
A Natural Language Query Interface to
Structured Information

Danica Damljanovic, Valentin Tablan, and Kalina Boncheva

Department of Computer Science
University of Sheffield

Regent Court, 211 Portobello Street
S1 4DP, Sheffield, UK

{d.damljanovic,v.tablan,k.boncheva}@dcs.shef.ac.uk

Abstract. Extracting knowledge from semantic markup is essential once
that knowledge is in structured form and semantically enriched. Existing
formal languages for querying the knowledge bases are not convenient for
non-expert users. Developing more user-friendly interface to the struc-
tured data would enable non-experts to query such a knowledge without
prior training, while for experts it will significantly ease the process of
querying. Using Natural Language Interfaces (NLI) is the most natural
way to achieve user-friendliness of such interfaces. As natural human
language is known for its ambiguity and complexity there is need to
narrow its usage by using controlled languages (CL). On one side CL
limits the power of expressiveness, but on the other provides simplicity
and possibility to retrieve data without any previous learning or train-
ing. We present Controlled Language for Ontology Editing and Querying
(CLOnE-QL) - a tool for querying the knowledge represented by ontolo-
gies using text-based human understandable language. CLOnE QL has
a very simple interface, requires no training and can be easily embedded
in any system or used with any ontology or knowledge base.

Key words: ontology, ontology-aware annotations, semantic search, nat-
ural language queries, natural language interfaces

1 Introduction

Along with formal languages for representing ontologies (e.g., OWL, RDF), many
languages for querying them are also available (e.g., SPARQL, SeRQL). These
languages are usually complex and each has specific syntax. For query con-
struction and understanding of the results users must understand not only the
language itself, but also ontologies and ontology languages. Even for an expert
in this field, writing queries is error-prone task whilst the syntax is not so easy
to learn.

Developing user-friendly interfaces to structured data such as that in on-
tologies would be a potential way to ease the process of creating queries using
formal expressions for expert users, whereas for non-experts it would be a new
opportunity to query the knowledge base without any background knowledge.



2 D. Damljanovic, V. Tablan, K. Boncheva

Up to date, many interfaces to knowledge bases are already developed. Some
of them provide graphical interface where users can browse ontology, and also
extract some knowledge from it by executing queries expressed in formal lan-
guages such as SPARQL. The other are more user-friendly and provide forms for
performing semantic search based on underlying ontology whilst hiding the com-
plexity of formal languages. The most sophisticated ones provide only one text
box for a query, and require no training of the user, accepting Natural Language
(NL) queries as an input.

According to the interface evaluation conducted in [1], systems developed to
support NL interfaces seems like the most acceptable by end-users. [1] tested
usability of Semantic Webs capabilities to the general public with 48 users and
four types of query language interfaces. The queries were executed against the
OWL knowledge bases. This study showed that the full-sentence query option
was significantly preferred to keywords, a menu-guided, and a graphical query
language interfaces.

Despite user preferences, the development of accurate NLI systems is ’a very
complex and time-consuming task that requires extraordinary design and imple-
mentation efforts’ [1]. Namely, the NLI systems vary from those that are domain
independent, portable and with low performance, to more domain specific ones
being portable only prior to customisation, and with a very high performance.
However, the customisation of the latter is usually very expensive as it is per-
formed by humans, often being experts in one field or another. The key for
bridging the gap between the two extreme would be automatization of the pro-
cess of domain specific knowledge creation. The nature of semantic markup have
power to give this sophisticated dimension to NLIs by arising the possibility
to extract domain-specific knowledge from the formal structures automatically,
resulting in creation of domain-independent NLI with a high performance. How-
ever, the quality of semantic markup in formal structures have to be very high.
The question is what does sufficient quality for the semantic markup means and
how to achieve this? Experts for customising NLI systems usually have to cre-
ate domain specific knowledge so that that knowledge can be used for question
answering. To create this knowledge they usually have to add descriptions or
labels to the relevant terms or to map one terms with the others. If an ontology
would be created so that each concept and relation is accompanied with human
understandable label or description, the automatization of the domain specific
knowledge creation would be feasible.

