
Implementing a Variety of Linguistic Annotations through a
Common Web-Service Interface

Adam Funk, Ian Roberts, Wim Peters

Department of Computer Science
University of Sheffield

Regent Court, Sheffield, S1 4DP, UK
{a.funk,i.roberts,w.peters}@dcs.shef.ac.uk

Abstract
We present a web service toolkit and common client for a series of natural language processing (NLP) services as a
contribution to CLARIN’S European Demonstrator. We have also deployed and tested several natural language processing
and information extraction services for English and propose to develop further compatible services using resources for other
languages.

1. Introduction
An important goal of CLARIN is to make language
resources and technology available to humanities re-
searchers and other end users, especially through
web services. The European Demonstrator (Kemps-
Snĳders et al., 2009) prototype system will integrate
a number of resources and services available from the
participating institutions. We present here a web ser-
vice toolkit and client, along with the implementation
of a series of NLP and IE services, as a contribution to
that system.

2. Web service implementation
Our CLARIN services are standard SOAP web ser-
vices. They take their input as binary data (as a
MIME attachment to the SOAP message, according
to the MTOM specification)—though the services are
intended to process text they can handle input in many
formats including XML, HTML and PDF, extracting
the text from the source data using the format han-
dling mechanism provided by GATE. The service loads
the input data into a GATE Document object, then
processes that Document using a GATE Document-
Processor (typically a wrapper around a saved GATE
application), and returns its output as XML data (any
valid XML element is allowed for versatility). (Please
refer to the GATE manual (Cunningham et al., 2010)
and API documentation1 for details of the GATE li-
brary.)
All the services share a common WSDL interface as
their inputs and outputs are the same; only the un-
derlying GATE application needs to vary between ser-
vices. The standard interface simply specifies the out-
put as any XML in any namespace, and the implemen-
tation does not restrict the XML that the underlying
application can produce. However if the output types
for a specific service are known and there is a suitable
W3C XML Schema available then there is the option
to use a custom WSDL for that service with the more

1http://gate.ac.uk/documentation.html

constraining schema included, which may be beneficial
for certain types of client.
The various components making up the service imple-
mentation are configured using the Spring framework,
making it simple to slot in alternative DocumentPro-
cessor implementations for different services without
changes to the code. The aspect-oriented program-
ming tools provided by Spring are used to allow pool-
ing of several identical DocumentProcessors, to sup-
port multiple concurrent web service clients. The web
service layer is provided by the Apache CXF toolkit,
which itself uses Spring extensively and thus was a
good fit with the Spring-driven architecture adopted
for the business logic.
This toolkit will work easily for any GATE application,
typically a SerialAnalyserController or ConditionalSe-
rialAnalyserController (corpus pipeline); furthermore,
with suitable modification in the Spring beans config-
uration, it can use any class that implements Docu-
mentProcessor—in effect, any class that can analyse
a single GATE Document (or a GATE Corpus con-
taining one Document) and produce any valid XML
document (the root element of which which we treat
as the result and embed in the SOAP response). Each
web service provides a WSDL file available from the
server and offers three methods:

• process send only the document content as a
byte[];

• processWithURL also sends the document URL—
the GATE Factory will take the filename into con-
sideration when instantiating the Document (to
distinguish PDFs properly, for example);

• processWithParams sends a parameter list, which
allows the client to specify the original URL, en-
coding, and mime type (this method allows the
greatest flexibility).

3. Services currently available
We have implemented the following services so far,
making use of standards which we have worked with in



Figure 1: Spans of syntactic elements produced within
the chunking service

previous projects (particularly LIRICS2, SEKT3, and
MUSING4).

• The annie-alpha service runs the ANNIE (Cun-
ningham et al., 2002) named-entity recognition
and orthographic co-reference pipeline and re-
turns the fully annotated document in GATE
XML format. The file saved by the client contains
ANNIE’s output in the default AnnotationSet and
the input document’s HTML or XML mark-up in
the “Original markups” AnnotationSet.

• The maf-en service runs GATE’s sentence-
splitter, tokenizer, POS-tagger and morphological
analyser (lemmatizer) for English, and returns an
XML document containining the morphosyntac-
tic information according to the MAF (ISO, 2008)
standard.

