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Abstract
We present a method that given a corpus and a dictionary can be used to obtain a set of suffix-replacement
rules for deriving an inflected word’s root form. We developed an approach for the Hindi language but show
that the approach is portable, at least to related languages, by adapting it to the Gujarati language.

1 Introduction

A considerable amount of work has been put into development of stemmers and morphological analysers
(Lovins, 1968; Porter, 1980; Majumder et al., 2007; Krovetz, 1993; Hull, 1996; Shrivastava et al., 2005;
Ramanathan and Rao, 2003; Pandey and Siddiqui, 2008). The majority of these approaches use hand-crafted
suffix-replacement rules but a few try to discover such rules from corpora. While all these approaches remove
or replace suffixes, approaches such as Krovetz (1993) and Hull (1996) propose derivational stemmers which
are based on prefixes as well. We propose an approach that both discovers rules from corpora and takes
prefixes as well suffixes into account.

In this paper we present a rule-based morphological analyser where the rules are acquired semi-automatically
from corpora. Given an inflected Hindi word, our system returns its root form. It uses a dictionary, and a
monolingual corpus to obtain suffix-replacement rules. Most rules in our approach are learnt automatically.
However, a few of them need to be verified manually. Our algorithm is a part of our efforts on developing
a general framework for text alignment (Aswani and Gaizauskas, to appear). In order to demonstrate our
approach’s portability to other similar languages, we present our experiments for both the Hindi and the
Gujarati language. In future, we plan to carry out similar experiments on other similar languages (e.g.
Bengali, Urdu and Punjabi).

2 Our Approach

To our knowledge, the morphological analyser presented by Shrivastava et al. (2005) is the best available for
the Hindi language. They use a hand-crafted set of 86 suffix-replacement rules. These suffix-replacement
rules are applied to an inflected word and the resulting candidate root form is checked against a list of root
forms (RFList) obtained from Hindi Wordnet. If it is found, it is deemed to be the correct root form. We
adapted1 their ruleset and applied it on our test data2 (DATASET1). We obtained P=0.74, R=0.68, F=0.71.
We found that not all words’ root forms were present in the RFList. Also, there were some inflected words
which could not be matched with any of the rules in their ruleset. In Hindi, most base-form verbs end with
suffix nA (naa) and base-form nouns with the vowel A (aa) and F (ee). Usually when using these words in
sentences, these base-form suffixes are removed and the words are inflected based on varying criteria. Thus,
finding a root form for a given Hindi word involves removing inflections and attaching relevant base-form
suffixes. We used a Hindi dictionary and added all missing root forms in the RFList (called the “extended
RFList” hereafter).

In Hindi, not only are nouns and verbs inflected but adjectives and adverbs are too (see table 1). We identify
different suffix-replacement rules for each of the four grammatical categories3 using the following procedure.
We obtained all unique words from the EMILLE corpus which did not exist in the RFList. Assuming that
these words are inflected, for each word in this list, we remove one character from the end of the string and
replace it with the first suffix in the table 1. If the resulting word can not be found in the RFList, we use the
next suffix. This procedure is repeated until all the replacements are tried. Even then, if the word can not be
located, another character from the end of the string is removed and the entire procedure is repeated. This

1We use a program called GATE Morphological Analyser (http://gate.ac.uk/userguide/sec:misc-creole:morpher) that given
a set of suffix-replacement rules and an inflected word, returns its root form.

2We obtained a list of unique words from the EMILLE corpus which did not exist in the RFList. Assuming that they are
inflected words, we randomly picked 2500 words from the list for our evaluation.

