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Abstract

Support Vector Machines (SVM) have been used successfully in many Natural Language
Processing (NLP) tasks. The novel contribution of this paper is in investigating two tech-
niques for making SVM more suitable for language learning tasks. Firstly, we propose
an SVM with uneven margins (SVMUM) model to deal with the problem of imbalanced
training data. Secondly, SVM active learning is employed in order to alleviate the diffi-
culty in obtaining labelled training data. The algorithms are presented and evaluated on
several Information Extraction (IE) tasks, where they achieved better performance than
the standard SVM and the SVM with passive learning, respectively. Moreover, by com-
bining SVMUM with the active learning algorithm, we achieve the best reported results
on the seminars and jobs corpora, which are benchmark datasets used for evaluation and
comparison of machine learning algorithms for IE. In addition, we also evaluate the to-
ken based classification framework for IE with three different entity tagging schemes. In
comparison to previous methods dealing with the same problems, our methods are both
effective and efficient, which are valuable features for real-world applications. Due to the
similarity in the formulation of the learning problem for IE and for other NLP tasks, the
two techniques are likely to be beneficial in a wide range of applications1.

1 Introduction

Support Vector Machines (SVM) is a supervised machine learning algorithm, which

has achieved state-of-the-art performance on many learning tasks. In particular,

SVM is a popular learning algorithm for Natural Language Processing (NLP)

1 The techniques presented in this article, namely SVMUM and the SVM active
learning for IE, have been implemented in the Batch Learning plugin of the
GATE, an open-source NLP platform which can be downloaded from the web site
http://www.gate.ac.uk/. Besides IE, the learning plugin can also do text classification
and relation extraction. For more details about the plugin, see Chapter 11 of the GATE
user manual at http://gate.ac.uk/sale/tao/index.html.
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tasks such as POS (Part-of-speech) tagging (Gimenez and Marquez 2003; Naka-

gawa, Kudoh, and Matsumoto 2001), word sense disambiguation (Lee, Ng, and

Chia 2004), NP (noun phrase) chunking (Kudo and Matsumoto 2000), information

extraction(Isozaki and Kazawa 2002; Li, Bontcheva, and Cunningham 2005a), re-

lation extraction (Zhou et al. 2005), semantic role labeling (Hacioglu et al. 2004),

and dependency analysis (Kudoh and Matsumoto 2000; Yamada and Matsumoto

2003). Almost all these applications adopt the same steps: first they transform the

problem into a multi-class classification task; then convert the multi-class problem

into several binary classification problems using e.g. one-vs-all or one-vs-another ap-

proach (the two approaches will be explained in detail in Section 2); then an SVM

classifier is trained for each binary classification task; and finally, the classifiers’

results are combined to obtain the solution to the original NLP problem.

Actually SVM has also been formulated as a multi-class classifier in various forms

(see e.g. (Crammer and Singer 2001)), and obtained encouraging results for some

applications including several NLP problems (see e.g. (Tsochantaridis et al. 2004)),

where multi-class SVM obtained better results than the binary model. However,

although multi-class SVMs are a promising research area, their implementation

is more complicated than the binary one. Moreover, (Hsu and Lin 2002) com-

pared the binary SVM with one form of multi-class SVM presented in (Crammer

and Singer 2001) on several standard machine learning datasets and their results

showed no significant difference in performance between the two. (Rifkin and Klautu

2004) also compared the three schemes used for multi-class problems: converting

to binary SVM classifications using one-vs-all or one-vs-another methods, complex

error-correcting coding scheme, and single multi-class machine scheme. They ob-

served that when using an effective binary classifier such as SVM, a simple scheme

like one-vs-all or one-vs-another is preferable to other, more complex approaches.

Therefore, this paper only considers the binary SVM classifier.

When compared to other ML classification problems, NLP classification tasks

have several unique characteristics which should be taken into consideration when

applying machine learning algorithms. Perhaps the most important one is that NLP

tasks tend to have imbalanced training data, in which positive examples are vastly

outnumbered by negative ones. This is particularly true for smaller data sets where

often there are thousands of negative training examples and only few positive ones.

Another unique characteristic is that annotating text for training the algorithm is

a time-consuming process, while at the same time unlabelled data is abundant.

Therefore, when SVMs are applied to NLP tasks, these particular aspects should

be taken into account, in order to obtain a practical system with good performance.

The novel contribution of this paper is in investigating two techniques for making

SVM more suitable for language learning tasks. Firstly, we propose an SVM with

uneven margins (SVMUM) model to deal with the problem of imbalanced training

data. Secondly, SVM active learning is employed in order to alleviate the difficulty

in obtaining labelled training data. The algorithms are presented and tested on

several Information Extraction (IE) tasks, however we believe that they could also

improve SVM performance on other NLP tasks.

In comparison to other methods which transform the training data (e.g. subsam-
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pling or oversampling, see Section 3), we adapt the learning algorithm itself to deal

with the imbalanced data. As we will show in Section 6, this method is more effec-

tive. On the other hand, in comparison to other modified SVM algorithms, such as

the multi-class SVM for imbalanced data and the transductive SVM for exploiting

unlabelled data (see e.g. (Collobert et al. 2006)), our SVMUM and active learning

approaches are simple and efficient, because our methods just need to solve the

standard binary SVM and use some simple transformations, while both multi-class

SVM and transductive SVM need to implement and solve some new and more com-

plex optimisation problems. Hence our methods are both effective and efficient, as

is necessary for real-world applications which may have hundreds of classes and

millions of instances.

The rest of paper is structured as follows. Section 2 discusses SVM learning

for NLP tasks. Section 3 focuses on imbalanced data and the SVMUM algorithm.

Section 4 presents the token based classification framework in which SVM classifiers

are used to solve IE tasks, and compares the applicabilities of several different

entity tagging schemes used within the framework. Section 5 discusses SVM active

learning in the context of IE tasks. Section 6 evaluates the algorithms on three

benchmark corpora for IE, with a particular emphasis on measuring the usefulness

of active learning. In the end Section 7 summarizes our findings and presents some

discussions.

2 SVM Learning for NLP

SVM has been used widely in a variety of NLP problems. In most cases an NLP

problem is represented as a multi-class classification problem, which is then decom-

posed into a number of binary classification tasks, with an SVM classifier trained

for each of them. Simple methods, such as one-vs-all and one-vs-another methods,

are commonly used for the multi-class to binary classification conversion and they

have been shown as preferable to other complex error-correcting coding schemes or

single multi-class SVMs (Rifkin and Klautu 2004). The one-vs-all method converts

a n-class classification problem into n binary classifications – the i binary classifica-

tion problem has the examples belonging to the class i as positive examples and the

examples belonging to all other classes as negative examples. In contrast, the one-

vs-another method converts a n-class classification problem into n(n− 1)/2 binary

classifications – given two classes i and j (1 ≤ i < j ≤ n), one binary classification

has the example belonging to class i as positive examples and those examples of

class j as negative examples.

SVM is an optimal classifier in the sense that, given training data, it learns

a classification hyperplane in the feature space, which has the maximal distance

(or margin) to all training examples (except a small number of outliers) (see e.g.

(Cristianini and Shawe-Taylor 2000)). We can regard the margin from the training

examples to the classification hyperplane as a measure of tolerance of the classifi-

cation model to discrepancies between the training and test data, i.e., the bigger

the margin, the more tolerance the model is likely to have. Hence, intuitively, the

large margin of the SVM solution makes the classification robust with respect to
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perturbations of the data points (Chapelle et al. 2000). There are also theoretical

arguments for the maximal margin principle. One is based on the VC dimension

and structural risk minimization principle – by maximizing the margin we mini-

mize the VC dimension which leads to less structural risk and better generalisation

(Vapnik 1998). Actually there are also theoretical results specifying the bounds of

generalisation capabilities for maximal margin learning algorithms such as SVM

(see e.g. (Shawe-Taylor and Cristianini 1999; Cristianini and Shawe-Taylor 2000)),

which also demonstrate the good generalisation capabilities of the SVM algorithm.

Consequently, on classification tasks SVM tends to have better generalisation capa-

bilities on unseen data than other distance- or similarity-based learning algorithms

such as k-nearest neighbor (kNN) or decision trees.