• The chunking-synaf-en service runs GATE’s
sentence-splitter, tokenizer, POS-tagger, and NP
and VP chunkers (Cunningham et al., 2010, §17)
for English, as well as a simple PP chunker, to
produce annotations as shown in Figure 1 (where
VG means verb group). The application then con-
structs a simple syntactic tree for each sentence
based on simple containment (each phrase or to-
ken annotation is a constituent of the smallest
sentence or phrase annotation containing it), as
shown in Figure 2, and returns an XML document
according to the SYNAF (ISO, 2010) standard.
The syntactic detail is not complete but chunk-
ing and constructing a tree this way is reason-
ably accurate and reliable for many purposes and
much faster (especially for large documents over
a web service) than full parsing. (The verb chun-
ker’s annotations also contain features indicating
tense, voice, etc., which will be incorporated into
the SynAF output in the improved version of this
service.)

• The annie-rdf service runs ANNIE, then analy-
ses ANNIE’s annotations by type and features
and generates RDF representing the recognized
entities as instances according to the PROTON5

2http://lirics.loria.fr/
3http://www.sekt-project.com/
4http://www.musing.eu/
5http://proton.semanticweb.org/

(Terziev et al., 2005) ontology, and returns an
RDF-XML document.

4. Reference client
We also provide a GUI Java client, supplied as a ZIP
file with the necessary libraries, so the user needs only
a Java 5 runtime environment (JRE). This client uses
the processWithParams method and sends the file://
URL, and user-selected encoding along with the con-
tent of the selected local file. The user selects the ser-
vice from the list of endpoint URLs included with the
client, but can also type in a URL if he is aware of a ser-
vice that has been added since the client software was
issued. Figure 3 shows this client’s main panel used
for sending files to the services, and Figure 4 shows
the output panel, which allows the user to inspect the
output and save it to a local file.
Of course, developers can also use the services’ WSDL
files to produce their own clients for users’ direct use
or embedment in other software.

5. Conclusion and future work
The services described here have been proposed as con-
tributions to CLARIN’s European Demonstrator. We
also plan to deploy services with MAF output for some
other European languages (probably a selection from
Bulgarian, Dutch, German, and Spanish) in the near
future, based on the resources we have available, and
are open to suggestions for others, especially if suitable
language resources and processing tools are available
to be shared with us and suitable for integration with
GATE.

Acknowledgements
This research is partially supported by the European
Union’s Seventh Framework Program project CLARIN
(FP7-212230).

6. References
H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. 2002. GATE: A Framework and Graph-
ical Development Environment for Robust NLP
Tools and Applications. In Proceedings of the 40th
Anniversary Meeting of the Association for Compu-
tational Linguistics (ACL’02).

H. Cunningham, D. Maynard, K. Bontcheva,
V. Tablan, M. Dimitrov, M. Dowman, N. Aswani,
I. Roberts, Y. Li, A. Funk, G. Gorrell, J. Petrak,
H. Saggion, D. Damljanovic, and A. Roberts. 2010.
Developing Language Processing Components with
GATE Version 5.0 (a User Guide). The University
of Sheffield.

ISO. 2008. Language resource management—morpho-
syntactic annotation framework (MAF). Standard
ISO/DIS 24611, ISO TC37/SC4, December.

ISO. 2010. Language resource management—
syntactic annotation framework (SynAF). Standard
ISO/DIS 24615, ISO TC37/SC4.



Sentence

NP

This toolkit

VP

will work

easily PP

for NP

any GATE application

.

Figure 2: Approximate syntactic tree produced from the annotations in Figure 1

Figure 3: Main panel of the GUI client

Marc Kemps-Snĳders, Núria Bel, and Peter Witten-
burg. 2009. Proposal for a CLARIN European
demonstrator. Technical report, CLARIN Consor-
tium, September.

I. Terziev, A. Kiryakov, and D. Manov. 2005. Base
upper-level ontology (BULO) guidance. Deliverable
D1.8.1, SEKT Consortium, July.



Figure 4: Output panel of the GUI client


