Evaluating Evaluation Metrics for Ontology-Based Applications ## Diana Maynard, Wim Peters, Yaoyong Li University of Sheffield, UK #### **Motivation** Traditionally, Precision and Recall are used to evaluate IE systems, which gives a binary score for each entity found. For ontology-based applications, this is insufficient because we want a more flexible measure that takes into account the degree of correctness of the result. Classifying a Man as a Person is less wrong than classifying a Man as a Location (see Figure). We adopt an approach based on similarity between Key and Response, known as **BDM** (Balanced Distance Metric). Aim to evaluate how useful the BDM is as a metric for ontology-based IE. Subset of Proton ontology #### **BDM** measure BDM = BR (CP/n1)-----BR(CP/n1) + (DPK/n2) + (DPR/n3) CP = shortest length from root to MSCA DPK = shortest length from MSCA to Key DPR = shortest length from MSCA to Response n1 = av. chain length of all chains containing K and R n2 = av. chain length of all chains containing K n3 = av. chain length of all chains containing R BR = branching factor of each relevant concept, divided by av. branching factor of all nodes excluding leaf nodes Text annotated in GATE according to KIMO ontology #### **Guidelines for evaluation metrics** A metric should: - Reach its highest value for perfect quality - Reach its lowest value for worst quality - Be monotonic - Be clear and intuitive - Correlate well with human judgement - Be reliable and exhibit as little variance as possible - Be cheap to set up and apply - Be automatic #### Results | No. | Entity | Key | Response | BDM | LA | |-----|---------------------------------|----------------------------|--------------|-------|-------| | 1 | Sochi | City | Location | 0.724 | 1.0 | | 2 | Federal Bureau of Investigation | Government
Organisation | Organisation | 0.959 | 1.0 | | 3 | Al-Jazeera | TV Company | Organisation | 0.783 | 1.0 | | 4 | Islamic Jihad | Religious
Organisation | Company | 0.816 | 0.556 | | 5 | Brazil | Country | Object | 0.587 | 1.0 | | 6 | Senate | Political Entity | Company | 0.826 | 0.556 | | 7 | Kelly Ripa | Person | Man | 0.690 | 0.667 | ### **Findings** Binary decisions are not sufficient for ontology evaluation involving hierarchical information Both BDM and Learning Accuracy (LA) perform better than traditional metrics BDM gives a better error analysis than LA in some situations BDM is robust when dealing with different ontology sizes and densities BDM enables better distinctions between some kinds of IE system (minor misclassifications less heavily penalised)