
Effective Development with GATE and Reusable Code for Semantically
Analysing Heterogeneous Documents

Adam Funk, Kalina Bontcheva

Department of Computer Science
University of Sheffield

Regent Court, Sheffield, S1 4DP, UK
a.funk@dcs.shef.ac.uk, k.bontcheva@dcs.shef.ac.uk

Abstract
We present a practical problem that involves the analysis of a large dataset of heterogeneous documents obtained by crawling the web
for information related to web services. This analysis includes information extraction from natural-language (HTML and PDF) and
machine-readable (WSDL) documents using NLP and other techniques, classifying documents as well as services (defined by sets of
documents), and exporting the results as RDF for use in the back-end of a portal that uses Web 2.0 and Semantic Web technology. Triples
representing manual annotations made on the portal are also exported back to our application to evaluate parts of our analysis and for use
as training data for machine learning (ML). This application was implemented in the GATE framework and successfully incorporated
into an integrated project, and included a number of components shared with our group’s other projects.

1. Introduction
The Service-Finder project addresses the problem of web
service discovery for a wide audience through a portal1

which presents automatic semantic descriptions of a wide
range of publicly available web services and also enables
service consumers (not just providers) to enrich them ac-
cording to Web 2.0 principles (manual annotation accord-
ing to the project ontology, tagging, and wiki-like editing
of free text fields). In this project, the Service Crawler (SC)
carries out focused crawling for web services and archives
WSDL files and related HTML files, then passes monthly
batches of these data to the Automatic Annotator (AA),
which analyses them to produce semantic annotations to
the Conceptual Indexer and Matchmaker (CIM), the seman-
tic repository and back end for the web portal. Additional
components include the portal itself and the clustering en-
gine that provides recommendations. (?)
Here we present the implementation of the Automatic An-
notator using the versatile GATE2 (?) framework for NLP
and related applications.

1.1. Input and output
The SC (Service Crawler) component delivers to the AA
a monthly batch of data, consisting of a number of com-
pressed Heritrix (?) Internet Archive files (up to 100 MB
each), along with an index of all the documents in the batch.
The documents for each service include one or more WSDL
files, an abstract3, and zero or more HTML and PDF files
(especially those with contact details, links to WSDL files,
pricing information, terms and conditions, and other useful
information).
Figure 1 shows a sample extract from the index, which

1http://demo.service-finder.eu/
2http://gate.ac.uk/
3The abstract is an HTML file that the SC compiles from vari-

ous elements’ and attributes’ strings (the service name, documen-
tation, operation names, input and output parameters, etc.) in the
best WSDL file for the service.

Input from the SC
Number of .arc.gz files 5
Total size of compressed files 441 MB
Number of documents ∼ 250 000

Output to the CIM
Number of RDF-XML files 30
Total size of compressed files 40 MB
Number of RDF triples ∼ 4 500 000
Number of Providers ∼ 8 700
Number of Services ∼ 25 000

Table 1: Typical AA input and output

lists every document in the crawler output, along with the
archive file number and offset where it can be found and
type codes (e.g., w for WSDL or a for abstract). Each
stanza is headed by a service URI4, which is also used in
the Heritrix archives as the URL of the abstract. The same
service URI may occur several times in this index with dif-
ferent documents listed below it.
This collection of files is downloaded onto one of our
servers for processing, as described in the rest of the paper.
The results are exported as RDF-XML to the CIM. Table 1
summarizes the input and output of a typical monthly batch
of data.

