GATE in NeOn: mutual support for ontology
lifecycle development and natural language
processing

Diana Maynard and Wim Peters and Adam Funk

Department of Computer Science
University of Sheffield
Regent Court, 211 Portobello
S1 4DP, Sheffield, UK

{diana,wim, a.funk}@dcs.shef.ac.uk

Abstract. This paper describes the implementation of an approach to
modelling the dynamics of the propagation of textually derived semantic
information, in particular with respect to networked ontologies. On the
one hand, new ontologies may be generated automatically from textual
data, or existing ontologies may be modified or extended according to
new evidence. This can cause problems for large or networked ontologies,
where only a small section of the ontology may be modified, and where
multiple users may be working with the ontologies simultaneously. Fur-
thermore, interoperability issues may occur where different people are
using different tools: for example, some users may be automatically an-
notating texts and generating new ontologies using NLP techniques such
as those found in GATE, while other users may be applying different
techniques such as using the various plugins of the NeOn toolkit. In this
paper, we describe a plugin for the NeOn toolkit which uses both auto-
matic and manual methods for generating and modifying ontologies on
the fly, and which incorporates change logging to ensure compatibility
between ontology versions. We thus combine support for both ontol-
ogy lifecyle development and NLP engineers in a single mechanism that
brings together an established language engineering community (GATE)
with a newly emerging ontology community (NeOn).

Key words: natural language processing, ontology lifecycle, ontology
generation, ontology evolution

1 Introduction

Ontology evolution is increasingly acquiring research momentum in the Seman-
tic Web field. This is due to the fact that ontologies, forming the backbone of
Semantic Web systems, need to be kept up-to-date so that ontology-based sys-
tems remain usable. In this work, we describe an approach to modelling the
dynamics of ontology and metadata change in text, motivated by the need to
propagate changes in an ontology to its instances and properties, and vice versa.

2 GATE in NeOn

For example, if a user deletes concepts from the ontology, it is important to have
a mechanism for dealing with any associated semantic metadata, in order not
to lose vital information. If a user adds new concepts to the ontology, then it
may be necessary to return to the text to check whether additional instances can
be found which should be used to populate these new concepts in the ontology.
We call this the top-down approach to ontology change. Furthermore, not only
are ontologies dynamic and subject to structural change, but so are the texts
and instances from which the ontologies may be derived. If we get additional
relevant textual material and/or find new instances in that text, it may be nec-
essary to modify the ontology to take into consideration this new information
(for example, adding new concepts or new relations between existing concepts
in the ontology). We call this the bottom-up approach to ontology change.

Our top-down approach enables changes made to the ontology to be propa-
gated to the metadata so that as little information as possible is lost. For exam-
ple, when a concept is deleted from the ontology, usually any semantic metadata
(instances) belonging to that concept would be deleted with it, but this is not
always desirable behaviour because often we would prefer to reclassify the in-
stance at a more general level. Our approach is based on a methodology and
implementation for change propagation, that makes use of an ontology change
typology [1].

Our bottom-up approach enables an existing ontology to be augmented as
a result of new textual data. We have developed a generic GATE applica-
tion! called SPRAT (Semantic Pattern Recognition and Annotation Tool) which
uses ontology-based information extraction techniques [2,3] to generate onto-
logical information from unstructured text and either create a new ontology
from scratch or augment an existing ontology with new entities. The ontolo-
gies generated contain classes, subclasses and properties. These are generated
by identifying entities and relations in the text, using pattern-based techniques,
augmented with deeper semantic information and selectional restrictions. These
techniques are described more fully in Section 2.1. We have tested this applica-
tion on Wikipedia texts about animals, as these are highly productive in terms of
ontological information generated and do not require a domain expert to verify
the results. This generic application can also be tuned to specific domains by
making use of pre-existing domain ontologies. For example, we have developed
another application called SARDINE, targeted at the fisheries domain, which
makes use of a large fisheries ontology developed by FAOZ2. This extracts in-
formation from fisheries texts and augments their ontology and databases with
new facts. For example, we identify relations describing habitats of particular
fish species (e.g. Atlantic cod are fished in the Gulf of Maine), and alternative
names for fish that may not be in their ontology. Section 2.1 provides some
further explanation as to why ontologies may need augmenting.

These applications represent a typical situation where NLP (natural language
processing) techniques can assist in the development of Semantic Web technol-

! General Architecture for Text Engineering http://gate.ac.uk
% Food and Agriculture Organization of the United Nations http://www.fao.org

GATE in NeOn 3

ogy. The value of NLP systems is to bring some kind of structured order to the
chaotic representation of facts that is natural language. Typical web pages and
other text-based documents are designed to be easily read and understood by
humans, but are difficult for machines to process. NLP techniques provide the
link between unstructured text and an ontological representation of facts which
can then be used for automatic processing for any number of real world appli-
cations, such as business intelligence, information finding, question answering
and so on. There are many NLP tools used in both research and in the world of
business, of which GATE is one of the most widely used and well known. There
are also a variety of tools and systems providing ontology liffecycle support, of
which the NeOn toolkit is one newly emerging example. However, one of the cur-
rent research challenges is to provide better interoperability between these two
rather different kinds of systems. For example, while GATE provides ontology
support, this is very limited compared with ontology editors and frameworks
such as Protégé[4] and the NeOn toolkit.