The other problem with NLI systems is hidden in the nature of human lan-
guages, which are being well-known for their ambiguity and complexity. To over-
come this problem it would be feasible to limit the usage of NL by introducing a
controlled language. A controlled language (CL) is a subset of a natural language
that includes certain vocabulary and grammar rules that have to be followed.
On one side CL limits the power of expressiveness, whilst on the other pro-
vides simplicity and possibility to retrieve data without any previous learning
or training.



Text-based Interface for querying structured information 3

We present CLOnE QL (Controlled Language for Ontology Editing and
Querying) - portable, domain-independent and simple NLI tool that accepts
text-base queries as an input and transforms it to the formal language query,
such as that of SeRQL (see figure 1). The queries are then being executed against
the given ontology and/or knowledge base usually containing instances of the
concepts from the ontology and relations between them.

Fig. 1. Process of creating formal language queries (e.g., SeRQL) from human language

CLOnE QL was inspired by CLOnE (Controlled Language for Ontology Edit-
ing) [2]. CLOnE provides users to edit ontologies using natural language. Simi-
larly, CLOnE QL enables users to query the existing knowledge by transforming
input NL queries into SeRQL queries using GATE resources for natural language
processing.

2 Background

One of the ways to search the knowledge base and/or ontology is using existing
tools that enable browsing and navigation. One of the most popular is Protege
[3]. Expert users would most probably understand most of the defined concepts
and relations between them while browsing an ontology in Protege editor, but
for browsing a huge amount of data, they might get lost among hundreds of
tree nodes. However, for such cases it’s possible to use Protege Query Interface,
where one can specify the query by selecting some options from given list of
concepts and relations. Alternatively, for even more expressive search users can
use a simple interface where they type in a query using a formal language such
as SPARQL and get the results. Such a tool is useful for experts that are familiar
with query languages, specifically SPARQL in this case, although they also have
to be experienced Protege users.

One step towards more user-friendly interface is a semantic search form of
some knowledge management platforms such as KIM [4]. Their interface enables
querying knowledge bases by either instantiating a query from a set of given
templates, or by constructing a SeRQL query using a form-based interface. Con-
sequently, users are either restricted in what they can search for, or they need to



4 D. Damljanovic, V. Tablan, K. Boncheva

be familiar with the query language and the underlying ontology. CLOnE QL,
as well as other NLI systems, differ from KIM in that it saves users not only
from the complexity of the query language(s), but also from the necessity to
be familiar with ontologies and semantic search. Moreover, CLOnE QL has no
limitations in the number of concepts to be included in a query, whereas in KIM
the interface will not allow to construct queries comprising the combination of
more than 3 concepts. Using NLIs provides flexibility in a manner that there is
no limitation of this kind: it is the user who decide how many concepts will be
included in the query.

The most simple interface usually used by NLI systems is that of search
engine’s such as Google’s. [5] present SemSearch - a concept-based system which
claims to have Google-like Query Interface. It requires a list of concepts (classes
or instances) as an input query separated by colon (e.g., ’news:PhD Students’ is
a query that results in all instances of class News that are in relation with PhD
Students). The idea of having a simple form for semantic search queries is very
good. On the other side, SemSearch does not consider properties, and neither
does it disambiguate in cases when there is more than one relation between the
two concepts. It also does not accept natural language questions such as ’how
many PhD Students are registered at the University of Sheffield?’. Retrieving
relevant properties is of great importance in our approach, resulting in SeRQL
queries that are of a high accuracy.

AquaLog [6] is perhaps the system closest to ours, as it also uses a controlled
language for querying ontologies. It is also coupled with a learning mechanism, so
that its performance improves over time, in response to the vocabulary used by
the end users. However, this system heavily relies on language processing tools
and requires syntactically correct sentences as an input. Our approach differs in
that of being much more robust with respect to mistakes in the controlled lan-
guage and, in addition to question-based queries, it also supports concept-based
ones such as ’hotels London’ instead of ’list hotels located in London’. Addi-
tional limitation of Aqualog is that of being capable of dealing with questions
containing a maximum of two triples only. CLOnE QL has no limitations of this
type, as it would give results for any number of concepts appearing in a query,
meaning that the maximum of the triples included in one query is not limited.