1.2. Annotation tasks
The Automatic Annotator’s principal tasks are as follows:

• analyse WSDL files to produce Endpoint, Interface,
and Operation instances as well as properties associat-
ing them with each other and with the relevant Service
instances;

4The crawler generates URIs for instances of the Service and
Provider classes. The service URI always consists of the provider
URI followed by one path-element, so the provider URI can be
easily obtained from the service URI.



http://seekda.com/providers/dp2003.com/FileService 1 100684561 a
http://dp2003.com/filews/filews.asmx?WSDL 1 19796469 w
http://dp2003.com/filews/ListUser 3 29130320 f o
http://dp2003.com/filews/Logout 3 29131388 f o
http://microsoft.com/wsdl/mime/textMatching/ 4 104841754 f o
http://dp2003.com/filews/UserInfo 3 29132932 f o

Figure 1: Excerpt from the input index

• classify documents by type (e.g., documentation, pric-
ing, contact details) and rate them as low-, medium-,
or high-interest;

• carry out information extraction to identify providers’
addresses, phone numbers, e-mail addresses, etc.;

• carry out information extraction over services to iden-
tify service level agreements, free trials, etc.;

• categorize each service in one or more of the 59 sub-
classes of ServiceCategory.

Some tasks require information to be amalgamated across
various sets of documents, and all the output is expressed
as RDF-XML according to the project ontology. Figure 2
highlights several types of keywords and annotated pieces
of information in GATE’s GUI.

2. Implementation
We implemented the Automatic Annotator tools using
GATE, a versatile, extensible library and framework for
NLP and text processing. We used the GATE Developer
GUI environment to develop some of the pipelines (using
the ANNIE information extraction pipeline as a starting
point), GATE’s gazetteer and JAPE tools for rapid devel-
opment of processing resources (PRs) to mark keywords
and phrases with weights according to context, and PRs for
more complicated functions functions that could not be eas-
ily coded in JAPE, along with control programs, both writ-
ten in Java using the GATE Embedded library. (?)

2.1. Preprocessing
First of all, we recognized the need to split the large in-
put dataset into manageable chunks and took advantage of
the independent nature of the data about each provider. We
developed a preprocessor in Java that can be run from the
command-line or a shell script in GNU screen5 on a server.
This preprocessor reads the index file into memory, creates
several (typically 30) serially numbered GATE Serial Data-
Stores6, then iterates through all the documents in the input
archive files. For each document, it checks the HTTP sta-
tus code and discards the document if the code is 3xx, 4xx,
or 5xx; otherwise, it uses the index to identify the docu-
ment type (WSDL, abstract, HTML, PDF) and the service
and provider URIs. It then calculates the MD5 hash (?) of
the document and checks the list of already hashed docu-
ments; in case of a match, it reloads the existing serialized

5http://www.gnu.org/software/screen/
6A Serial DataStore provides disk-based persistence for docu-

ments and corpora using Java serialization.

Stage Approx. number
of documents

Input total documents 250 000
Preprocessing reductions

HTTP error codes 49 000
unwanted provider IDs 5 000
empty documents 3 000
reduced duplicates 23 000
faulty XML < 30

Output HTML 37 000
WSDL 110 000
abstract 25 000

total (31% reduction) 173 000

Table 2: Typical results of preprocessing

Time in hours
Tool Before After
Preprocessor 3.0 18.3
Analysis 72.9 18.1
Archiving 6.5 2.5
Total 82.4 38.9

Table 3: Examples of AA performance times

GATE document, merges the additional document URL and
service URI into it, re-saves it, and goes on to the next
document. Table 2 shows the effects of these suppression
and de-duplication steps, and Table 3 shows the striking
“before and after” effects on performance of making more
effort in the preprocessor to eliminate unnecessary docu-
ments from analysis (on a Xeon X3220 server with Java’s
-Xmx 4000m setting). The preprocessing time increased
sixfold but the total time decreased by 53%.
For each valid, non-duplicate document, the preprocessor
instantiates a GATE document in a mark-up-aware manner,
with the plain-text content, the HTML mark-up or XML
tags, and the metadata all stored in the appropriate parts of
GATE’s document model (the document content, Original
markups annotation set, and document feature map, respec-
tively). (GATE uses a modified form of the TIPSTER and
Atlas formats (?; ?) as stand-off mark-up, as shown in Fig-
ure 2.) (WSDL documents are also analysed by software
developed mainly by another project partner, seekda7, inte-
grated so that it stores its results as an RDF-XML document
feature.) It adds this document to the provider’s corpus
(which it creates when it first encounters that provider). The

7http://seekda.com/



Figure 2: Annotated document in GATE

corpora are allocated in a loop over the datastores so that the
latter end up with roughly the same sizes. The provider–
corpus and document–MD5 mappings are kept in memory
since they are used so frequently. Finally, the preprocessor
closes all the corpora (synchronizing them on disk), closes
the datastores, and writes several index files that indicate
which providers and services are in which corpora and data-
stores.

