical learning systems such as HMM
[14] and maximum entropy (MaxEnt) [4].

The major problem with carrying out comparisons on the seminar corpus is that the dif-
ferent systems used different experimental setups. For instance, SRV, SNoW and MaxEnt
reported results averaged over 5 runs. In each run the dataset was randomly divided into
two partitions of equal size – one used for training and one for testing. Furthermore, SRV
used a randomly selected third of the training set for validation. WHISK’s results were
from 10-fold cross validation on a randomly selected set of 100 documents. Rapier’s and
(LP )2’s results were averaged over 10 runs. Finally, BWI’s and HMMresults were ob-
tained via standard cross validation.

The SVM results reported here are the average over ten runs, following the methodology of
Rapier and(LP )2. Table 5 presents the results of our system on seminar corpus, together
with the results of the other systems. As far as it was possible, we use the same features as
the other systems to enable a more informative comparison. In particular, the results listed
in Table 5, including our system, did not use any gazetteer information and named entity
recogniser output. The only features in this case are words,capitalisation information,
token types, lemmas, and POS tags. The settings for the SVM parameters are shown in
Table 1, namely window size 5, quadratic kernel, andτ = 0.4.

We present theF1 measure for each slot together with the macro-averagedF1 for the overall
performance of the system. Note that the majority of systemsevaluated on the seminars
and jobs corpora only reported per slot F-measures, withoutoverall results. However, an
overall measure is useful when comparing different systemson the same dataset. Hence,
we computed the macro-averagedF1 for the other systems from their per-slotF1.

Table 5: Comparison to other systems on the Seminar corpus:F1 (%) on each slot and
overall performance (macro-averaged (MA)F1). The 95% confidential interval for the
MA F1 of our system is also presented. The best results for each slot and the overall
performance appear in bold font.

Speaker Location Stime Etime MAF1

SVMUM 69.0 81.3 94.8 92.7 84.5±0.6

(LP )2 77.6 75.0 99.0 95.5 86.8
SNoW 73.8 75.2 99.6 96.3 86.2
MaxEnt 65.3 82.3 99.6 94.5 85.4
BWI 67.7 76.7 99.6 93.9 84.6
HMM 71.1 83.9 99.1 59.5 78.4
Rapier 53.1 73.4 95.9 94.6 79.1
Whisk 18.3 66.6 92.6 86.1 65.7
SRV 56.3 72.2 98.5 77.9 76.0

Table 5 shows that the best results on the different slots areachieved by different systems
and that the best overall performance is achieved by(LP )2. While the uneven margins
SVM did not achieve the best performance, it still outperformed many other systems. Also,
it is worth noting that our system using SVM active learning with uneven margins outper-
forms(LP )2 on the Seminars corpus, as shown in Table 10 in Section 4.4.

On theJobs corpusour system is compared to several state-of-the-art learning systems,
including the rule based systems Rapier [1],(LP )2 [5] and BWI [17], the statistical system
HMM [17], and the double classification system [35]. As before, in order to make the
comparison as informative as possible, the same settings were adopted in our experiments
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as those used by(LP )2, which previously reported the highest results on this dataset. In
particular, the results are obtained by averaging the performance in ten runs, using a random
half of the corpus for training and the rest for testing. Onlybasic NLP features are used:
token form, capitalisation information, token types, and lemmas.

Table 6: Comparison to other systems on the Jobs corpus:F1 (%) on each entity type
and overall performance as macro-averaged (MA)F1. The 95% confidential interval for
the MA F1 of our system is also presented. The highest score on each slot and overall
performance appears in bold.

