
Developing Morphological Analysers for South Asian Languages:
Experimenting with the Hindi and Gujarati Languages

Niraj Aswani, Robert Gaizauskas

Department of Computer Science
University of Sheffield

Regent Court, Sheffield, S1 4DP, UK
n.aswani@dcs.shef.ac.uk, r.gaizauskas@dcs.shef.ac.uk

Abstract
A considerable amount of work has been put into development of stemmers and morphological analysers. The majority of these ap-
proaches use hand-crafted suffix-replacement rules but a few try to discover such rules from corpora. While most of the approaches
remove or replace suffixes, there are examples of derivational stemmers which are based on prefixes as well. In this paper we present a
rule-based morphological analyser. We propose an approach that takes both prefixes as well as suffixes into account. Given a corpus and
a dictionary, our method can be used to obtain a set of suffix-replacement rules for deriving an inflected word’s root form. We developed
an approach for the Hindi language but show that the approach is portable, at least to related languages, by adapting it to the Gujarati
language. Given that the entire process of developing such a ruleset is simple and fast, our approach can be used for rapid development
of morphological analysers and yet it can obtain competitive results with analysers built relying on human authored rules.

1. Introduction
A considerable amount of work has been put into devel-
opment of stemmers and morphological analysers (Lovins,
1968; Porter, 1980; Majumder et al., 2007; Krovetz, 1993;
Hull, 1996; Shrivastava et al., 2005; Ramanathan and Rao,
2003; Pandey and Siddiqui, 2008). The majority of these
approaches use hand-crafted suffix-replacement rules but a
few try to discover such rules from corpora. While all these
approaches remove or replace suffixes, approaches such as
Krovetz (1993) and Hull (1996) propose derivational stem-
mers which are based on prefixes as well.
In this paper we present a rule-based morphological anal-
yser where the rules are acquired semi-automatically from
corpora. We propose an approach that takes both prefixes as
well suffixes into account. Given an inflected Hindi word,
our system returns its root form. It uses a dictionary, and
a monolingual corpus to obtain suffix-replacement rules.
Most rules in our approach are learnt automatically. How-
ever, a few of them need to be verified manually. Our algo-
rithm is a part of our efforts on developing a general frame-
work for text alignment (Aswani and Gaizauskas, 2009).
In the following sections, we first look at some of the
well-known methods used for stemming and morphological
analysis. Then, we describe our morphological analyser for
the Hindi language. Finally, in order to demonstrate our ap-
proach’s portability to other similar languages, we present
our experiments for the Gujarati language.

2. Related Work
Porter’s stemmer (Porter, 1980) is amongst the most cited
stemmers in the literature. His stemmer is based on prede-
fined hand crafted suffix-replacement rules. His algorithm
proceeds through a fixed succession of five stages, with a
different set of rules defined under each section. The stem-
mer uses an explicit list of suffixes, and, with each suffix,
the criterion under which it may be removed from a word
to form a valid stem.

Majumder et al. (2007) present a system called YASS (Yet
Another Suffix Stripper) that uses a corpus to learn suffix
stripping rules. They define a set of string distance mea-
sures for clustering the related words. Their main intuition
is to reward long matching prefixes and to penalize early
mismatch. Using these metrics they decide whether the
words under consideration belong to the same cluster or
not. They match the longest common prefix to cluster sim-
ilar words and stem them to the central word in that cluster
to infer suffix-replacement rules.

Unlike other approaches, Hull (1996) proposes a deriva-
tional stemmer which not only removes suffixes but pre-
fixes as well. For example, superconduction is
stemmed to the word conduct. From their experi-
ments with derivational process, Hull (1996) shows that
it is a bad idea to remove prefix from words which in
most cases resulted in over-stemming. On the other hand,
Krovetz (1993) reports that the derivational stemmers per-
form slightly better than inflectional stemmer.

Xu and Croft (1998) suggest that the rules of stemming al-
gorithms should be modified prior to its use on any cor-
pus and the corpus itself should be used for this purpose.
They suggest that this step is necessary as the rules learnt
from one corpus might not reflect the language used in other
corpora. They propose to use an aggressive rule based
stemmer or a language independent (n-gram) stemmer to
create equivalent classes and refine them by using corpus
co-occurrence statistics. They assume that the word vari-
ants that should be conflated occur in the same text win-
dows. They propose to use this method for refining suffix-
replacement rules.