2.2. Analysis
We then run a shell script that carries out the main analysis
tasks and generates the consolidated RDF-XML file sepa-
rately over each datastore.
As mentioned earlier, we took ANNIE as the starting point
for the information extraction tasks, but modified it so that
most of its PRs run only on HTML and PDF documents.
Each datastore produced by the preprocessor is processed
through a Java tool that includes ANNIE8 with additional
gazetteers and rules developed within Service-Finder to
identify relevant terms in the web service domain and anno-
tate interesting sections and documents, consolidate the in-
formation from various documents for each provider, merge
in the RDF-XML snippets generated by the preprocessor

8ANNIE is the information extraction system supplied with
GATE; it includes standard NLP tools for English (such as a to-
kenizer and POS tagger) and gazetteers and rule-based tools for
named entity recognition.

and attached to the corpora and documents, and produce
one large RDF-XML file for each block (datastore).

2.2.1. Overview
The analysis pipeline consists of the following series of pro-
cessing resources (PRs), as illustrated in Figure 3.

1. Standard ANNIE components tokenize and sentence-
split the HTML and PDF documents (creating To-
ken and Sentence annotations on the document). Ab-
stracts and WSDLs are processed with a source-
code tokenizer (developed in the TAO project9),
a version of the ANNIE tokenizer with the rule
files modified to split camel-cased strings (e.g.,
getUnsplicedSequence → get Unspliced
Sequence) as well as tokens separated by whites-
pace.

2. The ANNIE gazetteers and NER (named-entity recog-
nition) module (consisting of JAPE transducers) iden-
tify and annotate a range of entities such as Date, Per-
son, Organization, and Address.

3. Gazetteers developed for this application mark key-
words relating to web services, such as those used to
indicate free trials, terms and conditions, pricing, and
categories of services. Figure 4 shows keywords as-

9http://www.tao-project.eu/



Figure 3: Overview of the IE pipeline

terms and conditions user agreement
terms & conditions terms of use
licence agreement TOU
license agreement T&C
licencing agreement AUP
licensing agreement T&Cs
acceptable use policy TOS
terms of service

Figure 4: Examples of keywords that vote for TermsAnd-
ConditionsPage

sociated with the TermsAndConditionsPage document
type.

4. A series of custom JAPE transducers compare the
annotations produced by ANNIE and the custom
gazetteers with the HTML mark-up in order to eval-
uate their role and set a multiplier feature accordingly,
which is used by the voting processor in step 6. (For
example, keywords and named-entity annotations in
title or h1 elements are more important than else-
where in the document, and p elements that begin

with the keyword Description or Price are more likely
to relate to the description of the service or its pric-
ing. Such annotations are assigned a multiplier fea-
ture 1≤m, typically m < 6.) Other JAPE rules try to
identify company details such as country of origin.

These rules also have access to document features con-
taining metadata such as the service, provider, and
document URIs, which they can copy into features on
the annotations they create. They also adjust an inter-
esting feature10.

5. An instance of the GATE machine learning PR (?)
aims to label each document with a class from the ser-
vice category ontology. Section 2.2.2 describes the in-
tegration of this component in more detail.

6. “Voting” PRs (extensions of AbstractLanguageAnal-
yser from the GATE Embedded library) compare the
weighted frequency of significant keywords to assign
certain ontology classes and properties as follows.

• For each WSDL document and interesting (see
step 4 above) textual (i.e., HTML or PDF) doc-
ument, create a potential instance of the gen-
eral class Document or one of its subclasses
(DocumentationPage, TermsAndConditionsPage,
etc.) and assert the properties hasSize, hasTitle,
and retrievedAt; also create a DocumentAnnota-
tion associating the document with a service or
provider. (Some document types, such as Con-
tactDetailsPage, are associated with providers;
others are associated with services.)