Additionally, Aqualog requires configuring and adding so called ’pretty names’
to the ontology resources, whereas in CLOnE QL we derive everything from
the ontology - we believe that ontologies, even primarily built to enhance the
structure of data and make it understandable to machines - also have to be
understandable to humans, wherefor ontology designers should follow recom-
mended standards i.e. by giving ’pretty names’ to the values of properties such
as rdfs:label. However, the use of ’pretty names’ in Aqualog while learning the
system to bridge the gap between user vocabulary and the one used in the on-
tology is a good attempt to achieve a quality personalisation of the system.

Additional advantage of our system in comparison to Aqualog is that of
being capable of analysing queries containing not only instances, relations and
concepts, but also values of datatype properties, such as those of type String.



Text-based Interface for querying structured information 5

For example, CLOnE QL would give an answer to the question Which project
has start date ’11.02.2003.’ having an instance of class Project with defined
datatype property of type String with assigned value ’11.02.2003.’ inside the
ontology.

Orakel is a natural language interface to knowledge bases [7] that imple-
ments functionality not only for knowledge represented in OWL but also pro-
vides means for accessing F-Logic. The key advantage of this system making it
different and in a way better than other similar NLIs is support for composi-
tional semantic construction. This means that Orakel is able to handle questions
involving quantification, conjunction and negation. However, a mandatory cus-
tomisation of the system according to the domain-specific knowledge makes it
unattractive for end-users. The task of the person in charge of customising the
system is to create a domain-specific lexicon mapping subcategorization frames
to relations as specified in the domain ontology. Subcategorization frames are
essentially linguistic argument structures, e.g. verbs with their arguments, nouns
with their arguments, etc.

A very well rated system according to its performance is Librarian [8] - do-
main specific system for libraries. This system use Wordnet in combination with
the dictionary developed w.r.t. the domain specific ontology. The main disad-
vantage of such a NLI is, similarly to that of Orakel - the dictionary has to be
created for each specific domain and most of these customisations of dictionaries
have to be performed/supervised by humans.

ONLI (Ontology Natural Language Interaction) [9] is a natural language
question answering system used as front-end to the RACER reasoner and RASER’s
query language, nRQL. ONLI assumes that the user is familiar with the ontology
domain but is not required to know how to write queries using the nRQL lan-
guage. The system will transform the user natural language queries into nRQL
query formats. It major difference to other similar systems is that of supporting
queries with quantifiers and number restrictions. However, it is not clear from
[9] if this system is easily portable and ontology-independent. Moreover, their
evaluation shown in [9] doesn’t reveal the overall performance of the system, but
shows that incorporating quantifiers and number restrictions does not degrade
performance of the system.

Querix [10] is another ontology-based question answering system that trans-
lates generic natural language queries into SPARQL. In case of ambiguities,
Querix relies on clarification dialogues with users. In this process users need to
disambiguate the sense from the system-provided suggestions. However, in [10]
it is not mentioned what types of questions are handled by the system.

The main advantage of our system in comparison to other similar ones is
in its emphasis on robustness, i.e. it gives users the freedom to enter queries of
any length and form. It uses heavily reasoning over the ontology, in order to
disambiguate and interpret the user queries. It analyse potential relations be-
tween concepts and ranks them according to several relevant factors to achieve
the most of accuracy. CLOnE QL is also portable, and requires no configuration
or customisation when changing the ontology to be used with. It supports com-



6 D. Damljanovic, V. Tablan, K. Boncheva

positional semantic construction comprising conjunction and disjunction. Last
but not least, the query interface is very simple (a Google-like search box), so it
can be used without any prior training.

3 Technical Details

CLOnE QL is heavily dependent on the data residing inside the ontology as it
preprocesses these to prepare for the process of querying. This preparation is
performed during initialisation of the tool, and is aimed to extract domain spe-
cific knowledge from the ontology. All relevant terms extracted from the ontology
are used to identify key concepts inside the query, while relations between them
are retrieved by means of reasoning inside the ontology. Reasoning is also used
to solve disambiguity problems to achieve more accurate results. Consequently,
the performance of the tool is directly proportional to the quality of the se-
mantic markup in formal descriptions residing inside the ontology: more human
understandable descriptions inside the ontology - better result in answering of
the queries.