Slot SVMUM (LP )2 Rapier DCs BWI HMM semi-CRF
Id 97.7 100 97.5 97 100 – –
Title 49.6 43.9 40.5 35 50.1 57.7 40.2
Company 77.2 71.9 70.0 38 78.2 50.4 60.9
Salary 86.5 62.8 67.4 67 – – –
Recruiter 78.4 80.6 68.4 55 – – –
State 92.8 84.7 90.2 94 – – –
City 95.5 93.0 90.4 91 – – –
Country 96.2 81.0 93.2 92 – – –
Language 86.9 91.0 81.8 33 – – –
Platform 80.1 80.5 72.5 36 – – –
Application 70.2 78.4 69.3 30 – – –
Area 46.8 53.7 42.4 17 – – –
Req-years-e 80.8 68.8 67.2 76 – – –
Des-years-e 81.9 60.4 87.5 47 – – –
Req-degree 87.5 84.7 81.5 45 – – –
Des-degree 59.2 65.1 72.2 33 – – –
Post date 99.2 99.5 99.5 98 – – –
MA F1 80.8±0.7 77.2 76.0 57.9 – – –

Preliminary experiments established that the SVM with linear kernel obtained better results
than SVM with quadratic kernel on the Jobs corpus [27]. Hencewe used the SVM with
linear kernel in the experiments on the Jobs data.

Table 6 presents the results of our uneven margins SVM systemas well as the other six
systems which have been evaluated on the Jobs corpus. Note that the results on all 17 slots
are available only for three previous systems: Rapier,(LP )2 and double classification. We
computed the macro-averagedF1 (the mean of theF1 of all slots) for our system as well as
for the three fully evaluated systems in order to compare theoverall performance.

The results show that the overall performance of the uneven margins SVM is significantly
better than the other three fully evaluated systems. The double classification system had
much worse overall performance than our system and the othertwo fully evaluated systems.
HMM was evaluated only on two slots. It achieved the best result on one slot but had a
significantly worse performance on the other slot. BWI obtained better results than ours on
three slots. Unfortunately, BWI results for the other slotsare not available, thus making it
impossible to compare the two algorithms on the entire Jobs dataset.

Effect of the Uneven Margins Parameter. A number of experiments were conducted
to investigate the influence of the uneven margins parameteron the SVM performance.
Table 7 shows the results with several different values of the uneven margins parameter
on the three datasets – CoNLL-2003, Seminars and Jobs. The SVM with uneven margins
(τ < 1.0) had better results than the standard SVM (τ = 1). We can also see that the
results were similar forτ between 0.6 and 0.4, showing that the results are not particularly
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Table 7: The effects of uneven margins parameter of the SVM: macro averagedF1(%)
on the the three datasets CoNLL-2003 (test set), Seminars and Jobs. The 95% confiden-
tial intervals for the Seminars and Jobs datasets are also presented, showing the statistical
significances of the results. In bold are the best performance figures for each dataset.

τ 1.0 0.8 0.6 0.4 0.2
Conll 85.0 86.0 86.2 85.9 81.6
Seminars 80.0±0.4 82.3±0.5 84.1±0.6 84.5±0.6 80.9±0.7
Jobs 79.0±1.0 79.9±0.9 81.0±0.6 80.8±0.7 79.0±0.9

sensitive to the value of the uneven margins parameter.

Our conjecture was that the uneven margins parameter was even more helpful on smaller
training sets, because the smaller a training set is, the more imbalanced it could be. There-
fore we carried out experiments on a small numbers of training documents. Table 8 shows
the results of the standard SVM and the uneven margins SVM on different numbers of
training documents from CoNLL-2003, Seminars and Jobs datasets, respectively. The per-
formance of both SVMs improves consistently as more training documents are used. More-
over, compared to the results on the full training sets (see Table 7), the smaller the training
set is, the better the results of the uneven margins SVM are incomparison to the standard
SVM.