• For each service, assertions of the properties
supportsAuthenticationModel, hasServiceLeve-
lAgreement, allowsFreeTrials, etc.; these proper-
ties are not asserted if no votes (keywords) are
found.

• For each service, the two best categories for Cat-
egoryAnnotation (or just one category if all the
votes were for the same one); the categories as-
signed by machine-learning outweigh those gen-
erated by keywords and rules (as §2.2.2 explains
in detail).

• For each provider, one or two best values for
hasHomepage, fromCountry, hasEmail, hasAd-
dress, and hasTelephone (these properties are not
asserted when no values are found in the docu-
ments).

All GATE PRs override the execute method, which
is called on each document in the corpus. Each vot-
ing PR uses additional hooks, as shown in Figure 5,
to initialize the set of “ballots” at the beginning of
the execute on the first document in the corpus;
and to compute the results, generate the correspond-
ing RDF-XML, and store it as a corpus feature at the

100.0≤i≤3.0, interpreted as low (0.0≤i < 1.0), medium
(1.0≤i < 2.0), or high (2.0≤i≤3.0). All documents start with
0.0.



public void execute() throws ExecutionException {
if (corpus.indexOf(document) == 0) {

// Before analysing the first document: initialize the data for the corpus
}

// Analyse this document and record the votes

if (corpus.indexOf(document) == (corpus.size() - 1)) {
// After analysing the last document: compute the results,
// generate RDF-XML, and store it as a corpus feature

}
}

Figure 5: Hooks in a voting PR’s execute() method. Note that CorpusController.execute() iterates through the corpus’s
documents in list order: opening each document, calling each PR’s execute() method, and closing the document.

end of the execute on the last document in the cor-
pus. (The RDF-XML is generated by matching and
filling in templates, as described in §2.2.3.)

7. Some important annotations on the document are
translated into RDF-XML according to a set of tem-
plates based on the features of each annotations. (This
RDF-XML is also generated from templates.)

8. All the RDF-XML snippets are collected from the doc-
ument and corpus features and consolidated into one
output file for the datastore.

The “pipeline” outlined above actually consists of two
GATE SerialAnalyserController instances (conditional cor-
pus pipelines) serialized as gapp files and an XML con-
figuration file for GATE’s Batch Learning PR (?). Like the
preprocessor, the main analysis tool is a command-line Java
program that can be run in GNU screen on a server; it in-
stantiates the two pipelines from the gapp files and creates
a separate pipeline for the learning PR (which it instanti-
ates from the configuration file); it then iterates through the
corpora in a datastore, runs the pipelines in the correct se-
quence (taking advantage of GATE’s serialization to save
memory: only one document is loaded at a time), and fi-
nally collects together all the RDF-XML snippets stored as
document and corpus features in the datastore and consoli-
dates them into one RDF-XML file, which constitutes this
tool’s output to the CIM for that block (datastore).
A modified version is also used in the NeOn project11 for
batch processing large datastores through pipelines (both
specified by command-line arguments) on a server.

2.2.2. Service categorization
Although the portal’s Web 2.0 features encourage users to
add, correct, and otherwise improve the category annota-
tions of services, it is important to provide a number of rea-
sonably good ones to start with so users will find the portal
useful and interesting and then contribute to it—otherwise
they would have to face 23 000 uncategorized services with
only keyword searching. We therefore placed strong em-
phasis in the AA on rapid development and then refinement
of service categorization. In this paper, we will summarize