Another SVM property is that it can explore different combinations of the given

features using different types of kernel functions. It can be done by either using the

common kernel functions (e.g. polynomial kernel or Gaussian kernel (Cristianini

and Shawe-Taylor 2000)) or by constructing a feature space explicitly exploring the

features and the relations among them (Cumby and Roth 2003). In contrast, it

would be difficult for many other learning algorithms to deal efficiently with a huge

number of feature combinations.

Specifically in the case of NLP tasks, instances are typically represented by very

high dimensional but sparse feature vectors, which may lead to positive and negative

examples being distributed into two distinctly separate areas of the feature space.

This is particularly helpful for SVM’s search for a classification hyperplane and

also for its generalisation capability. In fact, this is the main reason why SVMs

can achieve very good results on a variety of NLP tasks. It also explains the fact

that in many cases the linear kernel tends to obtain similar performance to more

complicated kernels (note that the linear kernel is much more computationally

efficient than other kernel functions). Such very high dimensional representation is

achieved by forming the feature vector explicitly from text using a large number of

linguistic features and in some cases by using the kernel functions or by explicitly

exploring the combinations of features to map the feature vector into even higher

dimensional space.

Furthermore, as SVM is an optimal margin classifier, the distance of an example

to the SVM classification hyperplane indicates how important the example is, i.e.,

the examples close to the SVM hyperplane are crucial for improving the learnt SVM

model. Consequently, SVM active learning is based on the distance of unlabelled

examples to the SVM hyperplane (see Section 5 for detailed explanations)

3 Imbalanced Training Data and SVMUM

As already discussed in Section 1, NLP classification problems usually have imbal-

anced training data, which is particularly true for smaller data sets where often

there are thousands of negative training examples and only few positive ones. One

the other hand, due to the high annotation costs, small training corpora are used

frequently in some applications such as mixed-initiative text annotation (Day et al.

1997) and adaptive IE (Ciravegna et al. 2002).
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Two approaches have been studied so far to deal with imbalanced data for IE

tasks. The first one under-samples the majority class or over-samples the minority

class in order to obtain a relatively balanced training data (Zhang and Mani 2003).

However, under-sampling can potentially remove certain important examples and

over-sampling can lead to over-fitting and a larger training set. The second approach

is to divide the problem into several sub-problems in two layers, each of which has

less imbalanced training set than the original one (Carreras, Màrquez, and Padró

2003; Sitter and Daelemans 2003). The output of the classifier in the first layer is

used as the input to the classifiers in the second layer. As a result, this approach

needs more classifiers than the original problem. Moreover, the classification errors

in the first layer will affect the performance of the second one. (Gimenez and Mar-

quez 2003) constructs training data from a dictionary extracted from the training

corpus rather than training on the corpus itself. This eliminated many negative

examples and is similar to the under-sampling method (see e.g. (Zhang and Mani

2003)). (Kudoh and Matsumoto 2000) used pairwise classification which trains a

classifier for each pair of classes. In pairwise classification the negative and positive

examples are drawn respectively from only two classes, so the training data would

be much less imbalanced than in the general multi-class case.

A different approach to handling the imbalanced data in IE is investigated here:

namely, modifying the SVM learning algorithm for balanced classification to deal

better with the imbalanced data.

In comparison to the other methods discussed above, our approach to dealing

with imbalanced training data is simpler, as it modifies the learning algorithm

itself and thus does not require special processing of the training data or pairwise

classification.

As discussed in Section 2, a binary SVM classifier corresponds to a hyperplane

in feature space with maximal margin, which separates the positive and negative

training examples. The margin can be regarded as a measure of the error-tolerance

ability of the classifier, since a classifier is more likely to classify a test instance

correctly if it has a larger margin. In general, if a training set is representative of

the whole dataset, a classifier with a larger margin with respect to the training

set would have a better generalisation performance. However, if the training set is

unrepresentative, then a maximal margin classifier (such as SVM) learnt from an

unrepresentative training set may have poor generalisation performance, as illus-

trated in Figure 1. Unfortunately, many imbalanced classification problems, such

as those arising in IE, have only a small number of positive training examples,

resulting in an SVM classifier with poor generalisation capability. As a matter of

fact, previous work has demonstrated that SVM classifiers trained on imbalanced

training data have poor generalisation performance (see e.g. (Lewis et al. 2004; Li

and Shawe-Taylor 2003)).

Figure 1 shows a simple 2-dimensional binary classification problem together

with two kinds of training sets and the corresponding SVM classifiers. The training

examples in the left part of Figure 1 are representative of the whole dataset, and

therefore the maximal margin classifier learned from the training set can classify

correctly most of the unseen test data, meaning that the SVM classifier has a good
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Fig. 1. An illustrative 2-dimensional classification problem and two SVM classifiers. The

two graphs illustrate two different kinds of training sets. The training set on the left is

representative of the whole dataset, whereas the positive examples in the training set on

the right are not. In both figures a ’+’ represents a positive example and a ’-’ for a negative

example. The solid line ’+’ and ’-’ are the training examples and those with dashed lines

are the test ones.

generalisation capability. In contrast, the right graph illustrates a situation where

the training set is not representative of the distribution of all positive examples due

to the very small number of available training examples (only three). In this case, the

SVM classifier with maximal margin would mistakenly classify many unseen positive

examples as negative ones. In other words, the imbalanced training data containing

few positive examples causes the class distribution changes between training and

testing data, which leads to poor performance of the SVM model on the testing

data.

However, as can be seen in Figure 1, if the classification hyperplane could be

moved away from the positive training examples in the imbalanced dataset, then

the classifier would classify more unseen data correctly, i.e., it would have better

generalisation performance. Therefore, if an SVM classifier has to be learnt from

an imbalanced training set which has only a few positive examples, it may be

beneficial to require the learning algorithm to set the margin with respect to the

positive examples (the positive margin) to be somewhat larger than the margin

with respect to the negative examples (the negative margin). In other words, in

order to achieve better generalisation performance, one needs to distinguish the

positive margin from the negative margin when training the SVM. Therefore, we

introduced a margin parameter τ into the SVM optimisation problem to control

the ratio of the positive margin over the negative margin (for details see (Li and

Shawe-Taylor 2003)).

Formally, given a training set Z = ((x1, y1), . . . , (xm, ym)),where xi is the n-

dimensional input vector and yi (= +1 or −1) its label, SVMUM is obtained by

solving the quadratic optimisation problem:

minw, b, ξ 〈w,w〉 + C

m∑

i=1

ξi
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s.t. 〈w,xi〉 + ξi + b ≥ 1 if yi = +1

〈w,xi〉 − ξi + b ≤ −τ if yi = −1

ξi ≥ 0 for i = 1, ..., m

where a parameter τ was added to the constraints of the optimisation problem

for the standard SVM formation. τ is the ratio of negative margin to the positive

margin of the classifier. It is equal to 1 in the standard SVM, which treats positive

and negative examples equally. However, as argued above, for imbalanced training

data, a larger positive margin than negative one (namely τ < 1) would be beneficial

for the generalisation capability of the SVM classifier.

When applying SVMUM to a problem, we first have to determine a value for

the uneven margins parameter τ . If the problem has just a few positive training

examples and many negative ones, then τ < 1 would be helpful. However, the

optimal value of τ is not entirely dependent upon the number of positive examples

in the training set — instead it is actually dependent upon the distribution of

positive training examples among all positive examples. Like other parameters of

learning algorithms, the value of τ can be determined empirically, for example, by n-

fold cross-validation on the training set or using a hold-out development set. On the

other hand, the experimental results presented in (Li, Bontcheva, and Cunningham

2005a) show that the performance of SVMUM is not sensitive with respect to the

value of the uneven margins parameter, probably because the SVM classifier was

learned in a very high dimensional space where the positive training examples may

possibly be far away from the negative ones. Therefore, a reasonable estimation of τ

is able to help the SVMUM to achieve significantly better results than the standard

SVM model (see Section 6).