Ramanathan and Rao (2003) are said to have reported the
first work on Indian language stemming by developing a
lightweight stemmer for the Hindi language. Their stemmer
is based on some hand-crafted rules which they claimed
to have derived after careful observations of the Hindi lan-
guage. Based on their analysis of verbs, nouns, adjectives



Verbs %* Nouns %* Adjectives %* Adverbs %*
A(aa) 99.81 A(aa) 19.99 t (ta) 17.06 r (ra) 14.29
nA (naa) 99.71 F(ee) 16.62 F(ee) 14.89 A(aa) 13.21
AnA (aanaa) 44.21 r (ra) 9.15 A(aa) 10.76 : 11.52
vAnA (vaanaa) 12.19 n (na) 8.06 y (ya) 9.20 t :(taha) 10.09
knA (kanaa) 8.03 - - k (ka) 7.87 k (ka) 8.13
rAnA (raanaa) 7.98 - - Et (ita) 8.74 t (ta) 6.43
lnA (lanaa) 5.03 - - n (na) 6.50 - -
- - - - Er (ira) 6.90 - -

∗ percentage of number of words that have the listed suffix in that category.

Table 1: Most Frequent Suffixes for Hindi Base Forms

and adverbs they produced a list of suffixes for each of these
categories. Their system conflates terms by stripping off
word endings from the suffix list on a longest match basis.
Pandey and Siddiqui (2008) use some heuristic rules which
are derived using a split-all method. From their experi-
ments with the Hindi language, they automatically obtained
a list of 51 suffixes from a set of Hindi documents from
the EMILLE corpus. They stripe off the longest suffixes to
perform stemming. In their method, words are split to give
n-gram (n=1..l) suffix where l is the length of a word
under consideration. Having obtained a suffix and stem for
each word, they calculate suffix and stem probabilities over
the corpus and multiply them to obtain split probability.
They use the highest split probability to define segments
and group words accordingly. For example, the words such
as lXkA (ladakaa, a boy), lXko\ (ladakon, boys), and
lXk� (ladake, boys) with common stem lXk (ladak) are
grouped together with suffixes A (aa), o\ (on) and � (e).
They also apply heuristic rules that attempt to concatenate
stems with common prefix of suffixes. For example, aAvf̂
(aavash) is a stem with three different suffixes yk (yak),
y?tA (yaktaa) and y?tAn� sAr (yaktaanusaar). They ob-
tain a common prefix string from these suffixes (i.e. yk
(yak) and concatenate it with the stem to make it aAv[yk
(aavashyak, necessary). They performed experiments on
two different datasets and report accuracies as 85.685 for
the first run and 89.979 for the second run.
To our knowledge, the morphological analyser presented
by Shrivastava et al. (2005) is the best available for the
Hindi language. They use a hand-crafted set of 86 suffix-
replacement rules. These suffix-replacement rules are ap-
plied to an inflected word and the resulting candidate root
form is checked against a list of root forms (RFList) ob-
tained from Hindi Wordnet. If it is found, it is deemed to
be the correct root form. They report 100% precision for
their system.

3. Our Approach
We adapted1 the ruleset presented by Shrivastava et al.
(2005) and applied it on our test data2 (DATASET1) and
obtained P=0.74, R=0.68, F=0.71. The system could not

1We use a program called GATE Morphological Analyser
(http://gate.ac.uk/userguide/sec:misc-creole:morpher) that given a
set of suffix-replacement rules and an inflected word, returns its
root form.