Table 8: The performances of the SVM system with small training sets: macro-averaged
F1(%) on the three datasets CoNLL-2003 (test set), Seminars and Jobs. The uneven mar-
gins SVM (τ = 0.4) is compared to the standard SVM model with even margins (τ = 1).
The 95% confidential intervals for the Seminars and Jobs datasets are also presented, show-
ing the statistical significances of the results.

size 10 20 30 40 50
τ = 0.4

Conll 60.5 66.6 70.7 72.2 72.3
Seminars 58.1±3.4 67.1±2.8 73.6±1.5 76.5±1.8 78.2±1.6
Jobs 51.6±1.9 60.9±1.8 65.7±1.4 68.6±1.4 71.1±1.8

τ = 1
Conll 51.8 60.2 66.0 67.4 68.9
Seminars 41.5±3.4 53.1±2.5 60.9±1.6 65.3±2.1 68.9±1.5
Jobs 47.1±2.4 56.5±2.2 61.4±1.9 65.4±1.4 68.1±1.5

4.4 Experiments with SVM Active Learning

As already discussed in Section 3.3, active learning first selects some examples for initial
learning. Then in each learning round, according to the active learning algorithm, some
more examples are selected for training.

For the CoNLL-2003 corpus, the initial training documents were chosen randomly from
the Training Set and in each active learning round further examples were selected from the
remaining documents in the Training Set. The results reported in this paper are on the Test
Set.

For each of the other two corpora (Seminars and Jobs), the initial training set was chosen
randomly from the whole corpus and each active learning loopselected samples from the
remaining documents. Then all documents not used for training were used for testing. All
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results reported below are the average from ten runs.

The first experiments below use entire documents as samples.The other two types of
samples – token and token with context – are discussed at the end part of this section.

Active Learning vs. Random Selection. We first compare SVM active learning with
a random selection baseline. For all three datasets (CoNLL-2003, Seminars and Jobs),
two documents were chosen as the initial training set and then each active learning loop
selected the document with the smallest average confidence as the source for additional
training data. The average confidence of a document was calculated using the confidence
for 5 tokens on both CoNLL-2003 and Seminars corpora and 2 tokens on the Jobs corpus
(see below discussions about how these values were determined).

Figure 2 presents the learning curves for active learning and random selection on the three
datasets. Both used the uneven margins SMV. The results for the standard SVM with
random selection are also presented at some data points for comparison.

Figure 2: Learning curves for overall F1 on the three datasets. Active learning is compared
with random selection for the uneven margins SVM. The results for the standard SVM
model and random selection are also presented for comparison. The error bars show 95%
confidence intervals. For clarity, only the error bars for active learning are plotted.

First, as expected, the results of active learning are clearly better than those of random
selection on all three datasets. It is also worth noting thatagain the uneven margins SVM
performs significantly better than the standard SVM with randomly selection.

Secondly, the gap between active learning and random selection widens after the first few
learning loops, however, the difference is dataset-dependent, i.e., smaller on some sets than
on others. The learning curves become flat after approximately 20 loops for both active
learning and random selection.

Thirdly, for clarity, only the confidence intervals for active learning are plotted in Figure 2.
As a matter of fact, the confidence intervals for random selection are bigger than the cor-
responding ones for active learning at almost all data points for all three datasets, showing
that the results of active learning are more stable.

Finally, we can compare our results with those in the previous works. [12] also used the
Seminars corpus to evaluate several active learning techniques based on the learning al-
gorithm(LP )2, and adopted similar experimental settings to ours. Table 9compares our
results with the results presented in [12]9.

We can see that our active learning had much better performance than the best results in
[12]. Actually the results of our active learning are close to the optimal results presented
there, which was an estimate of the upper bound on the performance of any selection strat-
egy.

9Because [12] presented their results in the form of graphs instead of tables, their results listed in Table 9 were
estimated by us from their graphs.
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Table 9: Comparisons of our results with the best results andthe upper bounds presented
in [12]: the overallF1 on the Seminar corpus.

#docs SVMUM+AL Finn03 Upper bound
20 0.730 0.61 0.77
30 0.761 0.66 0.79

Table 10 compares our results with a state of the art system for adaptive IE, Amilcare
based on the(LP )2 algorithm, on the Seminar corpus [7]. We can see that the uneven
margins SVM with random selection performed worse than Amilcare, but that in turn was
outperformed by the uneven margins SVM with active learning.