Process of transforming an input query into a formal language query com-
prises the following steps:

Identifying Key Concepts inside the query. This is performed by produc-
ing semantic annotations with respect to a given ontology. We dynamically
build a gazetteer from the ontology and use it coupled with a morphologi-
cal analyser to include all morphological inflections of names and values of
properties assigned to ontology resources.

Filtering identified Key Concepts. As sometimes the same part of input
text could be annotated with different or similar ontology resources we filter
them to avoid those that are of less importance and very often redundant.

Identifying relations between Key Concepts. To achieve most of accuracy
of resulting formal queries we retrieve and analyse potential relations (i.e.
properties) between identified Key Concepts based on the defined relations
in the ontology.

Scoring potential relations. According to the specific factors, using string
similarity metrics and a property position in the taxonomy we calculate
scores for all potential properties.

Creating SeRQL queries and showing results.

Following sections describe details of each phase.

3.1 Identifying Key Concepts

Semantic annotation is usually the first mandatory step when performing some
more important tasks such as semantic indexing, searching, keyword extraction,
ontology population and the like. Hence many available tools for producing se-
mantic annotations w.r.t. an ontology such as [11], [12], [13], [14] exist nowadays.
However, most of them use static lists for a gazetteer and match only exact text



Text-based Interface for querying structured information 7

in documents from that in the list. Our approach differs in that of matching all
morphological inflections of the relevant terms by using a morphological analyser
in the dynamic construction of the gazetteer lists from the ontologies.

In CLOnE QL we automatically retrieve key concepts from the query by
creating ontology-aware annotations over them. These annotations are created
based on the assumption that a specific part of a query is referring to a partic-
ular resource residing inside the ontology if the lemmas1 of the two match. A
particular ontology resource is identified mostly by its URI, labels, or by a value
of some set properties.

Building a Dynamic Gazetteer from the Ontology . To produce ontology-
aware annotations i.e. annotations that link to the specific concepts/relations
from the ontology, it is essential to pre-process the Ontology Resources (e.g.,
Classes, Instances, Properties) as well as the set values for the properties and ex-
tract their human-understandable lexicalisations. As rdf:label property is meant
to have a human-understandable value [15], it is a good candidate for the gazetteer.
Additionally, labels contain multilingual values, which means that the same tool
can be used over the documents written in different languages - as long as that
language is supported by the ontology.

However, the part of the Unique Resource Identifier (URI) itself is sometimes
very descriptive, making it a good candidate for the gazetteer as well. This part
is called fragment identifier2.

As a precondition for extracting human-understandable content from the
ontology we created a list of the following:

– names of all ontology resources i.e. fragment identifiers and
– values of all set properties for all ontology resources (e.g., values of labels,

values of datatype properties, etc.)

Each item from this list is analysed separately by the Onto Root Applica-
tion (ORA) on execution (see figure 2). The Onto Root Application is a GATE
pipeline of few language processing resources. It first tokenises each linguistic
term, then assigns part-of-speech and lemma information to each token.

As a result of that pre-processing, each token in the terms will have additional
feature named ’root’, which contains the lemma as created by the morphological
analyser. It is this lemma or a set of lemmas which are then added to the dynamic

1 Lemma is the canonical form of a lexeme. Lexeme refers to the set of all the forms
that have the same meaning, and lemma refers to the particular form that is chosen
by convention to represent the lexeme.The process of determining the lemma for a
given word is called lemmatisation.

2 An ontology resource is usually identified by URI concatenated with a set of
characters starting with ’#’. This set of characters is called fragment identi-
fier. For example, if the URI of a class representing GATE POS Tagger is:
’http://gate.ac.uk/ns/gate-ontology#POSTagger’, the fragment identifier will be
’POSTagger’.



8 D. Damljanovic, V. Tablan, K. Boncheva

Fig. 2. Building Ontology Resource Root Gazetteer dynamically from the Ontology

gazetteer list (Ontology Resource Root Gazetteer - ORRG), created from the
ontology.

