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Introduction

• Information, thoughts and opinions are shared prolifically 
these days on the social web

• It can be difficult to get the relevant information out of such 
large volumes of data in a useful way

• Social web analysis is all about the users who are actively 
engaged and generate content

• Social networks are pools of a wide range of articulation 
methods, from simple "I like it" buttons to complete articles

• Along with entity, topic and event recognition, opinion mining 
forms the cornerstone for social web analysis



Key questions

• What are the opinions on crucial social events and the key people 
involved?

• How are these opinions distributed in relation to demographic user 
data?

• How have these opinions evolved?
• Who are the opinion leaders?
• What is their impact and influence?



What's the problem?

• Opinion mining is hard anyway, and it's harder in this case 
because:
– we have lots of different text types and domains
– we're processing social media, where language isn't used 

properly
– we're processing multiple languages
– we don't necessarily know what we're looking for



But there are lots of tools that do this 
already....

• Here are some examples:
– Twitter sentiment http://twittersentiment.appspot.com/
– Twends: http://twendz.waggeneredstrom.com/
– Twittratr: http://twitrratr.com/
– SocialMention: http://socialmention.com/

http://twittersentiment.appspot.com/
http://twendz.waggeneredstrom.com/
http://twitrratr.com/
http://socialmention.com/


Venus Williams causes controversy...



Search for “Venus Williams”



Using existing Twitter sentiment apps

• Easy to search for opinions about famous people, brands and 
so on

• Hard to search for more abstract concepts, perform a non-
keyword based string search

• e.g. to find opinions about Venus Williams' dress, you can only 
search on “Venus Williams” to get hits



Why are these sites unsuccessful?

• They don't work well at more than a very basic level
• They mainly use dictionary lookup for positive and negative 

words
• They classify the tweets as positive or negative, but not with 

respect to the keyword you're searching for
• First, the keyword search just retrieves any tweet mentioning 

it, but not necessarily about it as a topic
• Second, there is no correlation between the keyword and the 

sentiment: the sentiment refers to the tweet as a whole
• Sometimes this is fine, but it can also go horribly wrong



Whitney Houston wasn't very popular...



Or was she?



Twittrater's view of the Olympics

• A keyword search for Olympics shows exactly 
how existing systems fail to cut the mustard

• Lookup of sentiment words is not enough if
– they're part of longer words
– they're used in different contexts
– the tweet itself isn't relevant
– they're used in a negative or sarcastic sentence
– they're ambiguous

file:///C:/sale/talks/lrec2012-tutorial/olympics.html


Applications

• Developed a series of initial applications for opinion mining from 
social media using GATE

• Based on previous work identifying political opinions from tweets
• Extended to more generic analysis about any kind of entity or event, 

in 2 domains
– Greek financial crisis
– Rock am Ring (German rock festival)

• Uses a variety of social media including twitter, facebook and forum 
posts

• Based on entity and event extraction, and a rule-based approach



Why Rule-based?

• Although ML applications are typically used for Opinion 
Mining, this task involves documents from many different text 
types, genres, languages and domains

• This is problematic for ML because it requires many 
applications trained on the different datasets, and methods to 
deal with acquisition of training material

• Aim of using a rule-based system is that the bulk of it can be 
used across different kinds of texts, with only the pre-
processing and some sentiment dictionaries which are 
domain and language-specific



GATE Application

• Structural pre-processing, specific to social media types
• Linguistic pre-processing (including language detection), NE, 

term and event recognition
• Additional targeted gazetteer lookup
• JAPE grammars
• Aggregation of opinions
• Dynamics



Structural pre-processing on Twitter

Original markups set



Linguistic pre-processing

• Language identification (per sentence) using 
TextCat

• Standard tokenisation, POS tagging etc using 
GATE

• Modified versions of ANNIE and TermRaider 
for NE and term recognition

• Event recognition using specially developed 
GATE application (e.g. band performance, 
economic crisis, industrial strike)



Language ID with TextCat



Basic approach for opinion finding

• Find sentiment-containing words in a linguistic 
relation with entities/events (opinion-target 
matching)

• Use a number of linguistic sub-components to 
deal with issues such as negatives, irony, 
swear words etc.