As shown in (Li and Shawe-Taylor 2003), for the SVM model with bias term, the

solution of SVMUM can be obtained from a related standard SVM via a transfor-

mation:

w∗

2 = w∗

1(1)

b∗2 = b∗1 +
1 − τ

1 + τ
(2)

where {w∗

1 , b
∗

1} is the SVM model for the standard SVM with cost factor C for some

training data, and {w∗

2 , b
∗

2} is the SVM model for the SVM with uneven margin

τ and cost factor Cτ = (1 + τ)/(2 ∗ C) for the same training data (for details see

(Li and Shawe-Taylor 2003)). The transformation is simple — basically it amounts

to adding a τ -related term to the bias term b of the corresponding standard SVM

model. Therefore, in order to achieve computational gains, the SVMUM problem

is not solved directly. Instead, a corresponding standard SVM problem is solved

first by using an existing SVM implementation, (e.g., a publicly available SVM

package2), and then the solution of SVMUM is obtained through a transformation.

On the other hand, the transformation means that the SVMUM is the same

2 The SVMlight package, available from http://svmlight.joachims.org/, was used to learn
the SVM classifiers in our experiments.
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as the standard SVM except for a shift of bias term or equivalently, a shift of

SVM’s output before thresholding. Note that in our experiments we use the same

value for the uneven margin parameter for all computed SVM classifiers. Hence all

classifier outputs have the same amount of shift with respect to the uneven margin

parameter.

3.1 Other SVM Methods for Handling Imbalanced Data

Previous work has shown that SVM learning obtains poor results on imbalanced

training data (see e.g. (Lewis et al. 2004)) and several techniques have been pro-

posed to alleviate this problem. The first one is presented in (Morik, Brockhausen,

and Joachims 1999), which differentiates the cost factor (C) in the SVM’s optimal

problem between the positive training examples (as C+) and the negative ones (as

C−) and compensates the smaller number of positive (or negative) examples by

setting a higher cost value for them. This approach is implemented in the SVMlight

package ((Joachims 1999a)), where an optional parameter j(= C+/C−) is provided

to control different weightings of training errors on positive examples to errors on

negative examples. Consequently, we refer to this method as the cost weighting

method.

(Lewis et al. 2004) proposes another method for improving SVM performance on

very imbalanced data, based on the observation that SVM learning often chooses

a poor threshold (namely bias term) when the numbers of positive examples and

negative examples are very different. Hence the paper suggests that, after training

the SVM, the bias term b of the classifier should be replaced by a better one, which is

obtained by a threshold selection strategy called Scut (Yang 2001). The experiments

in (Lewis et al. 2004; Li and Shawe-Taylor 2003) show that Scut achieves better

performance than the cost weighting method implemented in SVMlight.

As discussed above, the SVMUM approach amounts to shifting the bias term b.

Hence, in theory it is equivalent to Scut, when one regards the latter as a heuristic

method for estimating the uneven margins parameter τ . On the other hand, the

parameter τ (i.e., the ratio of the negative margin to the positive one) is easier to

understand than the bias term. For instance, given a classification problem with only

a few positive training examples but many negative ones, we know that a small value

of the margin parameter (between 0 and 1) for negative training examples should

be used in SVMUM, as we know that the margin for positive training examples

is fixed as 1. However it is much harder to determine what is a suitable value of

the SVM bias (as needed by Scut), because the SVM bias b can be any positive or

negative real number. Therefore, while SVMUM is theoretically equivalent to Scut
3, in practice, SVMUM is better, because it is easier to find an (sub-)optimal value

for the uneven margins parameter than for the bias term. This has also been backed

by the experimental results where SVMUM outperforms Scut on some imbalanced

datasets (see (Li and Shawe-Taylor 2003)).

3 There is one-to-one correspondence between changing the uneven margins parameter
and changing the bias term, as shown in the transformation formula (2).
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In addition, it has been shown that SVM without the bias term is more useful

than SVM with bias term on some problems like adaptive document filtering (see

e.g. (Cancedda et al. 2003)). While one can introduce an uneven margins parameter

into the SVM without bias term to make it handle imbalanced data better, it is

not possible to use the Scut technique for the SVM without bias term, because the

Scut method adjusts the bias term.

As discussed above, both SVMUM and Scut achieve better performance than

the cost weighting method. This improvement can be explained in terms of the

restrictions these different approaches put on the learning algorithms. Firstly, as

illustrated above, when there are only a few positive training examples, they tend

to be unrepresentative of all positive examples and therefore moving the SVM

hyperplane away from the positive training examples would tend to improve the

generalisation capability of the SVM model. One way to achieve this is by adjusting

the uneven margins parameter (or equivalently the bias term). In contrast, in the

case of the 1-norm soft margin formulation of the SVM which is used in most

applications, the cost weighting method amounts to using a larger cost parameter

C+, which is the upper bound of the dual form variable αi for one positive training

example xi (for details see (Cristianini and Shawe-Taylor 2000)). From the SVM

margin’s point of view, the cost weighting method tries to increase the margin of

the positive training examples in an indirect fashion by increasing the upper bound

of their dual form variables. So while increasing the value of αi would certainly

increase the margin of the corresponding example xi, increasing the upper bound

of αi would not necessarily result in a bigger value of αi, because αi is determined

by solving the quadratic optimisation problem which has many other constraints

besides the upper bound. In our opinion, this is the reason why the cost weighting

method is not as effective as the uneven margins model and Scut when dealing with

imbalanced training data.

4 SVM-Based Information Extraction

Information Extraction (IE) analyses documents in order to extract useful snippets

of information. The process takes texts (and sometimes speech) as input and pro-

duces fixed-format, unambiguous data as output. For example, events, entities or

relations can be extracted automatically from text such as newswire articles or Web

pages. IE is useful in many applications, such as business intelligence, automatic

annotations of web pages for Semantic Web, and knowledge management.

A wide range of machine learning techniques have been used for IE and achieved

state-of-the-art results, comparable to manually engineered IE systems. The learn-

ing approaches to IE can be classified broadly into two main categories: rule learning

and statistical learning. The former methods induce a set of rules from training ex-

amples, e.g. SRV (Freitag 1998), RAPIER (Califf 1998), WHISK (Soderland 1999),

BWI (Freitag and Kushmerick 2000), and (LP )2 (Ciravegna 2001). Statistical sys-

tems learn a statistical models or classifiers, such as HMMs (Freigtag and McCallum

1999), Maximal Entropy (Chieu and Ng 2002a), SVM (Isozaki and Kazawa 2002;

Mayfield, McNamee, and Piatko 2003; Li, Bontcheva, and Cunningham 2005a), and
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Perceptron (Carreras, Màrquez, and Padró 2003; Li, Bontcheva, and Cunningham

2005b).

IE systems also differ from each other in the NLP features that they use. These

include simple features such as token string (namely the token itself) and capitali-

sation information, linguistic features such as part-of-speech, semantic information

from gazetteer lists, and genre-specific information such as document structure.

The SVM-based IE approach adopted in this work consists of three stages: lin-

guistic pre-processing to obtain the feature vectors, training or applying classifiers,

and finally post-processing the results to tag the documents.

4.1 Linguistic Pre-processing

The aim of the pre-processing is to form input vectors from documents. Each docu-

ment is first processed using the open-source ANNIE system, which is a part of the

GATE NLP toolset4 (Cunningham et al. 2002). This produces a number of linguistic

features, including capitalisation information, token types (namely word, number,

punctuation), lemma, part-of-speech (POS) tag, semantic classes from gazetteers,

and named entity types according to ANNIE’s rule-based recogniser.

Based on this linguistic information, an input vector is constructed for each token,

and a label that indicates whether or not the token is in one particular part of an

entity (e.g. the beginning or last token of an entity) is associated with each vector.

Since in IE the context of the token is usually as important as the token itself, the

features in the input vector come not only from the target token, but also from the

preceding and following ones. As the input vector incorporates information from

the context surrounding the target token, features from the different tokens can be

weighted differently, based on their position in the context. The weighting scheme

we use is the reciprocal scheme, which weights the surrounding tokens reciprocally

to the distance to the token in the centre of the context window5. In detail, it assigns

weight 1 to the features from the target token and the immediate neighboring tokens

and weight 1/(n+1) to the features of the tokens which are n tokens away from the

target (central) token. This reflects the intuition that the nearer a neighboring token

is, the more important it is for classifying the given token. Our experiments showed

that such a weighting scheme obtained better results (by 0.5 - 1% F-measure) than

the commonly used equal weighting of features in four of the six experiments on

three benchmarking datasets (Li, Bontcheva, and Cunningham 2005a).

