
Implementing a Variety of Linguistic
Annotations through a Common

Web-Service Interface
Adam Funk and Ian Roberts and Wim Peters

University of Sheffield, Department of Computer Science
Regent Court, 211 Portobello, Sheffield, S1 4DP, UK

a.funk,i.roberts,w.peters@dcs.shef.ac.uk

19th February 2010

We present a web service toolkit and common client for a series of natural language
processing (NLP) services as a contribution to CLARIN’S European Demonstrator [4].
The CLARIN services are standard SOAP web services. They take their input as

binary data (as a MIME attachment to the SOAP message, according to the MTOM
specification)—though the services are intended to process text they can handle input
in many formats including XML, HTML and PDF, extracting the text from the source
data using the format handling mechanism provided by GATE. A service loads the
input data into a GATE Document object, then processes that Document using a
GATE DocumentProcessor (typically a wrapper around a saved GATE application),
and returns its output as XML data.
The various components making up the service implementation are configured using

the Spring framework, making it simple to slot in alternative DocumentProcessor im-
plementations for different services without changes to the code. The aspect-oriented
programming tools provided by Spring are used to allow pooling of several identical
DocumentProcessors, to support multiple concurrent web service clients. The web ser-
vice layer is provided by the Apache CXF toolkit, which itself uses Spring extensively
and thus was a good fit with the Spring-driven architecture adopted for the business
logic.
This toolkit will work easily for any GATE application, and with suitable modifi-

cation (in the Spring beans configuration) can use any class that implements Docu-
mentProcessor—in effect, any class that can analyse a single GATE Document and
produce XML output (in any valid XML format). Each web service provides a WSDL
file available from the server and uses three methods:

• process send only the document content as a byte[];

• processWithURL also sends the document URL—the GATE Factory will take
the filename into consideration when instantiating the Document (to distinguish
PDFs properly, for example);

• processWithParams sends a parameter list, which allows the client to specify
the original URL, encoding, and mime type (this method allows the greatest
flexibility).

We also provide a GUI Java client1, supplied as a ZIP file with the necessary libraries,
so the user needs only a Java 5 runtime environment (JRE). This client uses the
processWithParams method and sends the file:// URL, and user-selected encoding

1The full paper will include a screenshot.

1



along with the content of the selected local file. The user selects the service from the
list of endpoint URLs included with the client, but can also type in a URL if he is
aware of a service that has been added since the client software was issued. Of course,
developers can also use the services’ WSDL files to produce their own clients for users’
direct use or embedment in other software.
We have implemented the following services so far, making use of standards which we

have worked with in previous projects (particularly LIRICS2, SEKT3, and MUSING4):

• annie-alpha runs the ANNIE[3] named-entity recognition pipeline and returns
the fully annotated document in GATE XML format;

• maf-en runs GATE’s sentence-splitter, tokenizer, POS-tagger and lemmatizer
for English, and returns a MAF [1] XML document;

• chunking-synaf-en runs GATE’s sentence-splitter, tokenizer, POS-tagger, and
NP, VP, and PP chunkers for English, constructs a simple tree for each sentence
based on containment, and returns a SYNAF [2] XML document;

• annie-rdf runs ANNIE, analyses ANNIE’s annotations by type and features,
generates RDF according to the PROTON5 [5] ontology, and returns an RDF-
XML document.

We plan to deploy services with MAF output for some other European languages
(probably a selection from Bulgarian, Dutch, German, and Spanish) in the near future,
based on the resources we have available, and are open to suggestions for others,
especially if suitable language resources and processing tools are available to be shared
with us and suitable for integration with GATE.

Acknowledgements
This research is partially supported by the European Union’s Seventh Framework
Program project CLARIN (FP7-212230).

References
[1] Language resource management—morpho-syntactic annotation framework (MAF).

Standard ISO/DIS 24611, ISO TC37/SC4, December 2008.

[2] Language resource management—syntactic annotation framework (SynAF). Stan-
dard ISO/DIS 24615, ISO TC37/SC4, 2010.

[3] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications.
In Proceedings of the 40th Anniversary Meeting of the Association for Computa-
tional Linguistics (ACL’02), 2002.

[4] Marc Kemps-Snĳders, Nùria Bel, and Peter Wittenburg. Proposal for a CLARIN
European demonstrator. Technical report, CLARIN Consortium, September 2009.

[5] I. Terziev, A. Kiryakov, and D. Manov. Base upper-level ontology (BULO) guid-
ance. Deliverable D1.8.1, SEKT Consortium, July 2005. URL http://proton.
semanticweb.org/D1_8_1.pdf.

2http://lirics.loria.fr/
3http://www.sekt-project.com/
4http://www.musing.eu/
5http://proton.semanticweb.org/

2