Our results on the Jobs dataset are better than those achieved by another active learning
method based on the IE system Rapier [1]. For example, with 40training documents, the
overallF1 of the SVM active learning algorithm is 0.71, higher than Rapier’s corresponding
figure (around 0.64).

Table 10: Comparison of our algorithms with Amilcare:F1 (%) for each slot of the Semi-
nars corpus and the macro averagedF1 for overall performance. AL+SVMUM refers to the
SVM active learning with uneven margins SVM model. SVMUM refers to the uneven mar-
gins SVM using random selection. The highest score on each slot and overall performance
appears in bold.

#docs SVMUM+AL SVMUM Amilcare
stime 30 90.5 88.9 84.0
etime 20 89.6 80.6 82.3
speaker 25 53.3 50.5 50.6
location 30 68.9 63.7 70.0
MA F1 75.6 70.9 71.7

Three Parameters in Active Learning. As discussed in Section 3.3, three parameters
impact the performance of SVM active learning. The first one is thenumber of tokens
used for computing the average confidence of a document, namely m0 in Equation (2). As
there may be some outliers in a classification problem, usingone token could lead to an
unstable performance. On the other hand, if many tokens are used, the tokens with large
margins would overwhelm the informative tokens with smaller margins. Table 11 presents
the results with different values ofm0 for the Seminars and Jobs datasets. We can see that
too small or too large value ofm0 produces worse results than using a value 3 or 5.

Table 11: Different number of tokens used for computing the average confidence of docu-
ment: macro averagedF1 (%) with the 95% confidence interval for the two datasets Semi-
nars and Jobs.

m0 = 1 3 5 10
Seminars 66.2±1.6 70.4±1.4 72.0±1.8 69.3±1.7
Jobs 64.2±1.6 65.2±1.2 65.0±0.7 63.1±1.7

The second parameter is thenumber of initial documentsrandomly chosen for training,
namelyn0, as introduced in Section 3.3. On the one hand, the smallern0 is, the earlier
we can take advantage of active learning. On the other hand, since active learning uses the
current model to choose the next examples, too few initial examples could result in a bad
SVM model which in turn would be harmful to the quality of the selected examples. Table
12 shows the results forn0=1, 2, 4, and 10, respectively.n0=2 obtained the best result
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for Seminars andn0=4 for the Jobs corpus. However, there seems to be no significant
difference between the results on the Jobs dataset.

Table 12: Different number of initial training document forSVM active learning: macro
averagedF1 (%) with the 95% confidence interval for the two datasets Seminars and Jobs.

n0= 1 2 4 10
Seminars 72.2±0.7 73.0±0.9 72.0±1.8 68.3±1.6
Jobs 64.1±1.2 65.0±1.1 65.8±0.8 65.2±1.2

The last parameter discussed here is thenumber of documentsn selected in each active
learning loop. If each loop chooses only one document prior to re-training the model, then
the results will be more accurate than those obtained by selecting two or more documents
each time. On the other hand, the more documents are selectedin one loop, the fewer loops
the system may need in order to obtain a given performance. Inother words, if the second
best example is not much less informative than the best one inone active learning loop, then
we may use the second best example as well as the first one, in order to save computation
time. Table 13 shows thatn=1 gave slightly better results thann = 2 or 3 for both datasets,
but the computation time forn=2 was half of that forn=1 while still achieving similar
performance.

Table 13: Different number of documents selected in one active learning loop: macro
averagedF1 (%) with the 95% confidence interval for the two datasets Seminars and Jobs.

n= 1 2 3
Seminars 73.0±1.0 72.8±0.9 71.5±1.2
Jobs 65.0±1.0 64.2±0.7 64.1±1.0

Three Types of Samples. When SVM active learning is applied to IE it can select one
or more documents in each loop based on document’s average confidence. Alternatively,
active learning can select only the most informativetokensfrom the unlabelled documents
or a fragment of text containing the most valuable token and the surrounding tokens as a
sample.