3 The RFList has 2118 verbs, 48563 nouns, 16173 adjectives and 1151 adverbs.



Table 1: Most Frequent Suffixes for Hindi Base Forms
Verbs %* Nouns % Adjectives % Adverbs %
A(aa) 99.81 A(aa) 19.99 t (ta) 17.06 r (ra) 14.29
nA (naa) 99.71 F(ee) 16.62 F(ee) 14.89 A(aa) 13.21
AnA (aanaa) 44.21 r (ra) 9.15 A(aa) 10.76 : 11.52
vAnA (vaanaa) 12.19 n (na) 8.06 y (ya) 9.20 t :(taha) 10.09
knA (kanaa) 8.03 - - k (ka) 7.87 k (ka) 8.13

∗ percentage of number of words that have the listed suffix in that category.

continues until only one character is left. We replace the removed characters with the base-form suffixes and
check if the resulting word is found in the RFList. If the resulting word exists in the RFList, a rule is formed
using the deleted characters from the original string as suffix, and the appended characters as replacement.
Also, both the original word (inflected word) and the root form as identified by the rule are recorded for rule
verification (if needed) at the later stage. Table 2 lists the top five high frequency rules as obtained from
our experiment.

Table 2: High Frequency Suffix-Replacement Rules for Hindi
Suffix Replacement Count Example Category

� (e) A (aa) 1561 lXk� (ladake, boys) - lXkA (ladakaa, a boy) noun

� (e) A (aa) 1561 ron� (rone, for crying) - ronA (ronaa, to cry) verb

o (o) F (ee) 492 nO\kro\ (naukaron, servants) - nO\krF (nakaree, a job) noun

�(e) F(ee) 483 kVor� (katore, bowls) - kVorF (katoee, a bow) noun

o\ (on) - 476 pErvAro\ (parivaaron, families) - pErvAr (parivaar, a family) noun

In order to filter the ruleset, we verified it against a set of 2500 words (DATASET2). These words were
randomly obtained from the EMILLE corpus and had no word in common with DATASET1. For each word
in this set we obtained its root form4. We started with an empty ruleset. One rule at a time from the table
2 (in order of top-to-bottom) was added to the ruleset and its performance on the DATASET2 (F-measure)
was recorded. If the addition of a rule resulted in a lower score, the rule was removed from the ruleset. If
it did not bring any change5, the user was prompted for a decision to include or exclude the rule from the
ruleset. Along with the rule, a list of word pairs as collected earlier for this rule was shown to the user.

In our approach, rules are executed based on the following priorities: 1) Given two rules, the rule with the
longer suffix is executed first. This is to make sure that more specific rules are given priority over generalized
rules. 2) If they have suffixes of the same length the rule with the higher frequency in our list (table 2)
is executed first. 3) If they have suffixes of the same length and their frequencies (table 1) are same, the
frequencies of the rules are looked up (table 2) and the rule with higher frequency is executed first. 4) Finally,
if the frequencies of replacements are the same, the one with the smallest replacement string is executed first.
This makes sure that the minimum change is applied to the word. For inflected words whose base-forms do
not exist in the RFList, we use the output of the first rule that matches the inflected word.

Although, one could use DATASET2, in the first place, to learn such rules, it is important to mention that
the size of such a dataset is not very big but to manually prepare larger one could be very expensive. On
the other hand, obtaining a true distribution of suffixes just based on a small dataset could lead to incorrect
results. However, the rules, as shown here, are based on automatically collected high-frequency suffixes
and replacements from the corpus. In order to evaluate the final ruleset, we applied it to DATASET1 and
obtained P=0.78, R=0.61, F=0.69. Although the results are lower than that obtained with Shrivastava’s
ruleset, it is important to mention that their ruleset was derived manually whereas our ruleset consists of
rules where majority of them are learnt automatically without prior knowledge of the language. Even when
the user is asked to verify a rule, he or she is shown a set of word pairs which are specific to the rule and
were collected during the discovery phase of these rules. Such a list of word pairs can help users to foresee
the outcome of including this rule into the ruleset.