4.2 Token-Based Classification Framework for IE

The key to this approach is to convert the recognition of entities into a token

classification problem. For each token, we decide whether the token is at the start

4 Available from http://gate.ac.uk/
5 It may be argued that the weighting scheme is not necessary because a proper weight

can be learned for each feature during SVM learning. However, a more linguistically-
intuitive representation of features tends to facilitate SVM training, as demonstrated
by the experimental results detailed in (Li, Bontcheva, and Cunningham 2005a).
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or end of an entity, and what type of entity is being started or ended. This multi-

class classification problem is then solved by decomposing it into a number of binary

classification tasks using the one-vs-all method.

In contrast, previous work has adopted different approaches to formulating the

IE problem as a classification task. For example, some IE systems (see. e.g. (Roth

and Yih 2001)) were not based on tokens. Instead they treated a sequence of words

as the entity target. Since it is not possible to know in advance the expected word

length of each entity, one may have to test word sequences with increasing spans

(up to a pre-defined maximum), which may result in much more instances than

those considered by a token-based framework. To deal with this problem, the IE

system described in (Roth and Yih 2001) applied a two-stage architecture. The first

stage employed some classifiers to filter out those fragements that were unlikely to

be entities. A relatively small number of fragements in one document survived

after the first stage. The second stage applied the multi-class classifier SNoW to

determine whether or not a fragement that survived from the first stage was an

entity and, if it was, the type of the entity. As pointed out in Section 3, the major

concerns with the two-stage architecture are that it needs more classifiers than the

original problem and the errors in the first stage will affect the performance of

the second one. The named entity tagging system described in (Cumby and Roth

2003) avoided the problem of too many instances by making the assumption that

only NP chunks can be training and testing instances for named entity recognition,

which constrains the number of instances. However, this requires reliable NP chunk

recognition to pre-process the input text first and assumes that each named entity

is an NP chunk, which affects overall performance and may not be applicable to all

IE tasks.

There are a number of other approaches for converting multi-word entities into a

number of token-based binary classification problems. One type of tagging scheme

assigns tag to every token in document. For example, the BIO tagging scheme

assigns X-B to the beginning token of an entity belonging to type X, assigns X-I to

the other tokens inside the entity, and assigns O to those tokens not belonging to

any entities considered (see (Tjong Kim Sang and Meulder 2003)). Another similar

scheme is the BIOLU tagging scheme. The BIOLU scheme assigns X-U to the token

of a single-token entity of type X; X-B and X-L respectively to the beginning and

last tokens; X-I to inside tokens; and O to tokens not belonging to any entity.

(Isozaki and Kazawa 2002) adopted the BIOLU scheme. They trained four SVM

classifiers for each entity type – besides the two SVMs for start and end(like ours),

also one for middle tokens, and one for single token entities. They also trained an

SVM classifier for non-entity tokens. Other tagging schemes assigns tags only to

some tokens in the text. One such example is the BL scheme (which we use) which

assigns X-B to the starting token of an entity of type X and X-L to the last token.

Single-token entities get two tags: X-B and X-L. Yet another approach is to train

an SVM classifier for every possible transition of tags (Mayfield, McNamee, and

Piatko 2003). Depending on the number of entities, this approach may result in a

large number of classifiers.

Overall, in comparison, the BL scheme has the smallest number of tags than all
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other schemes, thus requiring fewer classifiers to be trained and consequently being

computationally more efficient. Moreover, intuitively the boundary tokens are more

characteristic than the middle tokens in an entity, because the boundary tokens not

only represent part of the content of the entity, but they also act as delimiters, which

in many cases makes them easier to recognise than the inside tokens. Therefore our

conjecture was that overall the BL scheme would be more efficient and effective

for IE tasks. Section 6 below presents our experimental comparison of the three

tagging schemes, which justifies these conclusions.

On the other hand, since both the BIO scheme and BIOLU scheme have a tag

for each token, it is possible to employ post-processing techniques such as the

Viterbi search algorithm (Jelinek 1997), in order to select the most suitable tag

for each token, based on the confidence scores of the surrounding tags and the

tag probabilities. IE approaches based on the BL scheme, however, cannot use the

Viterbi algorithm to combine the B and L classifier results, because the Viterbi

algorithm needs a tag for each token (a tag in our case corresponds to one hidden

state in the Hidden Markov Model for applying the Viterbi algorithm) but many

tokens (namely those tokens belonging to non-entity and also those tokens in the

middle of an entity) do not have tags according to the BL scheme. Instead, we had

to implement a different post-processing procedure, which is explained next.

4.3 Post-processing

As discussed above, after classification, the start and end tags of the entities are

obtained and need to be combined into a single entity tag. Therefore some post-

processing is needed to guarantee tag consistency and to try to improve the results

by exploring other information. The currently implemented post-processing proce-

dure has three stages. First, in order to guarantee the consistency of the recognition

results, for each entity type, the document is scanned from left to right to remove

beginning tags not immediately followed by an end tag and vice versa. The second

stage filters out candidate entities from the output of the first stage, based on their

length (see also (Freitag and Kushmerick 2000)). In detail, a candidate entity tag

is removed if the entity’s length (i.e., the number of tokens) is not equal to a length

encountered in the training set for this type of entity. The third stage compares all

possible entity types for a sequence of tokens and chooses the type which has the

highest confidence score among all of them. This confidence score is calculated as

the multiplication of the confidence scores6 of the beginning and end tokens.

5 SVM Active Learning for IE

As discussed in the introduction, in addition to the problem with imbalanced train-

ing data, there is also the challenge of obtaining sufficient training data for IE, due

6 Confidence score of one SVM classifier for one test instance was computed by trans-
forming the output of the SVM (before thresholding) via a Sigmoid function s(x) =
1/(1 + exp(−βx)) where β was set as 2.0 in our experiments.
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to the complexity of the annotation task. One way to overcome this problem is

to use active learning which minimises the number of labelled examples required

to achieve a given level of performance. It is usually implemented as a module in

the learning system, which selects an unlabelled example based on its properties

and/or the current model. Then the system asks the user to label the selected

example, adds it to the training set, and updates the model accordingly. Active

learning is particularly useful in IE, where there is an abundance of unlabelled

text, among which only the most informative instances need to be found and an-

notated. Another approach for exploiting unlabelled data is the transductive SVM

(see (Joachims 1999b; Collobert et al. 2006)), however in this paper we focus on

SVM active learning.

SVM active learning is an SVM-specific algorithm (Campbell, Cristianini, and

Smola 2000; Schohn and Cohn 2000), which uses the margin (or the distance)

from the unlabelled example to the classification hyperplane as a measure of the

example’s importance for learning. This type of active learning has been applied

successfully already for text classification (Tong and Koller 2001), spoken language

understanding (Tur, Schapire, and Hakkani-Tur 2003), noun phrase chunking (Ngai

and Yarowsky 2000), named entity recognition (Vlachos 2004), statistical parsing

(Hwa 2004) and Japanese word segmentation (Sassano 2002). These experiments

have shown that SVM active learning clearly outperformed SVM with passive learn-

ing, however no attempt was made to tackle the problem of imbalanced training

data at the same time. With respect to using SVM active learning for information

extraction, relevant approaches are discussed in Section 6.4 below, however all but

(Vlachos 2004) involve non-SVM-based machine learning algorithms. In particular,

(Vlachos 2004) studied different approaches for selecting unlabelled examples based

on the confidence score of the SVM classifier. The results were reported using the

CoNLL-2003 shared task data, which enables a direct comparison to our approach.

In a nutshell, Table 10 shows that combining active learning with SVMUM achieves

better results.

Now let us explore in detail how active learning can be combined with the SV-

MUM model, in order to address simultaneously both the lack of sufficient training

data and its imbalanced nature. The approach is based on the observation that

the margin of the SVM classifier to one individual example can be used both for

dealing with imbalanced data and for measuring how informative the example is

for training – this forms the basis for our version of the SVM active learning al-

gorithm. In addition, we address some specific issues arise specifically during the

application of SVM active learning to IE tasks, unlike other applications such as

image classification and text categorisation.