For instance, if there is a resource with a short name (i.e., fragment identifier)
ANNIEJapeTransducer, with assigned property rdf:label with values Jape Trans-
ducer and ANNIE Jape Transducer, and with assigned property rdf:comment
with value A module for executing Jape grammars, the created list before exe-
cuting the OntoRoot gazetteer collection will contain following the strings:

– ANNIEJapeTransducer,
– Jape Transducer,
– ANNIE Jape Transducer and
– A module for executing Jape grammars.

Each of the items from the list is then analysed separately and the results
would be:

– For ANNIEJapeTransducer, Jape Transducer, and ANNIE Jape Transducer
the output will be the same as the input, as the lemmas are the same as the
input tokens.

– For A module for executing Jape grammars the output will be the set of
lemmas from the input resulting in A module for execute Jape grammar.

In this way, a dynamic gazetteer list is created directly from the ontology
resources and is then used by the subsequent components to annotate mentions



Text-based Interface for querying structured information 9

of classes, instances, and properties in the input query. It is essential that the
gazetteer list is created on the fly, because it needs to be kept in sync with the
ontology, as the latter changes over time.

To enable considering lemmas when annotating query input text against the
gazetteer of ontology terms, we use a Flexible Gazetteer. The most important dif-
ference between a default Gazetteer and a flexible one is that the latter matches
against document annotations, not against the document content itself. In effect,
the Flexible Gazetteer performs lookup based on the values of a given feature
of an arbitrary annotation type, by using an externally provided gazetteer [16].
As shown on figure 3, the external gazetteer for the Flexible one is set to be
ORRG gazetteer, created dynamically.

The output of the morphological analyser in Onto Root Application (figure
2) creates features called root and adds them to the document tokens (which
are annotations of type Token). Consequently, we set the Flexible Gazetteer in
CLOnE QL Application (figure 3) to use the values of the Token.root features
during the annotation process. These features are created when running Morhper
PR - a morphological analyser over the text-based query.

The output of the Flexible Gazetteer is set of annotations of type Lookup. To
mark these annotations as being related to Ontology Resources we rename them
into OntoRes using OntoRes Annotator - a JAPE3 based language processing
resource. All non-annotated text from the query is processed by OntoRes Chunk
Annotator and used to create OntoResChunk annotations. KeyWord Annotator
annotates any keywords or keyphrases found inside the query text. Finally, all
found annotations are processed by OntoResAnalyser processing resource, re-
sulting in the list of SeRQL queries that are than executed and results are being
returned to the user. Processing of annotations, filtering key concepts, retrieving
and scoring relations between them, creation and execution of the queries are
being implemented by OntoResAnalyser processing resource. Details follow in
next sections.

3.2 Filtering identified Key Concepts

Human language itself is well-known for its ambiguity [17]. It is possible to
use the same expression in different context and express the totally different
meaning. When identifying Key Concepts, more than one annotation can appear
over the same token or a set of tokens, which need to be disambiguated. The
most common disambiguation rule is to give priority to the longest matching
annotations. We consider an annotation longer than the other one when

– the start offset node is equal or smaller than the start offset node for the
other one and

– when the end offset node is greater than or equal to the end offset node for
the second annotation.

3 JAPE is a language for writing regular expressions over annotations, and for using
patterns matched in this way as the basis for creating more annotations.



10 D. Damljanovic, V. Tablan, K. Boncheva

Fig. 3. GATE pipeline of language processing resources in CLOnE QL Application

For example, there is an instance with assigned label with value ANNIE POS
Tagger inside the GATE domain ontology4. This expression comprises the label
for the class POS Tagger as well, as the class has assigned label POS Tagger.

When a document contains the text ANNIE POS Tagger, then there will
be several annotations indicating that there is more than one resource in the
ontology with this name. To illustrate this, we show how this overlapped markup
will appear in a GATE graphical viewer (see Figure 4 ).

Fig. 4. Annotations of type OntoRes for input string ’ANNIE POS Tagger’

As the annotation referring to ANNIE POS Tagger text inside the document
has the start offset smaller than the start offset for the annotation referring to
POS Tagger text, and the same end offset, we consider it longer and give it a
priority. Inside the GATE domain ontology, ANNIE POS Tagger is an instance

4 http://gate.ac.uk/ns/gate-ontology



Text-based Interface for querying structured information 11

of the class POS Tagger and POS Tagger is a class with four instances, one of
them being the ANNIE POS Tagger. Therefore, in this case, it is possible to
disambiguate the mentions to that of the correct instance.