2We obtained a list of unique words from the EMILLE cor-
pus which did not exist in the RFList. Assuming that they are

find any applicable rule for 644 words. One of the reasons
(as highlighted by the authors) is that not all words in the
dataset were present in the RFList. Secondly, our dataset
includes some words which are not exactly the proper Hindi
words. For example, aA�ToErEVyA (authoritiyaan, authori-
ties)). Finally, there were some inflected words which could
not be matched with any of the rules in their ruleset.
The approach presented in this paper is a combination of
various methods described under the related work (Pandey
and Siddiqui, 2008; Hull, 1996; Majumder et al., 2007;
Shrivastava et al., 2005). In Hindi, most base-form verbs
end with suffix nA (naa). Every noun in Hindi can be cat-
egorized as a masculine or a feminine noun. While, most
masculine nouns end with the vowel A (aa), most feminine
nouns end with the vowel F (ee). Usually when using these
words in sentences, these base-form suffixes are removed
and the words are inflected based on varying criteria. Thus,
finding a root form for a given Hindi word involves remov-
ing inflections and attaching relevant base-form suffixes.
We used a Hindi dictionary and added all missing root
forms in the RFList (called the “extended RFList” here-
after).
As all the entries in the RFList are in their base forms,
the RFList can be used for obtaining common base form
endings. In the RFList, words are divided in four different
grammatical categories: noun, verb, adjective and adverb.
For the words in each category, we obtained a list of com-
mon suffixes (see table 1). We used this list to identify miss-
ing words which appear in the corpus but not in the RFList.
Considering one suffix at a time, we obtained words from
a subset of the EMILLE corpus that end with this suffix.
Each of these words was automatically checked against the
RFList. If it did not exist, it was manually checked and
added to the RFList. The words which made to the RFList
were excluded from the candidates list for the next suffix.
This resulted in a discovery of 442 new base forms (mostly
verbs and adjectives). Although, this is a time consum-
ing process, the method discussed above, certainly helps
in reducing the numbers of candidates. On the other hand,
words ending with suffixes with very high frequency (such
as the suffix nA (naa for verbs), could be added automati-
cally without any verification.
We identify different suffix-replacement rules for each of

inflected words, we randomly picked 2500 words from the list for
our evaluation.



Suffix Replacement Count Example Category
� (e) A (aa) 1561 lXk� (ladake, boys) - lXkA (ladakaa, a boy) noun
� (e) A (aa) 1561 ron� (rone, for crying) - ronA (ronaa, to cry) verb
o (o) F (ee) 492 nO\kro\ (naukaron, servants) - nO\krF (nakaree, a job) noun
�(e) F(ee) 483 kVor� (katore, bowls) - kVorF (katoee, a bow) noun
o\ (on) - 476 pErvAro\ (parivaaron, families) - pErvAr (parivaar, a family) noun
- nA (naa) 474 EPsl (phisal, to slip) - EPslnA (phisalanaa, to slip) verb
o\ (on) A 466 nm� no\ (namoonon, samples) - nm� nA (namoonaa, a sample) noun
t� (te) nA (naa) 461 jAt� (jaate, while going) - jAnA (jaanaa, to go) verb
Eyo\ (iyon) F(ee) 432 nEdyo\ (nadiyon, rivers) - ndF (nadi, a river) noun
tA (taa) nA (naa) 371 d�tA (dete, while giving) - d�nA (denaa, to give) verb

Table 2: High Frequency Suffix-Replacement Rules for Hindi

Prefix Count Example Decomposition
a (a) 1616 apErEct (aparichit, unknown) a (a) + pErEct (parichit, known)
Ev (vi) 307 Evd�fF (videshee, foreign) Ev (vi) + d�fF (deshee, local)
an̂ (an) 239 anAv[yk (anaavashyak, unnecessary) an̂ (an) + aAv[yk (aavashyak, necessary)
s� 197 s� pA/ (good character) s� + pA/ (character)