Given an SVM classifier (in primal form), namely a weight vector W =

{w1, . . . , wl}, a bias term b, and an example X = {x1, . . . , xl}, the margin of the

example X to the SVM classifier is defined as

m(X, W ) =< X, W > +b =

l∑

i=1

xiwi + b(3)
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The margin measures how close the example is to the SVM hyperplane and can

be regarded as the SVM’s confidence in classifying X correctly – the smaller the

margin m(X, W ), the lower the confidence. In other words, the smaller the margin,

the more informative the example is for training the model. Therefore, the SVM

active learning algorithm is based on the margin – it selects the example(s) with

the smallest margin (lowest confidence).

In the context of IE, one general framework for applying SVM active learning is

as follows:

1. Randomly choose n0 documents and manually annotate them as the initial

training set S0. Train the SVM classifiers on S0 for the IE task.

2. Apply the SVM classifiers to un-annotated documents, and select the n ex-

amples with the smallest margins from the un-annotated documents. Label

them and add them to the training set.

3. Use the extended training set to re-train the SVM classifiers.

4. Repeat steps 2 and 3 for a pre-defined number of loops or until the system

obtains a pre-defined performance level.

When putting this algorithm in practice, one needs to consider several important

questions. Firstly, one needs to determine the correct granularity for the exam-

ples selected for active learning (Step 2) – one token at a time, a token with its

surrounding context, or one document at a time. Most previous work has used

document-level granularity, with the exception of (Wu and Pottenger 2005; Jones

2005) who experimented with using sets of tokens. Therefore, this paper presents

experimental results evaluating the three possibilities, in order to identify which

one is the most suitable.

In addition, whereas token margins can be used directly in the token-based ap-

proaches, selecting documents as examples is based on the average confidence of

all its tokens. In detail, if there are m classifiers for a given IE task and for each

classifier Ci we select m0 tokens with the smallest margins (mi1, . . . , mim0
) from

a document d, then we compute the average confidence for the document d as the

double sum

cd = (

m∑

i=1

m0∑

j=1

mij)/(m ∗ m0)(4)

The document with the smallest average confidence would be selected by the active

learning algorithm.

The second question is determining the optimal parameter settings for the active

learning algorithm. Our experiments (Section 6) evaluate different values of the

three parameters:

• n0 (the number of initial documents for training);

• n (the number of examples selected in the active learning loop);

• m0 (the number of tokens used per document for calculating its average con-

fidence).

The third issue arises the combination of active learning with SVMUM. As dis-
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cussed in Section 3, SVMUM is used for classification in order to address the prob-

lem of imbalanced data. However, for active learning purposes, the SVM margins

for tokens in unlabelled documents is computed with respect to the standard SVM

model, because SVMUM is actually obtained by solving a standard SVM and there-

fore those unlabelled examples which are close to the standard SVM classifier would

be important for improving the current SVMUM model in the next round of learn-

ing. As a matter of fact, we did also experiment with computing the margin with

respect to SVMUM for active learning and the results were clearly worse than those

using the standard SVM margin, which verified our conjectures above.

We will discuss these three issues in more detail in the experiments presented

below.

6 Experiments

6.1 Experimental datasets

We evaluated SVMUM and SVM active learning on three IE benchmark corpora

covering two different IE tasks – named entity recognition (CoNLL-2003) and tem-

plate filling (Seminars and Jobs). CoNLL-20037 is the most recent corpus for English

named entity recognition. The Seminars and Jobs corpora8 have been used to eval-

uate active learning techniques for IE, thus enabling a comparison with previous

work: (Finn and Kushmerick 2003), (Califf 1998) and (Ciravegna et al. 2002).

In detail, we used the English part of the CoNLL-2003 shared task dataset, which

consists of 946 documents in the training set, 216 document in the development

set, and 231 documents in the test set, all of which are Reuters news articles. The

corpus contains four types of named entities — person, location, organization and

miscellaneous.

In the other two corpora domain-specific information was extracted into a number

of slots. The Jobs corpus includes 300 software related job postings and 17 slots

encoding job details, such as title, salary, recruiter, computer language, application,

and platform. The Seminars Corpus contains 485 seminar announcements and four

slots – start time (stime), end time (etime), speaker and location of the seminar.

Unless stated otherwise, the experiments in this paper use the SVMUM pa-

rameter settings derived empirically in (Li, Bontcheva, and Cunningham 2005a).

In particular for the uneven margin parameter τ , we tried several values on the

CoNLL-2003 development set and on the whole data for the other two datasets and

found the most suitable value for each corpus. Table 1 presents the values of three

important parameters: the size of the context window, the SVM kernel type and

the uneven margins parameter, used in our experiments.

6.2 Experiments with SVMUM

Named Entity Recognition Table 2 compares the two learning algorithms: SV-

7 See http://cnts.uia.ac.be/conll2003/ner/
8 See http://www.isi.edu/info-agents/RISE/repository.html.
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Table 1. The values of the three key SVM parameters used in the experiments on

the three datasets.

Context window size SVM kernel τ (uneven margins parameter)

Conll03 4 quadratic 0.5

Seminars 5 quadratic 0.4

Jobs 3 linear 0.4

MUM and the standard SVM on the CoNLL-2003 test set, together with the re-

sults of two other systems, which participated in the CoNLL-2003 shared task: the

highest scoring system (Florian et al. 2003) and the SVM-based system (Mayfield,

McNamee, and Piatko 2003). We employed the bootstrap resampling method to

compute the confidence intervals for the results of our systems. The same method

had been also used to compute the confidence interval for the results of the par-

ticipating systems of the CoNLL-2003 shared task (Tjong Kim Sang and Meulder

2003)

Table 2. Results on the CoNLL-2003 corpus: F -measure(%) per entity type and

overall micro-averaged F-measure. The 95% confidence intervals for results of the

two participating systems are also presented – Florian achieved the best results

among all participating systems, whereas Mayfield is also based on SVM. The best

performance figures for each entity type and overall appear in bold.

System LOC MISC ORG PER Overall

SVMUM 89.25 77.79 82.29 90.92 86.30 ±0.8

Standard SVM 88.86 77.32 80.16 88.93 85.05 ±0.8

Florian 91.15 80.44 84.67 93.85 88.76 ±0.7

Mayfield 88.77 74.19 79.00 90.67 84.67 ±1.0

As can be seen, our SVMUM approach performs significantly better than the

participating Mayfield SVM-based system. However, the two systems differ from

each other not only in terms of SVM models used but also in other aspects such as

linguistic features. Therefore, in order to make a fair comparison between SVMUM

and the standard SVM algorithm, we ran additional experiments comparing the

two and using the same features. As can be seen in Table 2, even under the same

experimental settings SVMUM still outperforms the standard SVM model, .

Nevertheless, it should be noted that our SVMUM results are still lower than the

best Florian system and the second-best CoNLL-03 system (see (Tjong Kim Sang

and Meulder 2003)), while outperforming the remaining 14 shared task participants.
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The best system used four different machine learning algorithms and combined their

results in a sophisticated way (Florian et al. 2003). In contrast, our system is only

based on one learning algorithm (SVMUM) and therefore one could expect that the

scores could be improved if we combine SVMUM with other learning approaches.

The second best system did use only one maximum entropy classifier, but it differs

in utilising both global and local features. Similar to our approach, local features

are based on the current token and its context. In addition, global features were

derived from the whole document. For example, one type of such a feature was to

check whether or not the first occurrence of a given token was initially capitalised.

In contrast, our SVMUM system just uses local features and therefore looses out,

because as shown in (Chieu and Ng 2002b), global features alone can improve F-

measure by 2-3 percent.

In addition to comparing our results to previous works, we also studied the effect

of the uneven margins parameter on SVMUM’s performance. Table 3 presents the

results for several different values. The results are broken down into Precision,

Recall and F1, in order to also show the effect of the uneven margins parameter on

balancing Precision and Recall.

Table 3. Comparison of different values of the uneven margins parameter of

SVMUM: results on the CoNLL-2003 corpus, Precision(%), Recall(%) and F1(%).