This disambiguation rule is based on the heuristic that longer names usually
refer to the more specific concepts whereas shorter ones usually refer to the more
generic term.

3.3 Identifying and scoring potential relations

After key concepts are identified we investigate to find any potential relations
between them defined inside the ontology. These relations are very important as
they add descriptions to the concepts and define their behaviour by adding rules
and constraints. The role of relations is of a great importance in the process of
Information Extraction (IE) as described in [18]: ’Extraction of relations among
entities is a central feature of almost any information extraction task...’, where
entities can be seen as concepts defined in an ontology.

Information Extraction is a technology based on analysing natural language
in order to extract snippets of information. The process takes texts as input
and produces fixed format, unambiguous data as output [19]. These data may
be further used for different purposes, e.g. in information retrieval applications
such as internet search engines. At a higher level of sophistication are systems
using semantic annotation in the process of IE. Semantic annotation is about
producing metadata and using schema to enable new information access methods
so that they enhance existing ones [19]. This information discovered for example
in the documents can be connected to formal descriptions, namely, to ontologies.

When retrieving information about arbitrary concepts from ontologies it is
crucial to retrieve and understand defined relations i.e. properties for them as it
is these relations that affect the behaviour and give limitations to concepts. To
retrieve these relations we use reasoning provided by the reasoning component
inside CLOnE QL. Retrieved relations are then scored using a combination of
three factors. One of them is similarity of the relation’s name with the part of
the query between identified concepts and is called similarity score. The other
two relevant factors for scoring the properties are more complex and are based
on the property position in the hierarchy of concepts and properties: they are
reflected by a distance score and a specificity score. Next paragraphs provide
more information on these.

Similarity score. Similarity of the relation’s name with the part of the query (a
chunk) between identified concepts is called similarity score. The highest score is
given to the relation that is the most similar to the chunk. For this comparison we
use Levenshtein distance metrics. The Levenshtein distance between two strings
is the minimum number of operations needed to transform one string into the
other, where an operation is an insertion, deletion, or substitution of a single
character. Scores varies in range from 0 to 1.

Using string similarity metrics when discovering and ranking property suit-
ability is a straightforward task extensively present in tools for natural language



12 D. Damljanovic, V. Tablan, K. Boncheva

processing nowadays. To illustrate the way we use Livenshtein distance metrics
in CLOnE QL we give the following example. Given a tourism domain ontology
and the knowledge base instantiated with common geographical names such as
names of cities, countries and continents, and a query ’list cities located in Eu-
rope’ identified key concepts would be ’cities’ and ’Europe’, the first referring
to a class City, and the latter referring to an instance of class Continent. The
text given in between these concepts (i.e. ’located in’) will be further processed
and compared with names of all defined properties between identified concepts.
As there is the property with name locatedIn in this ontology, similarity score
between ’located in’ and ’locatedIn’ will be calculated as 0.8.

Distance score. Distance score reflects the distance of the property from the
relevant concepts in the ontology, namely domain and range classes. When de-
signing ontology, concepts are usually presented in the form of hierarchy where
the most general ones are at the top, followed by more specific ones at the bot-
tom. For instance, defining that class Person has a subclass Man, and another
one named Woman, provides the possibility to define properties with domain or
range being class Man or Woman individually, whereas for relations that could
be applied to both concepts the property would be defined on higher level: for
Person itself. For example, defining property hasSibling can result in having
Person as a range class, whereas for more specific property such as hasBrother
the range class will be Man.

The score that is reflecting the property position according to the position of
the relevant domain and range classes in the hierarchy is called distance score.