Table 3: Most Frequent Prefixes

the four grammatical categories3 using the following pro-
cedure. We obtained all unique words from the EMILLE
corpus which did not exist in the RFList. Assuming that
these words are inflected, for each word in this list, we re-
move one character from the end of the string and replace it
with the first suffix in the table 1. If the resulting word can
not be found in the RFList, we use the next suffix. This pro-
cedure is repeated until all the replacements are tried. Even
then, if the word can not be located, another character from
the end of the string is removed and the entire procedure is
repeated. This continues until only one character is left. We
replace the removed characters with the base-form suffixes
and check if the resulting word is found in the RFList. If
the resulting word exists in the RFList, a rule is formed us-
ing the deleted characters from the original string as suffix,
and the appended characters as replacement. Also, both the
original word (inflected word) and the root form as identi-
fied by the rule are recorded for rule verification (if needed)
at the later stage. Table 2 lists the top ten high frequency
rules as obtained from our experiment.
As expected, not all rules produce correct results. For ex-
ample the third rule converts a masculine plural (nO\kro\
(naukaron, servants)) into a feminine singular (nO\krF
(naukaree, a job)). On the other hand, according to one
of the rules if a word ends with Akr (aakar), the suffix is
replaced with F (ee). Given a word kmAkr (kamaakar, after
earning), it gives a base form kmF (kamee, lacking), which,
in itself is a valid base form but not a correct base form for
the word in the question. The order in which these rules are
applied is also very important. For example, the third and
the fifth rules. Given a word nO\kro\ (naukaron, servants), if
the third rule is applied first, the system returns an incorrect
baseform nO\krF (naukaree, job). However, if the fifth rule
is applied first, the system would return a correct base form
nO\kr (naukar, servant). Therefore, we order the rules in
the following order:

1. Given two rules, the rule with the longer suffix is ex-
ecuted first. This is to make sure that more specific

3The RFList has 2118 verbs, 48563 nouns, 16173 adjectives
and 1151 adverbs.

rules are given priority over generalized rules.

2. If they have suffixes of the same length the rule with
the higher frequency in our list (table 2) is executed
first.

3. If they have suffixes of the same length and their fre-
quencies (table 1) are same, the frequencies of the
rules are looked up (table 2) and the rule with higher
frequency is executed first.

4. Finally, if the frequencies of replacements are the
same, the one with the smallest replacement string
is executed first. This makes sure that the minimum
change is applied to the word. For inflected words
whose base-forms do not exist in the RFList, we use
the output of the first rule that matches the inflected
word.

Since every resulting base form is validated using the
RFList, this approach restricts us from processing inflected
strings whose base forms do not exist in the RFList. For
such words, we use the output of the most likely rule (i.e.
the first rule that matched the inflected word).
In order to filter the ruleset, we verified it against a set of
2500 words (DATASET2). These words were randomly ob-
tained from the EMILLE corpus and had no word in com-
mon with DATASET1. For each word in this set we ob-
tained its root form4. We started with an empty ruleset.
One rule at a time from the table 2 (in order of top-to-
bottom) was added to the ruleset and its performance on
the DATASET2 (F-measure) was recorded. If the addition
of a rule resulted in a lower score, the rule was removed
from the ruleset. If it did not bring any change5, the user
was prompted for a decision to include or exclude the rule
from the ruleset. Along with the rule, a list of word pairs as
collected earlier for this rule was shown to the user.

4We used high-frequency rules (see table 2) to obtain root
forms which were manually verified.

5This happens when there is no word in the dataset to which
the rule can be applied.



RFList (Shrivastava et al., 2005) Extended Ruleset
Non-derivational Derivational Non-derivational Derivational

P R F P R F P R F P R F
Wordnet 0.736 0.683 0.708 0.735 0.683 0.708 0.743 0.717 0.730 0.743 0.717 0.730
Extended 0.817 0.768 0.792 0.817 0.768 0.792 0.821 0.803 0.812 0.820 0.803 0.812

Table 4: Results of Experiments on the Hindi Language

Verbs % Nouns % Adjectives % Adverbs %
suÖ (vun) 92.57 I(ee) 12.27 Ö (n) 22.36 Ö (n) 22.82
ssuÖ (vavun) 17.91 É(aa) 11.27 u Ö (un) 22.95 u Ö (un) 17.41
ÉssuÖ (aavavun) 12.95 Ö (n) 8.86 Í (ka) 14.22 É(aa) 12.00
ÉsuÖ (aavun) 9.90 v (ra) 8.62 I(ee) 9.50 e(e) 11.52
åsuÖ (davun) 9.68 çm (o) 8.05 i p (ita) 7.48 v (ra) 7.64
vsuÖ (ravun) 9.23 u Ö (un) 7.99 i Í (ika) 7.46 Í (ka) 7.29
ÂsuÖ (lavun) 6.41 pÉ (taa) 6.04 v (ra) 7.20 p (ta) 7.29
ÍsuÖ (kavun) 5.29 ouÖ (nun) 0.14 Âu (lu) 6.91 qI (thee) 7.05
- - É¿ (aal) 0.14 sÉÂu (vaalu) 6.09 ÉÖ (aan) 6.17
- - sÉì (vaad) 0.13 ÉÂu (alu) 6.09 - -