If a full document is selected in each loop, the user must decide whether or not every token
in the document belongs to each type of entity considered. Ifjust the token or text fragment
is selected for one classifier, then the user would only decide whether the selected token or
each token in the fragment is the start (or end) token of the entity which type is specified by
classifier. Therefore, compared to full document samples, token or text fragment sampling
could save a great deal of manual annotation time in each active learning loop. Therefore
we investigated how the performance of token and text fragment sampling compares to full
document sampling.

Figure 3 plots the learning curves for using a token and a token with context as the sample,
respectively. The learning curve for full document samplesis also presented for compari-
son. Two initial training documents were used in all experiments. We selected 5 or 2 tokens
respectively for Seminars and Jobs datasets in each learning loop for both token and token
with context samples. The first 40 active learning loops are plotted for all learning curves.

Not surprisingly, the results using document samples are the highest and token with context
performed better than token alone in most cases. However, itis worth noting that the per-
formance of token with context as sample achieved similar performance to full document
sampling in the first few loops. The learning curves for tokensamples become flatter in
the late stage of learning, compared to the curve for full document samples. The learning
curve for token with context is even worse — it decreases after some learning loops.
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Figure 3: Learning curves for active learning using three types of sample on the two
datasets, respectively.

On the other hand, while the user has to annotate hundreds of tokens in full document
sampling, for token or token with context sampling they justneed to decide on just a few
tokens. For example, in the experiments on the Seminars corpus presented in Figure 3, in
each learning loop the user has to annotate 337 tokens on average for full documents, or
decide whether each of 5 or 55 tokens belong to the entity of particular type respectively
for the token and the text fragment. The annotation time for document sampling would be
about 67 and 6 times more than that for token and token with context sampling, respectively.

5 Related Work

SVM Learning for NLP . SVM has been applied successfully to a variety of NLP prob-
lems. The methodology of applying SVM to IE presented in thispaper was used in most
applications, i.e., transform the NLP task into a number of binary classification problems
and train a classifier for each. A very high dimensional binary feature vector is often con-
structed for each token using the NLP features from the tokenas well as some surrounding
tokens.

On some NLP problems SVM with quadratic kernel performs better than linear or other
types of kernel. On the other hand, as linear kernel SVM needsmuch less training and
application time than quadratic kernel SVM, some systems use a linear kernel and mean-
while encode some co-occurrences of features into the feature vector explicitly, which is
equivalent to using some kind of semi-quadratic kernel (seee.g. [22]). This kind of im-
plementation enables the SVM with linear kernel to achieve as good performance as with
quadratic kernel but it is much faster than using quadratic kernel. The SVM performance
on NLP problem is often robust to other SVM parameters.

Once the SVM classifiers are learned for one NLP problem, we have to combine the re-
sults from the binary SVM classifiers into a solution of the original NLP problem. Most
previous works adopted the one vs. others method to learn an SVM classifier for each
part of entity and for non-entity as well. They assigned an instance the class which SVM
classifier had the maximal output on the instance. For example, the one vs. others method
was used in [22] for POS tagging, [11] for WSD, [45] for relation extraction and [19] for
semantic role labeling. However, some works made some modifications on the process.
For example a Viterbi search process was used for choosing the best combination of tags
for a sequence of tokens respectively in [21] for named entity recognition and in [23] for
Japanese dependency analysis.

There were a few works dealing with imbalanced data in NLP applications. [22] constructs
training data from a dictionary extracted from the trainingcorpus rather than training on
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the corpus itself. This eliminated many negative examples and is similar to the under-
sampling method. [24] usedpairwise classificationwhich trains a classifier for each pair of
classes. In pairwise classification the negative and positive examples are respectively from
two classes, so the training data would be less imbalanced inmost cases than the one vs.
others method.