Both the top-down and bottom-up approaches combine support for ontology
lifecyle development and NLP engineers. The ontology refinement and change
log mechanisms enable ontological changes to be made in GATE by language
engineers and domain experts who are interested in acquiring new information to
populate an ontology, without worrying about what this information may later
be used for or what other tools may be required to run on the data. These people
will use GATE to analyse the documents and/or create the data, but are not
necessarily interested in ontology management. On the other hand, ontologists
who are not concerned with where the data comes from, but only what use they
will make of it, do not have to worry about how to get hold of the relevant infor-
mation in the first place, and do not need to worry about language engineering
tools.

2 Ontology acquisition using SPRAT

In this section, we describe the bottom-up approach to ontology change, us-
ing the SPRAT application. We combine aspects from traditional named entity
recognition, ontology-based information extraction and relation extraction, in
order to identify patterns for the extraction of a variety of entity types and
relations between them, and to re-engineer them into ontological concepts, in-
stances and properties. The application is developed in GATE. Basic linguistic
patterns are first identified, and then enhanced with deeper semantic knowledge.
The NEBOnE plugin for GATE is used in order to generate the new ontological
entities on the fly: this is described in more detail in Section 2.3.

SPRAT makes use of a number of pre-existing GATE resources for pre-
processing the text with linguistic information, such as tokenisation, part-of-
speech tagging, simple noun phrase and verb phrase chunking, and named entity
recognition. It also includes lexical resources containing semantic classes from
WordNet [5] and VerbNet [6], which enable the incorporation of deeper semantic
information. This allows us to (i) look for verbal patterns connecting terms in a

4 GATE in NeOn

sentence, using the ANNIC plugin in GATE [7] and (ii) to restrict the kinds of
relation extracted. For example, we can restrict the kinds of entities that have
body parts associated with them to animals and humans.

2.1 Identifying Linguistic Patterns

Identifying ontological concepts and/or relations in text requires a slightly differ-
ent strategy from that used in traditional named entity recognition and ontology-
based information extraction methods [2]. While we can still make use of known
terms (either via a gazetteer or by accessing the class, instance and property la-
bels in an existing ontology), this is often not sufficient for a variety of reasons:

— the concept may not be in the ontology already;

the concept may exist in the ontology only as a synonym or linguistic vari-
ation (singular instead of plural, for example);

— the concept may be ambiguous;

— only a superclass of the concept may exist in the ontology.

We therefore need to make more use of linguistic patterns and also contextual
clues, rather than relying on gazetteer lists. We have identified three sets of
patterns which can help us identify concepts, instances and properties to extend
the ontology: the well-known Hearst patterns [8]), the Lexico-Syntactic Patterns
developed in the NeOn project corresponding to Ontology Design Patterns [9],
and some new contextual patterns defined by us [10]. We have extended the
patterns described in [10] to incorporate further semantic restrictions and to
include more properties. An example of a linguistic pattern is the following:
Add a new class.

Here we postulate that an unknown entity amidst a list of known entities is likely
to be also an entity of the same type. For example, if we have a list of classes of
fish, and there is an unknown noun phrase in amongst the list, we can presume
that this is also a class of fish. To decide where to add this new class in the
ontology, we can look for the Most Specific Common Abstraction (MSCA) of all
the other items in the list (i.e. the lowest common superclass of all the classes
in the list) and add the new entity as a subclass of this class.

Example: Hornsharks, leopard sharks and catsharks can survive in aquarium
conditions for up to a year or more.

where hornshark and leopard shark are classes in the ontology and catshark is
unknown, so we can recognise catshark as a subclass with the same parent as
that of hornshark and leopard shark, in this case shark.

An example of selectional restrictions placed on a relation is that a prop-
erty must be restricted to the following semantic type from WordNet: plant,
shape, food, substance, object, body, animal, possession, phenomenon, artifact.
Experiments with this restriction improved precision from around 35% to 75%,
although unsurprisingly, recall dropped a little.

