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1 Introduction
The Service-Finder project aims to address the problem of web service discovery for a
wide audience through a portal1 which presents automatic semantic descriptions of a
wide range of publicly available Web Services and also enables service consumers (not
just providers) to enrich them according to Web 2.0 principles. In this project, the
Service Crawler carries out focused crawling for web services and archives WSDL files
and related HTML files, then passes batches of these data to the Automatic Annotator
(AA), which analyses them to produce semantic annotations to the semantic repository
and back end for the web portal. [3]
This paper focuses on a specific AA problem: automatically categorizing web services

from the crawled documents so that portal users can find them effectively. Although
users can improve the categorizations, we must provide some good ones so that users
will find the portal useful and contribute (instead of facing about 23 000 uncategorized
services with only keyword searching).
The project ontology contains 59 subclasses of Category for web services, such as

Genetics, SMS, and Media Management, arranged in a shallow tree (down to three
levels below the top class) in seven main branches (such as Business and Science). Each
service can be annotated with more than one category. (See [3] for further details.)
Since we originally had no manually annotated data to use for training but needed

to generate category annotations quickly for the first release of the portal, we devised
a weighted voting system based on keywords; this was relatively easy to integrate with
the pipeline that was already being developed using GATE [2] for other IE purposes.
After the first release of the portal, members of the project manually annotated 224

services through the portal to produce 387 category annotations, which we used to
1http://demo.service-finder.eu/
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evaluate the keyword-based system and as training data for machine learning (ML). At
that point, we did not have enough annotations from outside users to make a significant
contribution, but in the future, their annotations will also be used the same way.

2 Keywords and weighted voting
For our first approach to categorization, we devised an ad hoc gazetteer of keywords and
phrases associated with service categories (the category names, parts of the multiword
names, morphological variations (such as plurals), synonyms, and related words obtained
by examining the documents), and weighted the values of the keywords using JAPE rules
[1] to associate each match with a multiplier m which starts at 1 and varies up to 5 if it
occurs in a significant place such an HTML <title> or heading element. Each match
is later treated as m votes for the relevant category for the document’s services. These
votes are compiled for every service, which is then labelled with the two highest-scoring
categories.
We used the manually annotated data to evaluate this component using the traditional

IE measures. The first two versions of the tool scored about P = 36%, R = 15%;
extending the gazetteers produced P = 20% and increased R = 32%. We also evaluated
the third version according to the Balanced Distance Metric (BDM), which gives partial
credit for getting a superclass or subclass of the key, as well as for hitting another
node on the same branch of the class tree; these augmented measures are better for
ontological classification [9]. We obtained AP = 38% and AR = 40%, which show that
the system makes a significant number of “near misses”, but we were not satisfied with
these results. We ruled out language bias (99% of the abstracts and 87% of the HTMLs
were in English) and chose a different approach.

3 Machine learning
We treat this as a text classification problem and use the Support Vector Machine (SVM)
technique, which is well documented for this purpose. SVM text classification is carried
out using n-grams of features of sequential units of text (such as unmodified tokens,
part-of-speech tags, orthographic features, or lemmata), but previous research indicates
that increasing n from 1 to 2 slows down performance and rarely improves the results,
and increasing n beyond 2 typically deteriorates the results. [7, 8, 4]
SVM ML can learn and apply only one class to each instance (here, each document)

so we had to simplify the training data by using the most specific class in the category
ontology for each document, although we then devised a way to generate more than one
category for a service.
We carried out several document classification experiments on the manually annotated

services using standard parameters for GATE’s SVM tool, treating each document as a
bag of words) and one service category per document as the target class, one-against-
others classification, and a linear kernel. (See [8] for the technical details of the parame-
ters. All the ML experiments described here are evaluated with 4-fold cross-validation.)

2



Table 1: ML trials: scoring one category per document

Documents Threshold traditional % BDM %
P R F1 AP AR AF1

Abstracts 0.1 27.2 29.5 28.3 29.5 29.5 29.5
Abstracts & HTMLs 0.1 47.8 47.8 47.8 66.8 66.8 66.8
Abstracts & HTMLs 0.3 68.0 40.9 50.7 74.1 51.0 60.4

0.5 85.3 19.8 31.4 88.1 29.6 44.3
0.8 97.9 8.1 14.7 98.3 17.7 30.0

Table 2: ML trials: scoring services after voting from the documents

Documents Threshold Max. traditional % BDM %
cat. P R F1 AP AR AF1

Abstracts & HTMLs 0.1 1 54.3 49.8 52.0 74.7 51.7 61.1
0.1 2 35.0 52.6 42.0 50.0 55.7 52.7
0.3 1 58.1 52.8 55.3 79.1 55.0 64.9
0.3 2 49.8 53.5 51.6 68.8 56.5 62.0

The first experiment used 0.1 as the classification probability threshold, first over 229
abstracts (one per service) and then over 1019 documents (including the abstracts). The
first part of Table 1 shows the traditional and BDMmeasures for document classification.

The performance was much better for both abstracts and HTML documents so we
experimented further with this combination. (Some services have no HTMLs or only
a few small ones, but every one has an abstract with some content.) Table 1 shows
the results for document classification with various classification threshold values. One
normally expects increasing the threshold to increase P and decrease R, but the effect
above 0.3 was quite severe, so we continued with only the low threshold values. (We
consider R important because it is beneficial to try to provide at least one approximate
category for every service on the portal; otherwise users are less likely to find the service
at all and then improve the categorization.)
Those evaluations are scored with one key and one response category for each doc-

ument, the key being the single manual category explained above. But the ML tool
can assign different categories to documents related to the same service, so we let each
service’s documents vote to assign one or two categories to it, and scored services, to
obtain the results in Table 2.
We have two explanations for the drop in P and F1 when each service has two cate-

gories. First, if a service has only one manual annotation but gets the correct automatic
label as well as its superclass, the second label is scored as spurious and the service gets
a 50% score. For this work’s goal (helping users find services on the portal) we do not
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consider this a problem. Second, some services with few documents received only one
automatic category even when two categories were allowed; these automatically received
one correct category but lacked the second one and so get a 50% score.

4 Related work and conclusions
We have examined other published research about semantic annotation of web services
and found one set of papers for a comparable task: the research for the ASSAM (Au-
tomated Semantic Service Annotation with Machine Learning) [6, 5] tool, which uses
machine learning (Naïve Bayes and SVM classification) on combinations of bags of words
from UDDI descriptions, WSDL files, and services’ input and output messages to classify
two sets of services according to ontologies with 11 and 26 categories, respectively, with
accuracy up to around 75%.
Although our results so far are not as high as ASSAM’s best, our task is more difficult:

our service ontology has twice as many classes and a service can belong to any number of
them. We therefore consider our results so far to be very good for our purpose. Another
useful result of these experiments for Service-Finder has been to show that it is not
worth pursuing incremental improvements using keywords, since it was relatively easy
to get significantly better results with ML, which will (unlike the first approach) make
use of the portal’s collaborative tools in the future.
In our continuing work, we are experimenting with using separate classifiers for ab-

stracts and HTML documents. (Using separate classifiers for different types of input
improved the results for [5].) We are also developing an ontologically aware voting
system to avoid assigning near-duplicate categories such as a class and its superclass.
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