SVM active learning. [2] proposed the margin-based approach to SVM active learning
and used it for USPS hand-written digit recognition. They found that SVM active learning
performed much better than SVM with random selection of examples. In the meantime,
[34] studied a similar method for SVM active learning. They applied the method to text
categorisation and obtained significantly better results than using random selection. [38]
studied the same algorithms for SVM active learning as thosein [34] in similar settings.
They compared SVM active learning with two committee-basedactive learning algorithms
and found that the SVM active learning approach obtained thebest results. SVM active
learning was also successfully used for image retrieval [37], computer aided drug design
[42] and spoken language understanding [40].

There are several papers studying SVM active learning for NLP problems. [33] investigated
SVM active learning for Japanese word segmentation. He had the same basic findings as
ours, namely that SVM active learning can significantly improve performance. He also
found that a small unlabelled data pool was helpful in the early stages of SVM active
learning and proposed algorithms for determining the appropriate size of this data pool
during learning. We believe that his algorithms would also be helpful for information
extraction. On the other hand, he did not investigate other settings in SVM active learning,
such as different types of examples and number of initial training documents, which are
studied in this paper.

The thesis [41] studied SVM active learning for named entityrecognition and NP chunking.
Similar to [38], Vlachos studied different approaches for selecting unlabelled examples
based on the confidence score of the SVM classifier. This work also used the CoNLL-2003
share task data, which enables direct comparisons between his results and ours. Figure 5.5
in the thesis presented the same kind of learning curves as those in Figure 2 of this paper.
Both figures show that active learning has significantly better performance than passive
learning. On the other hand, our F-measures for both random learning and active learning
are much higher than the corresponding figures in the thesis.The difference may be due to
the different settings between his experiments and ours, such as NLP features, framework,
and SVM models. It is worth noting the all previous works on SVM active learning used
the standard SVM model while our work explored the uneven margins SVM.

6 Conclusions

SVM is a popular learning algorithm for solving NLP tasks. Weinvestigated two advanced
techniques for helping SVM deal with imbalanced training data and the difficulty of ob-
taining human-annotated examples – two problems that frequently arise in NLP datasets.

We present a new approach towards dealing with imbalanced training data by introduc-
ing the uneven margins parameter to the SVM model. We also investigated SVM active
learning and the different strategies that can be used with it – full document, single token,
and tokens in context. We also tested uneven margins SVM and SVM active learning to-
gether on several IE tasks, including named entity recognition and template filling. The
uneven margins SVM obtained better experimental results than the standard SVM model.
SVM active learning also achieved better performance than conventional learning methods.
Moreover, when the two are combined together, we achieve thebest results on the Seminars
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corpus, a benchmark dataset for IE. The uneven margins SVM also obtains the best results
on the Jobs corpus, another IE benchmark dataset.

For the SVM model with bias term, the uneven margins SVM modelcan be obtained from
a related standard SVM classifier by changing the bias term. Hence the uneven margins
SVM can be easily solved using any publicly available SVM package. On the other hand,
it performs much better than the standard SVM on imbalanced training data. We believe
that uneven margins SVM could lead to a similar performance on NLP tasks other than IE.
Similarly, SVM active learning for IE presented in this paper is general so that it can also
be used on other NLP problems, where similarly good performance is expected.

We also evaluated the approaches of converting multi-classclassification problem into bi-
nary classification problems, which is required when using the binary SVM classifier for
the NLP applications. Our experiments showed that the combination of the BE framework
with the uneven margins SVM is the best option for applying the SVM to the IE prob-
lem, as they gave the best results among all the combinationsand the BE framework also
needed much less computation time and computer memory than other methods. In com-
parison with the one vs. others method and the pairwise method, the BE method was rarely
used in the previous applications of the SVM in NLP, mainly because it gave worse results
when using the standard SVM model. However, the uneven margins SVM significantly
improved the results over the SVM in the BE framework for the IE task. We expect that the
uneven margins SVM with the BE framework would give good results on many other NLP
applications as well.
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