τ = 1.0 0.8 0.6 0.4 0.2

Precision 93.51 92.44 89.76 86.81 79.64

Recall 77.99 80.43 82.87 84.95 83.64

F1 85.05 86.02 86.18 85.87 81.59

As discussed earlier, an uneven margins parameter τ = 1.0 corresponds to the

standard SVM. From the results we can see that it results in imbalanced precision

and recall, i.e., high precision and low recall. The τ parameter allowed the system

to achieve more balanced precision and recall — a τ less than 1 will decrease the

bias term of the SVM model and hence increase recall. For example, comparing

τ = 0.6 to 1.0, precision decreases by 4 points but recall increases by 5 points, and

as a result, F1 increases overall. Secondly, when τ changes from 0.8 to 0.4, precision

decreases and recall increases, but F1 does not change much (within 0.5 point),

showing that F1 is not very sensitive to the τ value, as long as it is not very small

or large.

Template Filling The effect of the uneven margins parameter on SVM perfor-

mance was also evaluated on the jobs corpus and, in addition, SVMUM is compared

to several other state-of-the-art learning systems, including the rule based systems

Rapier (Califf 1998), (LP )2 (Ciravegna 2001) and BWI (Freitag and Kushmerick

2000), a statistical system HMM (Freitag and Kushmerick 2000), and a double clas-

sification system (Sitter and Daelemans 2003). In order to make the comparison
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as informative as possible, the same settings are adopted in our experiments as

those used by (LP )2, which previously reported the highest results on this dataset.

In particular, the results are obtained by averaging the performance in ten runs,

using a random half of the corpus for training and the rest for testing. Only ba-

sic linguistic features are used: token form (namely the token itself), capitalisation

information, token types (namely word, number, and punctuation), and lemmas,

because the same linguistic features were used by the other systems, e.g., (LP )2.

Table 4 presents the F1 measure per slot and also the overall macro-averaged

F1. It should be noted that the majority of previous systems only reported per slot

F-measures, without overall results. However, an overall measure is useful when

comparing different systems on the same dataset, so a macro-averaged F1 for these

systems was computed from their per-slot F1.

Table 4. Comparison of SVMUM against standard SVM and other systems on the

Jobs corpus: F1 (%) on each entity type and overall performance as macro-averaged

(MA) F1. The 95% confidence interval for MA F1 of SVMUM is also given. The

highest per slot score and overall performance appear in bold.

Slot SVMUM SVM (LP )2 Rapier DCs BWI HMM CRF

Id 97.7 97.3 100 97.5 97 100 – –

Title 49.6 47.6 43.9 40.5 35 50.1 57.7 40.2

Company 77.2 73.8 71.9 70.0 38 78.2 50.4 60.9

Salary 86.5 76.6 62.8 67.4 67 – – –

Recruiter 78.4 78.2 80.6 68.4 55 – – –

State 92.8 91.2 84.7 90.2 94 – – –

City 95.5 95.2 93.0 90.4 91 – – –

Country 96.2 95.1 81.0 93.2 92 – – –

Language 86.9 86.3 91.0 81.8 33 – – –

Platform 80.1 77.3 80.5 72.5 36 – – –

Application 70.2 65.6 78.4 69.3 30 – – –

Area 46.8 47.2 53.7 42.4 17 – – –

Req-years-e 80.8 78.0 68.8 67.2 76 – – –

Des-years-e 81.9 80.1 60.4 87.5 47 – – –

Req-degree 87.5 82.2 84.7 81.5 45 – – –

Des-degree 59.2 39.0 65.1 72.2 33 – – –

Post date 99.2 99.5 99.5 99.5 98 – – –

MA F1 80.8 ±0.7 77.1 ±1.3 77.2 76.0 57.9 – – –

Table 4 presents the results of our SVMUM system, the standard SVM algorithm,

and the other six systems which have been evaluated on the Jobs corpus. Note that

results on all 17 slots are available only for three of those systems: Rapier, (LP )2
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and double classification. The results of all six systems, except SVM and SVMUM,

are taken from the publications cited above.

The results show that the overall performance of SVMUM is better than that

of the standard SVM model as well as the other three fully evaluated systems.

In more detail, SVMUM outperforms SVM in all but two of the template slots

(Area and Post-date). The double classification system has much worse overall

performance than our approach and the other two fully evaluated systems, despite

having obtained the best result on one of the slots. The HMM-based system was

evaluated only on two slots and while it achieves the best result on one of them,

it has a significantly worse performance on the other. BWI obtained better results

than SVMUM on three slots, but due to lack of results on the other slots, it is

impossible to compare the two algorithms on the entire Jobs dataset.

Impact of Corpus Size on Performance One of the hypotheses of this paper

is that the uneven margins parameter is even more helpful on smaller training sets,

because the smaller the training set, the more imbalanced it could be. For instance,

each document in the jobs corpus provides typically only one positive example

per slot and the tokens not belonging to any slot vastly outnumber the annotated

tokens.

Therefore in order to verify this conjecture, we carried out experiments starting

with a small number of training documents and gradually increased the corpus size.

Table 5 shows the results of the standard SVM and SVMUM on different number

of training documents from the CoNLL-2003 and Jobs datasets, respectively. Un-

surprisingly, the performance of both SVMs improves consistently as more training

documents are used. However, much more importantly, the smaller the size of the

training set, the greater the difference between the SVM and SVMUM results,

which verifies the hypothesis above.

Table 5. The performances of the SVM system with small training sets:

macro-averaged F1(%) on the CoNLL-2003 (test set) and Jobs. The SVMUM

(τ = 0.4) is compared to the standard SVM model with even margins (τ = 1).

The 95% confidence intervals for the Jobs dataset are also presented, showing the

statistical significance of the results.

Training data 10 20 30 40 50

τ = 0.4 Conll 56.0 63.8 67.6 69.4 71.9

Jobs 51.6 ±1.9 60.9 ±1.8 65.7 ±1.4 68.6 ±1.4 71.1 ±1.8

τ = 1 Conll 41.2 54.6 61.2 66.5 68.4

Jobs 47.1 ±2.4 56.5 ±2.2 61.4 ±1.9 65.4 ±1.4 68.1 ±1.5
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6.3 Experiments with the Different Tagging Schemes

As discussed in Section 4.2, we formalise the IE task as classification based on

the BL entity tagging scheme. Other commonly used tagging schemes are BIO and

BIOLU and a comparison between these and the BL scheme also appears in Section

4.2. There we also hypothesised that a BL-based IE system is more efficient and

effective than those based on BIO or BIOLU.

Here we present the experiments on the CoNLL03 corpus to substantiate this

claim. For this comparison we used exactly the same features and SVMUM set-

tings, except for label O as will be explained below. We also adopted the Viterbi

algorithm to do post-processing for the experiments using BIO and BIOLU (see

Section 4.2 for details on why Viterbi cannot be used with the BL scheme). To

make a fair comparison, the experiments for BIO and BIOLU also used the first

and second stages of the post-processing for the BL scheme after doing the Viterbi

searching, namely checking consistency of token labels and using the entity’s length

information, as explained in Section 4.3.

From some initial experiments with the BIO and BIOLU schemes, using the

same SVMUM settings as for the BL approach, we found that precision is very

high (about 0.97) but recall is very low (about 0.20), meaning that most named

entities are not identified, because the confidence scores for the non-entity tokens

(the O label) are too high in comparison to the scores for the tokens belonging to an

entity. Therefore, we needed to decrease the scores for non-entity in order to employ

the Viterbi searching algorithm to recognize more named entities correctly. After

several experiments based on the development set we found that a very low value

of tau (-6) for the label O gave a good balance between precision and recall and

the best F1 on the development set. Hence we used it in the experiments discussed

next.

Table 6 presents the results on the CoNLL-2003 corpus for the three tagging

schemes. In a nutshell, the results for the BL scheme are much better than those

for the other two schemes on each named entity type as well as overall. BIOLU

obtains better results than the BIO scheme.

Table 7 shows the training and testing times for each tagging scheme. The testing

time is the time taken to apply the SVM models to both the development and test

datasets. We can see that the BL scheme takes less training and testing times than

the other two schemes, and BIO took less time than BIOLU. Note that the running

times shown here are for SVM with a quadratic kernel. If a linear kernel is used,

these times can be reduced significantly, but the comparative ranking of the three

schemes would remain unchanged.