We merged our ruleset with Shrivastava’s ruleset (referred to as the “extended ruleset” below) and applied
it to DATASET1. Table 4 shows the results of our experiments. We also experimented with a derivational

4We used high-frequency rules (see table 2) to obtain root forms which were manually verified.
5This happens when there is no word in the dataset to which the rule can be applied.



process whereby the most common prefixes were obtained from the RFList. Given a word from the RFList,
characters from the start of the inflected word were removed one by one until the remaining string was found
as another individual word in the RFList (see table 3).

Table 3: Most Frequent Prefixes
Prefix Count Example Decomposition

a (a) 1616 apErEct (aparichit, unknown) a (a) + pErEct (parichit, known)

Ev (vi) 307 Evd�fF (videshee, foreign) Ev (vi) + d�fF (deshee, local)
an̂ (an) 239 anAv[yk (anaavashyak, unnecessary) an̂ (an) + aAv[yk (aavashyak, necessary)
s� 197 s� pA/ (good character) s� + pA/ (character)

For example, consider the inflected word as� vFDAe�\ (asuveedhaein, lack of facilities). Based on the rules
derived earlier, it is possible to obtain a candidate baseform as� EvDA (asuvidhaa, lack of facility); however,
if this form is not present in the RFList, we cannot verify if it is a correct linguistic root. By looking in
the prefix list and removing the prefix a (a), the remaining word s� EvDA (suvidhaa, facility) is found in
the RFList. In such cases, the original resulting base-form (i.e. as� EvDA (asuvidhaa, lack of facility)) is
considered a valid base form.

Table 4: Results of Experiments on the Hindi Language
RFList (Shrivastava et al., 2005) Extended Ruleset

Non-derivational Derivational Non-derivational Derivational
P R F P R F P R F P R F

Wordnet 0.736 0.683 0.708 0.735 0.683 0.708 0.743 0.717 0.730 0.743 0.717 0.730
Extended 0.817 0.768 0.792 0.817 0.768 0.792 0.821 0.803 0.812 0.820 0.803 0.812

As can be seen in the table 4, we compare the results of Shrivastava’s ruleset with the extended ruleset.
It also shows the effect of adding more words to the RFList. The table also shows the results that were
obtained after the addition of the derivational process. While the derivational process does not appear to
make much difference this can be because very few pairs appear in the dataset to test the process.

3 A Ruleset for the Gujarati Language

In order to test if the methodology discussed above can be used for a similar language, an experiment
was carried out on the Gujarati language. We used a Gujarati dictionary as a base-form list (GRFList
from now) and obtained the most common base-form suffixes6. Using the list of base-form suffixes we
were able to locate 576 words in their base-forms in the corpus which did not exist in the GRFList. We
obtained a set of unique and inflected words (84,489) from the corpus that did not exist in the GRFList and
obtained suffix-replacement rules. The training data we used for our experiments contains 2000 inflected
words (GUJDATASET1). Words in this training data were collected by random selection from the EMILLE
corpus. Similar to the experiment with the Hindi language, we used GUJDATASET1 to filter the ruleset to
one that yielded the highest f-measure on the dataset. In order to test the performance of the final ruleset we
prepared another dataset containing 2000 inflected words (GUJDATASET2). The final ruleset was tested on
the GUJDATASET2. We obtained P=0.83, R=0.70, F=0.76. Observing the GRFList revealed that there
are many incorrect entries in the GRFList, which, if improved, could improve overall results of the system.

4 Conclusion

We have presented a method that given a corpus and a dictionary can be used to obtain a set of suffix-
replacement rules for deriving an inflected word’s root form. We presented a Hindi morphological analyser
and showed that it is possible to adapt the same approach to similar languages by developing a morphological
analyser for the Gujarati language as well. Given that the entire process of developing such a ruleset is simple
and fast, our approach can be used for rapid development of morphological analysers and yet can obtain
competitive results with analysers built relying on human authored rules.

6Due to space contraints, the tables showing various statistics such as common base-form suffixes and suffix-replacement
rules have been omitted from this abstract.
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