11http://www.neon-project.org/

this task and describe the integration of the components into
the pipeline above. Our scientific results here are interest-
ing in their own right and are published in detail elsewhere
(?).
Briefly, the task is to annotate each service with one or more
of the 59 subclasses of Category for web services, such
as Genetics, Address Information, and Media Management,
arranged in a shallow tree (down to three levels below the
top class) in seven main branches, such as Business, Con-
sumer, and Science (?; ?).
In the early stages, we had no training data but needed to
generate some category annotations quickly for the portal,
so we created ad hoc gazetteers of keywords and phrases
based on the category names, synonyms, and related words.
These were affected by the multipliers described in step 4
in §2.2.1. The IE pipeline at this stage was as shown in Fig-
ure 3 but without the machine learning (ML) categorization
PR (step 5 in §2.2.1); the voting process treated keyword
or phrase match as m (the multiplier) votes for the relevant
category for each service associated with the document, and
annotated each service with the two highest-scoring cate-
gories (an arbitrary limit agreed within the project).
After the first release of the portal, we manually annotated
a few hundred services with the same portal features that
users have for manually adding or correcting categories,
and used these annotations to evaluate the AA’s categoriza-
tion and then as training data for machine-learning. We
trained the ML PR to classify documents, carried out eval-
uations with various ML parameters, and integrated the ML
PR into the pipeline by assigning a very high multiplier
(m = 100) to the ML annotations so that in the subsequent
voting PR, they will outweigh any gazetteer-based catego-
rizations, although the latter can still be used to make the
total number of categories per service up to two if the ML
PR fails to classify any of a service’s documents or pro-
vides only one category, since it is more user-friendly for
us to provide approximate categorizations than none at all.
We have published elsewhere (?) the full technical details
and results of our ML experiments.

2.2.3. Approaches to ontology development and
population

One can develop and populate ontologies from GATE ap-
plications using the GATE Ontology API (?), and we have



used this technique in our SPRAT and SARDINE12 appli-
cations (?; ?), which use ontology design patterns to recog-
nize new concepts, instances, and properties, and add them
to the seed ontology (which can be empty) used to initial-
ize the application. The principal output of both applica-
tions is the extended ontology produced from a corpus of
documents. As an evaluated example, SPRAT processed
25 Wikipedia articles and produced 1058 classes, 659 sub-
classes, 23 instances, and 55 properties as output.
The CLOnE13 and RoundTrip Oontology Authoring soft-
ware (?; ?) developed and used in SEKT14 and NEPO-
MUK15, also used the GATE Ontology API.
In the Service-Finder and MUSING tasks, however, the on-
tologies’ class and property structures are fixed and our ap-
plications only need to create instances and property as-
sertions, specifically in RDF-XML (as requested by other
developers in the projects). The volume of data generated
is also much larger and more time-consuming (as shown
in Tables 1 and 3), so we use a template-filling technique
which requires relatively little memory.
We originally developed this GATE PR for generating
XML (principally RDF-XML) in the MUSING16 business
intelligence research project, and have used modified and
improved versions of it in Service-Finder and CLARIN17.
(A version of it will probably be integrated into GATE in
the future, once we have settled the list of configurable fea-
tures.) The PR’s configuration file consists mainly of a se-
ries of template specifications, as Figure 6 shows. Each en-
try lists the annotation features that are required for the tem-
plate to match, and the values of those features are substi-
tuted for the variables in the template. (The annotation can
have other features, which are ignored.) The PR’s output
for a matching annotation consists of the “filled-in” copy
of the element(s) in the template element. Figures 7
and 8 show the characteristics of a matching annotation
and the resulting XML snippet, respectively. (In addition to
the feature element, the entry can have a generated
specification, which names a variable for which a UUID
string is substituted. This is useful for generating unique
rdf:id values.)
When the configuration file is loaded (during initialization
of the PR), the order of the entries is preserved, so that
for each annotation, the first match is used. It is therefore
possible to use a template that requires an annotation with
three features, followed by a simpler template which re-
quires only two of the three (and uses a default value for
the third, for example); the first template will “fire” when-
ever all three features appear, but the PR will drop back
to the second one if the first does not match, and so on.
(Another version of this component takes a Map<String,
String> rather than a GATE Annotation; the voting PR gen-
erates the maps from the winning ballots and obtains the

12Semantic Pattern Recognition and Annotation Tool; Species
Annotation and Recognition and Indexing of Named Entities; both
developed in NeOn.

13Controlled Language for Ontology Editing.
14http://www.sekt-project.com/
15http://nepomuk.semanticdesktop.org/
16http://www.musing.eu/
17http://www.clarin.eu/

corresponding RDF-XML from this generator.)