Table 5: Most Frequent Suffixes for Gujarati Base Forms

Although, one could use DATASET2, in the first place, to
learn such rules, it is important to mention that the size
of such a dataset is not very big but to manually prepare
larger one could be very expensive. On the other hand, ob-
taining a true distribution of suffixes just based on a small
dataset could lead to incorrect results. However, the rules,
as shown here, are based on automatically collected high-
frequency suffixes and replacements from the corpus. In or-
der to evaluate the final ruleset, we applied it to DATASET1
and obtained P=0.78, R=0.61, F=0.69. Although the results
are lower than that obtained with Shrivastava’s ruleset, it is
important to mention that their ruleset was derived manu-
ally whereas our ruleset consists of rules where majority of
them are learnt automatically without prior knowledge of
the language. Even when the user is asked to verify a rule,
he or she is shown a set of word pairs which are specific
to the rule and were collected during the discovery phase
of these rules. Such a list of word pairs can help users to
foresee the outcome of including this rule into the ruleset.
We merged our ruleset with Shrivastava’s ruleset (referred
to as the “extended ruleset” below) and applied it to
DATASET1. Table 4 shows the results of our experiments.
We also experimented with a derivational process whereby
the most common prefixes were obtained from the RFList.
Given a word from the RFList, characters from the start
of the inflected word were removed one by one until the
remaining string was found as another individual word in
the RFList (see table 3).
For example, consider the inflected word as� vFDAe�\ (asu-
veedhaein, lack of facilities). Based on the rules derived
earlier, it is possible to obtain a candidate baseform as� EvDA
(asuvidhaa, lack of facility); however, if this form is not
present in the RFList, we cannot verify if it is a correct lin-
guistic root. By looking in the prefix list and removing the
prefix a (a), the remaining word s� EvDA (suvidhaa, fa-
cility) is found in the RFList. In such cases, the original
resulting base-form (i.e. as� EvDA (asuvidhaa, lack of facil-
ity)) is considered a valid base form.
As can be seen in the table 4, we compare the results

of Shrivastava’s ruleset with the extended ruleset. It also
shows the effect of adding more words to the RFList. The
table also shows the results that were obtained after the ad-
dition of the derivational process. While the derivational
process does not appear to make much difference this can
be because very few pairs appear in the dataset to test the
process.

4. A Ruleset for the Gujarati Language
In order to test if the methodology discussed above can be
used for a similar language, an experiment was carried out
on the Gujarati language. We used a Gujarati dictionary as
a base-form list (GRFList from now) and obtained the most
common base-form suffixes (see table 5) using the same
method as described earlier for the Hindi language.
Using the list of base-form suffixes we were able to locate
576 words in their base-forms in the corpus which did not
exist in the GRFList. We obtained a set of unique and in-
flected words (84,489) from the corpus that did not exist
in the GRFList and obtained suffix-replacement rules (see
table 6).
The training data we used for our experiments contains
2000 inflected words (GUJDATASET1). Words in this
training data were collected by random selection from the
EMILLE corpus. Similar to the experiment with the Hindi
language, we used GUJDATASET1 to filter the ruleset to
one that yielded the highest f-measure on the dataset. In
order to test the performance of the final ruleset we pre-
pared another dataset containing 2000 inflected words (GU-
JDATASET2). The final ruleset was tested on the GUJ-
DATASET2. We obtained P=0.83, R=0.70, F=0.76. Ob-
serving the GRFList revealed that there are many incorrect
entries in the GRFList, which, if improved, could improve
overall results of the system.