Given property p with Cdn, n = 1, n being domain class, and Crm,m = 1,m
being range class, the distance score is calculated as a sum of domain distance
score and range distance score:

D(p) = Dd(p) + Dr(p)
Domain distance score is the sum of individual distance scores for each do-

main class of the property:
Dd(p) =

∑
(D(Cdn, Cdnl)), n = 1, n

Dd(p) = D(Cd1, Cd1l) + D(Cd2, Cd2l) + ... + D(Cdn, Cdnl)

– where Cdn is a domain class of property p,
– Cdnl is the lowest class in the hierarchy (i.e. has no subclasses) being a sub-

class of Cdn class, or being Cdn class itself in case that Cdn has no subclasses,
where n = 1, n and

– D(Cdn, Cdnl) is the distance between Cd1 class and Cdnl class

Range distance score is the sum of individual distance scores for each range
class of the property:

Dr(p) =
∑

(D(Crm, Crml)),m = 1,m
Dr(p) = D(Cr1, Cr1l) + D(Cr2, Cr2l) + ... + D(Crm, Crml)

– where Crn is a range class of property p,



Text-based Interface for querying structured information 13

– Crml is the lowest class in the hierarchy (i.e. has no subclasses) being a
subclass of Crm class, or Crm class itself in case that Crm has no subclasses,
where m = 1,m and

– D(Crm, Crml) is the distance between Cr1 class and Crml class

Specificity score. Specificity score reflects the position of the property in com-
parison with other existing properties in the ontology. Similar to the design of
concepts inside the ontology, properties that have subproperties usually refer to
the generic terms, whereas those that have superproperties refer to more specific
ones. For example, while property hasSibling is usually defined to have a range of
class Person, property hasBrother could be defined as a subproperty of property
hasSibling having a range of Man only.

Specificity score is determined by the distance of a property from its far-
thermost subproperty that has no defined subproperties. Its value is normalised
by dividing it with the maximum distance calculated for the properties on the
ontology level.

Calculating the final score for properties is performed using following equa-
tion:

Finalscore = similarityScore ∗ 3 + specificityScore ∗ 1 + distanceScore ∗ 1

3.4 Creating queries

When all potential relations are scored and ranked, the query using formal lan-
guage such as SeRQL is dynamically created. Key Concepts usually referring to
ontology resources such as classes, instances, properties or values of a proper-
ties together with generated scores for each property are used to create relevant
query.

Dynamic creation of formal queries makes CLOnE QL flexible and indepen-
dent, yet easy extendable by any other formal language e.g., SPARQL.

4 Usecases

-supporting open source software teams (TAO)
-supporting access to generic knowledge bases (KIM)

5 Evaluation

1) I think we are actually quite close to getting the thing to answer questions
against the KIM KB. 2) I think questionnaire/user satisfaction evaluations are
weak (and a major pain to organise). So how about we do some quantitative
stuff like for a set of questions:

-measure the amount of interactions with the KIM UI (how many com-
boboxes one needs to select, how many server-browser round-trips are necessary



14 D. Damljanovic, V. Tablan, K. Boncheva

for adding all the required restrictions; count the number of words in a NL query
that answers the same question.

I have a feeling (though unproven as yet) that our NL interface is more
generic than the KIM one, and there may be questions that have answers in the
KIm KB but cannot be asked using the UI.

We can also make the point that the NL interface is more natural (exempli-
fying by showing the actions require for the KIM UI). Though not a measurable
statement, any reasonable reviewer would likely agree with us.

which airports does Paris have? http://gate.ac.uk/wiki/Wiki.jsp?page=CloneBacklog

6 Conclusion and Future work

Future work on CLOnE QL includes moving it from being query-based to session-
based where we want to include user interaction, similar to that of Aqualog,
coupled with mechanism for learning the user’s linguistic idiosyncrasies. Cur-
rent implementation of the system already have an environment to track the
process of transforming Natural Language query to SeRQL query. The aim of
this tracking is to support user interaction in future. Additionally, this envi-
ronment would also enable presenting to users how and why system gave the
specific result. Users will than have chance to modify the query at some levels
of transformations.

Another way of improving the system could be allowing the user to play with
the scores or other ways of influencing the decision process. For instance, letting
the user reduce the weight on a particular metric when they think it causes some
problems in their particular use case.

Acknowledgements. The research for this paper was conducted as part of the
European Union Sixth Framework Program projects TAO (FP6-026460).