• Starting from basic sentiment lookup, we then 
adjust the scores and polarity of the opinions 
via these components



Sentiment finding components

• Flexible Gazetteer Lookup: matches lists of affect/emotion 
words against the text, in any morphological variant

• Gazetteer Lookup: matches lists of affect/emotion words 
against the text only in non-variant forms, i.e. exact string 
match (mainly the case for specific phrases, swear words, 
emoticons etc.)

• Sentiment Grammars:  set of hand-crafted JAPE rules which 
annotate sentiments and link them with the relevant targets 
and opinion holders

• RDF Generation: create the relevant RDF-XML for the 
annotations according to the data model (so they can be used 
by other components)



Opinion scoring

• Sentiment gazetteers (developed from 
sentiment words in WordNet) have a starting 
“strength” score

• These get modified by context words, e.g. 
adverbs, swear words, negatives and so on



Challenges imposed by social media

• Language: specific pre-processing for Twitter. use shallow 
analysis techniques with back-off strategies; incorporate 
specific subcomponents for swear words, sarcasm etc.

• Relevance: topics and comments can rapidly diverge. 
Solutions involve training a classifier or using clustering 
techniques

• Target identification: use an entity-centric approach
• Contextual information: use metadata for further 

information, also aggregation of data can be useful



Short sentences, e.g. tweets

• Social media, and especially tweets, can be problematic because 
sentences are very short and/or incomplete

• Typically, linguistic pre-processing tools such as POS taggers and 
parsers do badly on such texts

• Even things like language identification tools can have problems
• The best solution is to try not to rely too heavily on these tools

– Does it matter if we get the wrong language for a sentence?
– Do we actually need full parsing?
– Can we use other clues when POS tags may be incorrect?



Dealing with incorrect English

• Frequent problem in any NLP task involving social media
• Incorrect capitalisation, spelling, grammar, made-up words (eg swear 

words, infixes)
• Some specific pre-processing
• Backoff strategies include 

● using more flexible gazetteer matching
● using case-insensitive resources (but be careful)
● avoiding full parsing and using shallow techniques
● using very general grammar rules
● adding specialised gazetteer entries for common misspellings, or 

using co-reference techniques



Tokenisation

• Plenty of “unusual”, but very important tokens in social 
media: 
– @Apple – mentions of company/brand/person names
– #fail, #SteveJobs – hashtags expressing sentiment, person 

or company names
– :-(, :-), :-P – emoticons (punctuation and optionally letters)
– URLs 

• Tokenisation key for entity recognition and opinion mining
• A study of 1.1 million tweets: 26% of English tweets have a 

URL, 16.6% - a hashtag, and 54.8% - a user name mention 
[Carter, 2013].  



Example

#WiredBizCon #nike vp said when @Apple saw what 
http://nikeplus.com did, #SteveJobs was like wow I didn't expect 
this at all.

● Tokenising on white space doesn't work that well: 
● Nike and Apple are company names, but if we have tokens such 

as #nike and @Apple, this will make the entity recognition 
harder, as it will need to look at sub-token level

● Tokenising on white space and punctuation characters doesn't 
work well either: URLs get separated (http, nikeplus), as are 
emoticons and email addresses



The GATE Twitter Tokeniser

• Treat RTs, emoticons, and URLs as 1 token each
• #nike is two tokens (# and nike) plus a separate annotation 

HashTag covering both. Same for @mentions
• Capitalisation is preserved, but an orthography feature is 

added: all caps, lowercase, mixCase
• Date and phone number normalisation, lowercasing, and 

other such cases are optionally done later in separate 
modules

• Consequently, tokenisation is faster and more generic



De-duplication and Spam Removal

• Approach from [Choudhury & Breslin, #MSM2011]:
• Remove as duplicates/spam:

– Messages with only hashtags (and optional URL)
– Similar content, different user names and with the same 

timestamp are considered to be a case of multiple 
accounts

– Same account, identical content are considered to be 
duplicate tweets

– Same account, same content at multiple times are 
considered as spam tweets



Normalisation
• “RT @Bthompson WRITEZ: @libbyabrego honored?! Everybody 

knows the libster is nice with it...lol...(thankkkks a bunch;))”
• OMG! I’m so guilty!!! Sprained biibii’s leg! ARGHHHHHH!!!!!!
• Similar to SMS normalisation
• For some later components to work well (POS tagger, parser), it 

is necessary to produce a normalised version of each token
• BUT uppercasing, and letter and exclamation mark repetition 

often convey strong sentiment, so we keep both versions of 
tokens

• Syntactic normalisation: determine when @mentions and #tags 
have syntactic value and should be kept in the sentence, vs 
replies, retweets and topic tagging



Irony and sarcasm

• Life's too short, so be sure to read as many articles about celebrity 
breakups as possible.

• I had never seen snow in Holland before but thanks to twitter and 
facebook I now know what it looks like. Thanks guys, awesome!

• On a bright note if downing gets injured we have Henderson to 
come in.



How do you know when someone is 
being sarcastic?

• Use of hashtags in tweets such as #sarcasm
• Large collections of tweets based on hashtags can be used to 

make a training set for machine learning
• But you still have to know which bit of the tweet is the 

sarcastic bit
To the hospital #fun #sarcasm
Man , I hate when I get those chain letters & I don't resend 
them , then I die the next day .. #Sarcasm
lol letting a baby goat walk on me probably wasn't the best idea. 
Those hooves felt great. #sarcasm



How else can you deal with it?

• Look for word combinations with opposite polarity, e.g. “rain” 
or “delay” plus “brilliant”

Going to the dentist on my weekend home. Great. I'm totally 
pumped. #sarcasm
• Inclusion of world knowledge / ontologies can help (e.g. 

knowing that people typically don't like going to the dentist, 
or that people typically like weekends better than weekdays.

• It's an incredibly hard problem and an area where we expect 
not to get it right that often

• Still very much work in progress for us



Evaluation
• Very hard to measure opinion polarity beyond 

positive/negative/neutral
• On a small corpus of 20 facebook posts, we identified 

sentiment-containing sentences with 86% Precision and 71% 
Recall

• Of these, the polarity accuracy was 66%
• While this is not that high, not all the subcomponents are 

complete in the system, so we would expect better results 
with improved methods for negation and sarcasm detection

• NE recognition was high on these texts: 92% Precision and 
69% Recall (compared with other NE evaluations on social 
media)



Comparison of Opinion Finding in 
Different Tasks

Corpus Sentiment 
detection

Polarity 
detection

Target 
assignment

Political Tweets 78% 79% 97.9%

Financial Crisis Facebook 55% 81.8% 32.7%

Financial Crisis Tweets 90% 93.8% 66.7%



Summary

• Ongoing work on adapting opinion-mining 
tools to social media

• Deal with multilinguality, ungrammatical 
English, and very short posts (tweets)

• Components for negation, swear words, 
sarcasm etc

• Promising initial evaluations
• Much further work still to come



Further information

• Work done in the context of the EU-funded ARCOMEM and 
TrendMiner projects

• ARCOMEM also includes analysis of multimedia information
• See http://www.arcomem.eu and http://www.trend-miner.eu for 

more details
• More information about GATE at http://gate.ac.uk
• More information about opinion mining see the LREC 2012 Tutorial 

“Opinion Mining: Exploiting the Sentiment of the Crowd” 
•  Module 12 of the GATE Training Course (new material after June 

2012)  https://gate.ac.uk/family/training.html

http://www.arcomem.eu/
http://www.trend-miner.eu/
http://gate.ac.uk/
https://gate.ac.uk/family/training.html
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