The experimental results discussed above verify our conjecture about IE efficiency

using the three tagging schemes, namely that the BL scheme obtains the best results

and has the lowest training and testing times. Hence the BL scheme is adopted in

our other experiments presented in this paper.

In order to investigate how difficult it is to recognise the different entity tokens,

Table 8 presents results for each type of tag in the three tagging schemes. We

can see that the entity boundary tokens (namely the B and L tags) are easier to
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Table 6. Performance comparison of the different tagging schemes: recognition

results on the CoNLL-2003 test dataset, precision(%), recall(%) and F1(%).

Tagging scheme Measure LOC MISC ORG PER Overall

BL Precision 90.6 84.3 83.7 93.3 88.6

Recall 87.9 72.2 80.9 88.6 84.1

F1 89.2 77.8 82.3 90.9 86.3

BIOLU Precision 86.3 85.7 77.6 88.7 84.4

Recall 85.8 59.1 72.1 84.5 78.1

F1 86.1 69.9 74.8 86.5 81.1

BIO Precision 85.0 83.4 74.5 84.2 81.5

Recall 83.6 56.9 67.9 79.7 74.5

F1 84.3 67.7 71.0 81.8 77.9

Table 7. Running times on the CoNLL-2003 corpus for different tagging schemes.

BL BIOLU BIO

Training time 29172s 44827s 33044s

Testing time 6678s 25414s 15403s

recognise in comparison to the middle tokens (the I tag) in most cases, indicating

that the boundary entity tokens are more characteristic than the middle ones. The

other more subtle issue is whether one should regard single-token entities as being

both a beginning token and end token, or alternatively, single-token entities should

be represented as an independent class. We can see from the BIOLU results that

for the BIOLU scheme the single-token entity class (namely tag U) gave better

results than the B and L classes on three of the four entity types. However, if at

the same time we compare the results for the B and L tags for the BL and BIOLU

schemes, considering the single-token entity as an independent class in the BIOLU

scheme made the recognisation of the B and L tags much harder than regarding

the single-token entity as being both the B and L tags in the BL scheme. As a

consequence, overall the BL scheme is more effective in recognising named entities

than the BIOLU scheme, as shown in Table 6. Last, but not least, regarding single-

token entities as separate begin and end tags is also more efficient computationally,

because it cuts the need to train a separate classifier for such entities only. Hence,

overall, regarding single-token entities as separate beginning and end entity tokens is
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a better choice than regarding the token in a single-token entity as one independent

class.

Table 8. Performance comparison of different tagging schemes: results for each

individual tag on the test dataset of the CoNLL-2003 corpus, F1(%).

Scheme Tag LOC MISC ORG PER

BL B 89.5 79.3 82.6 91.7

L 89.6 79.9 83.8 91.9

BIOLU B 83.8 64.7 77.3 93.5

I 86.2 58.1 76.6 86.0

L 83.8 66.8 80.4 92.9

U 90.0 83.6 83.4 86.5

BIO B 89.5 79.3 82.6 91.7

I 84.7 65.6 79.6 93.2

6.4 Experiments with SVM Active Learning

As already discussed in Section 5, active learning starts off by selecting several

examples to train an initial model, then in each round more examples are added to

the training set.

For the CoNLL-2003 corpus, the initial training documents were chosen randomly

from the provided training set and in each active learning round further examples

were selected from the remaining documents in that set. The results reported in

this paper are on the Test Set.

For each of the other two corpora (Seminars and Jobs), the initial training set

was chosen randomly from the whole corpus and each active learning loop selected

samples from the remaining documents. Then all documents not used for training

were used for testing. All results reported below are the average from ten runs.

The first experiments below use entire documents as samples. The other two

types of samples – token and token with context – are discussed in the last part of

this subsection.

6.4.1 Active Learning vs Random Selection

.

The first comparison is between SVM active learning and a random selection

baseline. For all three datasets (CoNLL-2003, Seminars and Jobs), two documents

were chosen as the initial training set and then each active learning loop expanded
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this set by adding the document with the smallest average confidence. The av-

erage confidence of a document was calculated using the confidence for 5 tokens

on both CoNLL-2003 and Seminars corpora and 2 tokens on the Jobs corpus (see

Section 6.4.3 on how these values were obtained).

Figure 2 presents the learning curves for SVM active learning and random selec-

tion on the three datasets. Both used SVMUM. The results for the standard SVM

with random selection are also presented at some data points for comparison. A

learning curve shows the performance trend of a system evaluated on the test set

when more and more labelled documents are added to the training set.

Fig. 2. Learning curves respectively on the three datasets: the overall F1 plotted against

different numbers of documents in the training set. Active learning (denoted Active in the

graphs) is compared with random selection (denoted Random) for the SVMUM algorithm.

The results for the standard SVM model with random selection (Standard SVM) are also

presented for comparison. The error bars show the 95% confidence intervals, which were

computed from the 10 runs for each experiment. For clarity, only the error bars for active

learning are plotted.

Firstly, as expected, the results of active learning are clearly better than those of

random selection on all three datasets. It is also worth noting that again SVMUM

performs significantly better than the standard SVM with random selection.

Secondly, the gap between active learning and random selection widens after the

first few learning loops, however, the difference is dataset-dependent, i.e., smaller
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on some sets than on others. The learning curves become flat after approximately

20 loops for both active learning and random selection.

Thirdly, for clarity, only the confidence intervals for active learning are plotted

in Figure 2. As a matter of fact, the confidence intervals for random selection are

bigger than the corresponding ones for active learning at almost all data points on

all three datasets, showing that the results of active learning are more stable.

Finally, results on comparing the standard SVM active learning and SVMUM

active learning are presented in Section 6.4.2 next, see Table 10. In brief, the con-

clusion is that SVMUM with active learning outperforms the standard SVM, both

with random selection and active learning.

6.4.2 Comparison of SVMUM active learning against other systems

.

This section compares SVMUM active learning to other approaches, using the

seminars corpus as a benchmark, due to the fact that the majority of previous

work has reported results on this dataset. For instance, (Finn and Kushmerick

2003) evaluated several active learning techniques based on the (LP )2 rule learning

algorithm. Table 9 compares the results of SVMUM active learning against those

presented in (Finn and Kushmerick 2003), under similar experimental settings9.

Table 9. Comparisons of our results with previous best results and the upper

bounds: the overall F1 (%) on the Seminar corpus.

#docs SVMUM+AL Finn03 Upper bound

20 73.0 61 77

30 76.1 66 79

We can see that SVMUM active learning has much better performance than the

best results achieved by rule-based active learning discussed in (Finn and Kushmer-

ick 2003). In fact, our active learning results are close to the optimal results, which

were estimated as the upper bound on the performance of any selection strategy.

On the Jobs dataset, the SVMUM active learning results are better than the

active learning method based on Rapier (Califf 1998). For example, with 40 training

documents, the overall F1 of our active learning approach is 0.71, higher than

Rapier’s corresponding figure (around 0.64).

(Vlachos 2004) applied SVM active learning on the CoNLL-03 corpus for named

entity recognition, using the same learning algorithm and similar NLP features.

However, there are two main differences between his experiments and ours. The

first one is that (Vlachos 2004) learned one binary SVM classifier for each entity

9 Because (Finn and Kushmerick 2003) presented their results in the form of graphs
instead of tables, their results in Table 9 are estimates, based on those graphs.
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type (to discriminate the tokens belonging to any of the entities of that type from

all other tokens ), while we train two binary classifiers for each entity type (see

Section 4). The second difference is that (Vlachos 2004) used the standard SVM

algorithm while we use SVMUM.

Table 10 compares our experimental results respectively using the standard SVM

and SVMUM against the corresponding results of the standard SVM with and

without active learning, as reported in (Vlachos 2004). First, active learning clearly

outperforms passive learning in both cases, confirming the effectiveness of SVM

active learning. Secondly, the difference in the results of the standard SVM in our

system and those reported by (Vlachos 2004) is due to the different experimental

settings, particularly in learning one versus two binary classifiers per entity type.

However, the results using SVMUM in our experiments were significantly better

than the results of the standard SVM in both our experiments and those in (Vlachos

2004), showing the advantage of the SVMUM model. Last but not least, the best

results are obtained again when active learning is combined with SVMUM.