5. Conclusion
We have presented a method that given a corpus and a dic-
tionary can be used to obtain a set of suffix-replacement



Suffix Replacement Count Example Category
I(ee) suÖ (vun) 392 nI©ÂI (peegalee, melting) - nI©ÂsuÖ (pigalavu, to melt) verb
oÉ (naa) - 358 ²¿ÉµÍÉvoÉ (salaahakaaranaa, advisor’s) - ²¿ÉµÍÉv (salaahakaar, advisor) noun
oI (nee) - 347 ²¿ÉµÍÉvoI (salaahakaaranee, advisor’s) - ²¿ÉµÍÉv (salaahakaar, advisor) noun
oe (ne) - 318 ²¿ÉµÍÉvoe (salaahakaarane, to advisor) - ²¿ÉµÍÉv (salaahakaar, advisor) noun
É(aa) u Ö (un) 278 êpÉssÉ (bataavavaa, for showing) - êpÉssuÖ (bataavavun, to show) verb
É(aa) u Ö (un) 275 ïmåÉxe¿É (jodaayelaa, connected(p)) - ïmåÉxe¿uÖ (jodaayelu, connected(s)) adj
ºÉÖ (maan) - 273 isëÉvºÉÖ (vichaarmaan, in thought) - isëÉv (vichaar, thought) noun
e(e) suÖ (vun) 269 ïÉÂse (jaalave, preserve) - ïÉÂssuÖ (jaalavavun, preserve) verb
pÉ (taa) suÖ (vun) 258 êpÉspÉ (bataavataa, showing) - êpÉssuÖ (bataavavun, to show) verb
om (no) - 258 ÍËmÍËIom (katokateeno, of urgency) - ÍËmÍËI (katokatee, urgent) noun

Table 6: High Frequency Suffix-Replacement Rules for Gujarati

rules for deriving an inflected word’s root form. We pre-
sented a Hindi morphological analyser and showed that it is
possible to adapt the same approach to similar languages by
developing a morphological analyser for the Gujarati lan-
guage as well. Given that the entire process of developing
such a ruleset is simple and fast, our approach can be used
for rapid development of morphological analysers and yet
can obtain competitive results with analysers built relying
on human authored rules.

Acknowledgement
This work is partially supported by the EU-funded MUS-
ING project (IST-2004-027097).

6. References
N. Aswani and R. Gaizauskas. 2009. Evolving a general

framework for text alignment: Case studies with two
south asian languages. In Proceedings of the Interna-
tional Conference on Machine Translation: Twenty-Five
Years On, Cranfield, Bedfordshire, UK, November.

D.A. Hull. 1996. Stemming algorithms: a case study for
detailed evaluation. J. Am. Soc. Inf. Sci., 47(1):70–84.

R. Krovetz. 1993. Viewing morphology as an inference
process. In SIGIR ’93: Proceedings of the 16th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 191–202,
New York, NY, USA. ACM.

J. Lovins. 1968. Development of a stemming algorithm.
Mechanical Transactions - Computational Linguistics,
11:22–31.

P. Majumder, M. Mitra, S.K. Parui, G. Kole, P. Mitra, and
K. Datta. 2007. Yass: Yet another suffix stripper. ACM
Transanctions and Information Systems, 25(4):18.

A. Pandey and T.J. Siddiqui. 2008. An unsupervised hindi
stemmer with heuristic improvements. In Proceedings of
the second workshop on Analytics for noisy unstructured
text data, pages 99–105, New York, NY, USA. ACM.

M. F. Porter. 1980. An algorithm for suffix stripping. Pro-
gram, 14(3):130–0137.

A. Ramanathan and D. Rao. 2003. A lightweight stemmer
for hindi. ACM Transactions on Asian Language Infor-
mation Processing (TALIP), 2(2):130–142.

M. Shrivastava, N. Agrawal, B. Mohapatra, S. Singh, and
P. Bhattacharya. 2005. Morphology based natural lan-
guage processing tools for indian languages. In Proceed-
ings of the 4th Annual Inter Research Institute Student
Seminar in Computer Science, IIT, Kanpur, India, April.

J. Xu and W. B. Croft. 1998. Corpus-based stemming
using cooccurrence of word variants. ACM Trans. Inf.
Syst., 16(1):61–81.