References

1. Kaufmann, E., Bernstein, A.: How useful are natural language interfaces to the
semantic web for casual end-users? In: Proceedings of the Forth European Semantic
Web Conference (ESWC 2007), Innsbruck, Austria (June 2007)

2. Tablan, V., Polajnar, T., Cunningham, H., Bontcheva, K.: User-friendly ontology
authoring using a controlled language. In: 5th Language Resources and Evaluation
Conference (LREC), Genoa, Italy, ELRA (May 2006)

3. Noy, N., Sintek, M., Decker, S., Crubzy, M., Fergerson, R., Musen, M.: Creating
Semantic Web Contents with Protégé-2000. IEEE Intelligent Systems 16(2) (2001)
60–71

4. Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., Kirilov, A., Goranov, M.:
Towards Semantic Web Information Extraction. In: Human Language Technolo-
gies Workshop at the 2nd International Semantic Web Conference (ISWC2003),
Florida, USA (2003)



Text-based Interface for querying structured information 15

5. Lei, Y., Uren, V., Motta, E.: Semsearch: a search engine for the semantic web. In:
Managing Knowledge in a World of Networks, Springer Berlin / Heidelberg (2006)
238–245

6. Lopez, V., Motta, E.: Ontology driven question answering in AquaLog. In: NLDB
2004 (9th International Conference on Applications of Natural Language to Infor-
mation Systems), Manchester, UK (2004)

7. Cimiano, P., Haase, P., Heizmann, J.: Porting natural language interfaces between
domains: an experimental user study with the orakel system. In: IUI ’07: Proceed-
ings of the 12th international conference on Intelligent user interfaces, New York,
NY, USA, ACM (2007) 180–189

8. Serge Linckels, C.M.: Semantic interpretation of natural language user input to
improve search in multimedia knowledge base. it - Information Technologies 49(1)
(2007) 40–48

9. Shamima Mithun, Leila Kosseim, V.H.: Resolving quanti?er and number restriction
to question owl ontologies. In: Proceedings of The First International Workshop
on Question Answering (QA2007), Xian, China (October 2007)

10. Kaufmann, E., Bernstein, A., Zumstein, R.: Querix: A natural language interface
to query ontologies based on clarification dialogs. In: 5th International Semantic
Web Conference (ISWC 2006), Springer (November 2006) 980–981

11. Wartena, C., Brussee, R., Gazendam, L., Huijsen, W.O.: Apolda: A practical tool
for semantic annotation. In: In Proceedings of 18th International Workshop on
Database and Expert Systems Applications, The Netherlands (September 2007)
288–292

12. Domingue, J., Dzbor, M., Motta, E.: Magpie: Supporting Browsing and Navigation
on the Semantic Web. In Nunes, N., Rich, C., eds.: Proceedings ACM Conference
on Intelligent User Interfaces (IUI). (2004) 191–197

13. Kiryakov, A., Popov, B., Ognyanoff, D., Manov, D., Kirilov, A., Goranov, M.:
Semantic annotation, indexing and retrieval. Journal of Web Semantics, ISWC
2003 Special Issue 1(2) (2004) 671–680

14. Vehvilinen, A., Hyvnen, E., Alm, O.: A semi-automatic semantic annotation and
authoring tool for a library help desk service. In: Proceedings of the first Semantic
Authoring and Annotation Workshop. (November 2006)

15. Champin, P.A.: Rdf tutorial. http://www710.univ-lyon1.fr/ champin/rdf-tutorial
(April 2001)

16. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Ursu, C., Dimitrov, M.,
Dowman, M., Aswani, N., Roberts, I.: Developing Language Processing Compo-
nents with GATE Version 3 (a User Guide). http://gate.ac.uk/ (2005)

17. Church, K., Patil, R.: Coping with syntactic ambiguity or how to put the block in
the box. American Journal of Computational Linguistics 8(3-4) (1982)

18. Appelt, D.: An Introduction to Information Extraction. Artificial Intelligence
Communications 12(3) (1999) 161–172

19. Bontcheva, K., Cunningham, H., Kiryakov, A., Tablan, V.: Semantic Annotation
and Human Language Technology. In Davies, J., Studer, R., Warren, P., eds.:
Semantic Web Technology: Trends and Research. John Wiley and Sons (2006)