Table 10. Comparison of our experimental results on the CoNLL-03 corpus with

those presented in (Vlachos 2004) (which we estimated from Figure 5.5 (the min

curve) in (Vlachos 2004)): Micro-averaged F1 (%). “AL+SVMUM” refers to SVM

active learning with an SVMUM model. “SVM” and “SVMUM” respectively refers

to the standard SVM and the SVMUM using random selection. The highest score

appears in bold.

Our results Results of (Vlachos 2004)

#Training docs SVM SVMUM SVMUM+AL SVM SVM+AL

10 41.2 56.0 62.5 51.5 52.0

20 54.6 63.8 67.7 57.0 58.0

30 61.2 67.6 70.5 58.5 62.0

6.4.3 Parameters of SVMUM Active Learning

.

As discussed in Section 5, three parameters impact the performance of SVMUM

active learning. The first one is the number of tokens used for computing the aver-

age confidence of a document, namely m0 in Equation (4). As there may be some

outliers in a classification problem, using one token could lead to an unstable perfor-

mance. On the other hand, if many tokens are used, the tokens with large margins

would overwhelm the informative tokens with smaller margins. Table 11 presents

the results with different values of m0 for the Seminars and Jobs datasets. We can

see that too small or too large value of m0 produces worse results than using a

value between 3 and 5.
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Table 11. Different number of tokens used for computing the average confidence

of document: macro averaged F1 (%) with the 95% confidence interval for the two

datasets Seminars and Jobs. In each experiment total number of training documents

was 20.

m0 = 1 3 5 10

Seminars 66.2 ±1.6 70.4 ±1.4 72.0 ±1.8 69.3 ±1.7

Jobs 64.2 ±1.6 65.2 ±1.2 65.0 ±0.7 63.1 ±1.7

The second parameter is the number of initial documents randomly chosen for

training, namely n0. On the one hand, the smaller n0 is, the earlier we can take

advantage of active learning. On the other hand, since active learning uses the

current model to choose the next examples, too few initial examples could result

in a bad SVM model which in turn would be harmful to the quality of the selected

examples. Table 12 shows the results for n0=1, 2, 4, and 10, respectively. n0=2

obtained the best result for Seminars and n0=4 for the Jobs corpus. However, there

seems to be no significant difference between the results on the Jobs dataset.

Table 12. Different number of initial training document for SVM active learning:

macro averaged F1 (%) with the 95% confidence interval on two datasets – Seminars

and Jobs. In each experiment the total number of training documents was fixed as

20.

n0= 1 2 4 10

Seminars 72.2 ±0.7 73.0 ±0.9 72.0 ±1.8 68.3 ±1.6

Jobs 64.1 ±1.2 65.0 ±1.1 65.8 ±0.8 65.2 ±1.2

The last parameter discussed here is the number of documents n selected in each

active learning loop. If each loop chooses only one document prior to re-training the

model, then the results will be more accurate than those obtained by selecting two

or more documents at a time. On the other hand, the more documents are selected

in one loop, the fewer loops would be needed in order to reach a given performance

target. In other words, if the second best example is not much less informative than

the best one in one active learning loop, then we may use the second best example

as well as the first one, in order to save computation time. Table 13 shows that n=1

gave slightly better results than n = 2 or 3 for both datasets, but the computation

time for n=2 was half of that for n=1 while still achieving similar performance.
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Table 13. Different number of documents selected in one active learning loop: macro

averaged F1 (%) with the 95% confidence interval for the two datasets Seminars and

Jobs. In each experiment total number of training documents was 20.

n= 1 2 3

Seminars 73.0 ±1.0 72.8 ±0.9 71.5 ±1.2

Jobs 65.0 ±1.0 64.2 ±0.7 64.1 ±1.0

6.4.4 Granularity of Active Learning Samples

.

As discussed in Section 5, IE active learning for IE can select in each loop either

the entire document, or only one or more tokens. The drawback of selecting complete

documents in each loop is that the user must annotate them from beginning to end,

which could be quite a substantial task on large documents. Therefore, compared

to full document samples, if token or text fragment sampling can be used, then

it could save a great deal of manual annotation time in each active learning loop.

Consequently, this section compares the performance of token and text fragment

sampling against full document sampling.

Figure 3 plots the learning curves for using a token, text fragment and complete

documents as the samples. Two training documents were used to obtain the ini-

tial model, prior to starting sample selection. For both token and text fragment

sampling, each learning loop used 5 and 2 tokens/fragments respectively for the

Seminars and Jobs datasets. The text fragment size was 11 tokens on both corpora.

Figure 3 reports the results of the three sample types on the same the number of

tokens from the test set.

Fig. 3. Learning curves for active learning using three types of sample on the two

datasets, respectively.

Surprisingly the results using document samples are the highest and text frag-

ment samples perform better than tokens in most cases. However, it is worth noting
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that the performance of both token- and fragment-level sampling achieves better

performance than full document sampling during the initial active learning stages

of the Seminars corpus. The learning curves for token samples become flatter in the

later stage, compared to the curve for full document samples. The learning curves

for text fragments are even worse — they decreases after some learning loops. One

possible explanation for the poor results of token- and fragment-level sampling is

that the token- or fragment-level sampling may cause over-fitting of the learned

model to the selected samples and decrease the model’s capability of generalisa-

tion, whereas the document-level sampling selected more balanced instances and

generated the models with much better generalisation capability.

7 Conclusions

This paper investigated two techniques for enhancing the standard SVM model to

deal with imbalanced training data and the difficulty in obtaining human-annotated

examples, which are two problems that frequently arise in NLP tasks. In comparison

to other methods dealing with these problems, our approach not only achieves

state-of-the-art performance but is also computationally efficient, which make it

attractive to real-world applications.

The paper presented a new approach to deal with imbalanced training data by

introducing the uneven margins parameter in the SVMUM model. We also inves-

tigated SVM active learning and the different strategies that can be used in order

to reduce the required human input – sampling at document-, token-, and text

fragment-level.

As both SVMUM and SVM active learning only require solving the standard bi-

nary SVM problem and then apply some simple transformations, they are simpler

and computationally more efficient than some other SVM-based methods for deal-

ing with imbalanced data such as multi-class SVM and transductive SVM, which

implement and solve more complex optimization problems. At the same time, our

approach is also more effective than other methods based on transforming the train-

ing data, which makes it overall more appropriate for real-world applications, many

of which tend to have hundreds of classes and thousands or millions of instances.

In this paper SVMUM and SVM active learning were evaluated independently of

each other and also in combination, by applying them to two information extraction

tasks: named entity recognition and template filling. The results demonstrate clearly

that SVMUM outperforms the standard SVM model and also that SVM active

learning outperforms random sampling. Moreover, when the two approaches are

combined, the system outperforms other state-of-the-art methods evaluated on the

same benchmark IE datasets.

In addition, we also evaluated the token based classification framework for IE

with three different entity tagging schemes. We found that the BL scheme, which

tags only the first token and last token of an entity, gave more accurate recogni-

tion results and was more computationaly efficient than other two commonly used

tagging schemes which tag every token in document.

Based on the results reported here and previous work, we believe that SVMUM
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and other techniques studied in this paper could bring similar performance im-

provements to NLP tasks other than IE. Similarly, the SVMUM active learning

is applicable to most NLP problems. For instance, we are starting experiments

with applying SVMUM and active learning to opinion analysis and Chinese word

segmentation.

One avenue of future work is to investigate enhancing the multi-class SVM (see

e.g. (Tsochantaridis et al. 2004)) to deal with imbalanced training data and the

transductive SVM (TSVM, see e.g. (Collobert et al. 2006)) to exploit unlabelled

data, and compare and/or combine them with the methods discussed in this paper.

Another avenue of research is to investigate further the three sampling strategies

used by active learning. As discussed in Section 6.4.4, document-level sampling

resulted in a good learning curve, while token-level sampling requires significantly

lower annotation effort during each active learning round. The combination of the

two types of sampling, e.g. using token-level examples in several consecutive learning

rounds then using document-level examples in one or two subsequent rounds, would

probably strike a good balance between system accuracy and annotation time.
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