2.3. Miscellaneous tools
We developed two other separate tools for the Service-
Finder AA. The archiving tool iterates through the docu-
ments in the GATE datastores after the analysis tool has
been run (leaving its annotations on the serialized doc-
uments) and produces Heritrix archives of the plain-text
content of “interesting” (see step 4 in §2.2) HTML and
PDF documents and selected strings from WSDLs and ab-
stracts; the CIM produces Lucene indexes from these files
to support keyword searches for services on the portal. The
quantitative evaluation tool loads the RDF-XML files into a
Sesame repository, executes a series of SERQL or SPARQL
queries specified in a control file, and produces an output
file containing the number of results for each query or a
list of those results (according to the specifications in the
control file).
To provide a datastore suitable for training the ML classi-
fier, we added extra features to the preprocessor (§2.1), ac-
tivated by additional command-line options, so that it reads
a file of manual category annotations (exported from the
CIM) as well as a set of archives from the SC and produces
a datastore containing only the documents related to the
manually annotated services, with document features rep-
resenting the categories. We also developed a pipeline for
training the classifier, which carries out steps 1 through 4 in
§2.2 and treats the annotated documents as instances, and
then saves the learned model for use in the complete inte-
grated analysis tool.

3. Conclusion
The immediate result of the development presented here
was its contribution to the successful completion of the Au-
tomatic Annotator tasks and their integration in the Service-
Finder project, which received good intermediate and final
project reviews. The relevant public deliverables (?; ?) de-
scribe the AA software in much greater detail. We evalu-
ated the AA software itself in two ways: IE measures (pre-
cision, recall, and F1) for the especially important and sci-
entifically interesting service categorization task, which we
present in detail elsewhere (?); and quantitative measures
of the instances and property assertions created at various
stages of development (?).
The broader results included the dissemination of GATE
as a tool for semantically annotating the results of focused
web crawling—in particular at a Future Internet Sympo-
sium tutorial on web service crawling and annotation (?),
where we demonstrated the suitability of the GATE Devel-
oper IDE and GATE Embedded library for rapid applica-
tion development and effective code re-use—and the devel-
opment of useful, reusable code shared with other projects
(NeOn, MUSING, and CLARIN).

4. Acknowledgements
This research is partially supported by the EU Sixth
Framework Program projects NeOn (IST-2005-027595)
and MUSING (FP6-027097) and the Seventh Framework
Program project Service-Finder (FP7-215876).



<?xml version="1.0" encoding="UTF-8"?>
<root xmlns:sfso="http://www.service-finder.eu/ontologies/ServiceOntology#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >

...
<entry id="provider_homepage_link">
<feature name="provider_URL" />
<feature name="homepage_link" />
<template>
<sfso:Provider rdf:about="${provider_URL}">

<sfso:hasHomepage rdf:datatype="xsd:string">${homepage_link}</sfso:hasHomepage>
</sfso:Provider>

</template>
</entry>
...
</root>

Figure 6: Excerpt from the RDF-XML template file. To match this template, at least the provider_URL and
homepage_link features must be provided.

Type Mention
Start and end offsets 117–121
Underlying text Home
Features doc_URL="http://www.serviceobjects.net/products/dots_phone_exchange_details.asp"

homepage_link="http://www.serviceobjects.net/default.asp"

provider_URL="http://seekda.com/providers/serviceobjects.com"

service_URL="http://seekda.com/providers/serviceobjects.com/DOTSPhoneExchange"

Figure 7: Annotation matching the template in Figure 6

5. References
S. Bird and M. Liberman. 1999. A Formal Frame-

work for Linguistic Annotation. Technical Re-
port MS-CIS-99-01, Department of Computer and
Information Science, University of Pennsylvania.
http://xxx.lanl.gov/abs/cs.CL/9903003.

K. Bontcheva, V. Tablan, D. Maynard, and H. Cunning-
ham. 2004. Evolving GATE to Meet New Challenges in
Language Engineering. Natural Language Engineering,
10(3/4):349—373.

S. Brockmans, M. Erdmann, and W. Schoch. 2008. Hy-
brid matchmaker and Service-Finder ontologies (alpha
release). Deliverable D4.2, Service-Finder Consortium.

Saartje Brockmans, Irene Celino, Dario Cerizza, Daniele
Dell’Aglio, Emanuele Della Valle, Michael Erdmann,
Adam Funk, Holger Lausen, and Nathalie Steinmetz.
2010. Final report on assessment of tests for beta release.
Deliverable D7.5, Service-Finder Consortium, January.

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.
2002. GATE: A Framework and Graphical Development
Environment for Robust NLP Tools and Applications. In
Proceedings of the 40th Anniversary Meeting of the As-
sociation for Computational Linguistics (ACL’02).

Brian Davis, Ahmad Ali Iqbal, Adam Funk, Valentin
Tablan, Kalina Bontcheva, Hamish Cunningham, and
Siegfried Handschuh. 2008. Roundtrip ontology author-
ing. In Proceedings of the 7th International Semantic
Web Conference (ISWC), Karlsruhe, Germany, October.

Emanuele Della Valle, Dario Cerizza, Irene Celino, Andrea

Turati, Holger Lausen, Nathalie Steinmetz, Michael Erd-
mann, and Adam Funk. 2008. Realizing Service-Finder:
Web service discovery at web scale. In European Seman-
tic Technology Conference (ESTC), Vienna, September.

A. Funk and K. Bontcheva. 2010. Ontology-based catego-
rization of web services with machine learning. In Pro-
ceedings of the seventh international conference on Lan-
guage Resources and Evaluation (LREC), Valetta, Malta,
May.

A. Funk, V. Tablan, K. Bontcheva, H. Cunningham,
B. Davis, and S. Handschuh. 2007. CLOnE: Con-
trolled Language for Ontology Editing. In Proceedings
of the 6th International Semantic Web Conference (ISWC
2007), Busan, Korea, November.

Adam Funk, Holger Lausen, and Nathalie Steinmetz.
2009a. Automatic semantic annotation component—
beta release. Deliverable D3.4, Service-Finder Consor-
tium, November.

Adam Funk, Holger Lausen, Nathalie Steinmetz, and
Kalina Bontcheva. 2009b. Automatic semantic anno-
tation research report—version 2. Deliverable D3.3,
Service-Finder Consortium, October.

R. Grishman. 1997. TIPSTER Architecture Design
Document Version 2.3. Technical report, DARPA.
http://www.itl.nist.gov/div894/894.02/-

related_projects/tipster/.
Y. Li, K. Bontcheva, and H. Cunningham. 2009. Adapting

SVM for Data Sparseness and Imbalance: A Case Study
on Information Extraction. Natural Language Engineer-
ing, 15(2):241–271.



<sfso:Provider rdf:about="http://seekda.com/providers/serviceobjects.com">
<sfso:hasHomepage

rdf:datatype="xsd:string">http://www.serviceobjects.com/default.asp
</sfso:hasHomepage>

</sfso:Provider>

Figure 8: RDF-XML snippet output produced from the template in Figure 6 and the annotation in Figure 7

D. Maynard, A. Funk, and W. Peters. 2009a. Nlp-based
support for ontology lifecycle development. In Work-
shop on Collaborative Construction, Management and
Linking of Structured Knowledge (CK 2009) at ISWC
2009, October.

D. Maynard, A. Funk, and W. Peters. 2009b. Using
lexico-syntactic ontology design patterns for ontology
creation and population. In Workshop on Ontology Pat-
terns (WOP 2009) at ISWC 2009, October.

R. Rivest. 1992. The MD5 message-digest algorithm.
RFC 1321, Internet Engineering Task Force, April.

Kristinn Sigurðsson, Michael Stack, and Igor Ranitovic.
2008. Heritrix user manual. Software documentation,
Internet Archive.

N. Steinmetz, A. Funk, and M. Maleshkova. 2009. Web
service crawling and annotation (tutorial). In Future In-
ternet Symposium (FIS 2009), September.