GATE in NeOn 5

2.2 Implementation of patterns

The patterns are implemented in GATE as JAPE rules [11]. On the left hand
side of the rule is the pattern to be annotated. This consists of a number of
pre-existing annotations which have been created as a result of pre-processing
components (such as POS tagging, gazetteer lookup and so on) and earlier JAPE
rules. The right hand side of the rule invokes NEBOnE and creates the new items
in the ontology, as well as adding annotations to the document itself. This part
of the rule first gets the relevant information from the annotations (using the
labels assigned on the LHS of the rule), then adds the new information to the
ontology and finally adds annotations to the entities in the document. NEBOnE
is responsible also for ensuring that the resulting changes to the ontology are
wellformed: this is described in more detail in Section 2.3. Figure 1 shows a
screenshot from GATE of an ontology created from a selection of wikipedia
texts about animals.

File Optiuns Tools Help

lﬁ file: home/ dian... r,@%’r sprat+wordnet animals-24apr.o...

a/msjafee]a/ale]a]x]q]

Properties | TYPE Ontology Class st
Classes & Instances ¥ Direct Super Classes
Classes and Instances B Kangaroo .

¢ B Dik-dik
B Silver_Dik-dik
¢ M Diprotodont_Marsupial
¢ B Kangaroo
B Grey_Kangaroo
B Red_Kangaroo

B Wombat ifF Equivalent Classes L
¢ B Diseases_Of_The_Hoof ¥ Property Types
= Egglt:ggl 4 @ comment [ALL RESOURCES)
B Dog @ isDefinedBy [ALL RESOURCES]
¢ B Dolphin @ |abel [ALL RESOURCES]
B Cyborg_Dolphin @ =eeslso [aLL RESOURCES]
B Day_Dolphin ® ersioninfo [ALL RESOURCES]

B Hourglass_Dolphin
B Hybrid_Dolphin
. Kamlkaze Dulphln

[4] i |

[v]

[»]

r All Super Classes
B Diprotodont_Marsupial
B Kangaroo
Direct Sub Classes
All Sub Classes

r Property Yalues

Grey_Kangaroo
Grey_kangaroo

[]

GATE Ontology Editor L Initialisation Parameters

oDk

Hide this

resource view

Fig. 1. Generated ontology in GATE

6 GATE in NeOn

2.3 NEBOnE

The SPRAT application uses the specially developed NEBOnE plugin for GATE
in order to generate the changes to the ontology. NEBOnE (Named Entity Based
ONtology Editing) is an implementation for processing natural language text and
manipulating an ontology. It is derived from the CLOnE plugin [12] for GATE.

In CLOnE, input sentences are analysed deterministically and composition-
ally with respect to a given ontology, which the software consults in order to
interpret the input semantics. CLOnE allows users to design, create, and man-
age information without knowledge of complicated standards (such as XML,
RDF and OWL) or ontology engineering tools. It is implemented as a simpli-
fied natural language processor that allows the specification of logical data for
semantic knowledge technology purposes in normal language, but with high ac-
curacy and reliability. The components are based on GATE’s existing tools for
IE (information extraction) and NLP. Because the parsing process is determin-
istic, accuracy is not an issue: as long as the user specifies their input in correct
controlled language, the system always produces correct output.

NEBOnE is based on the same underlying principles as CLOnE and is realised
as another GATE plugin. The idea behind NEBOnE is that once a text has been
annotated using Named Entity recognition techniques, these annotations can be
used to generate new concepts, instances and properties in the ontology. CLOnE
uses so-called chunks from the input sentences as candidates for inclusion in the
ontology as classes, instances and properties: these are noun phrases previously
created by a chunker in GATE. In NEBOnE, however, a chunk can be any
annotation previously created, and does not need to correspond to a noun phrase,
thereby ensuring a great deal more flexibility. For example, some classes may
have a shorter span than a noun phrase, e.g. ”shark” occurring in the context
of "leopard shark” (where the latter would be the noun phrase). When the
NEBOnE plugin is installed, actions concerning the ontology are implemented
on the RHS of JAPE rules, such as adding or deleting new classes, instances,
subclasses, properties and so on.

If an item is selected for addition to the ontology as a new class, NEBOnE
first checks to see whether the item in question already exists in the ontology:
if it already exists in the place where it is scheduled to be added, NEBOnE will
do nothing. If the item exists as a class elsewhere in the ontology, NEBOnE will
add the new class (because it supports multiple inheritance). If the requested
parent class and subclass both exist and are class names, NEBOnE will make
the second a subclass of the first and print a message. If either is already an
instance, or the parent class does not exist yet, NEBOnE will print a warning
message.

Similarly for an instance, if it exists elsewhere as an instance, NEBOnE will
add the new instance but generate a notification message. If the item already
exists as a class, and an instance of the same name is to be added, or vice
versa, then NEBOnE will not generate the new instance/class and will produce
a warning message. Thus NEBOnE ensures consistency in the ontology, avoiding
the need to run a checker after the ontology has been modified. A user can of

GATE in NeOn 7

course choose to ignore any potential inconsistencies, by checking the generated
messages and then manually adding any offending items or making other changes
to the ontology.

Unlike CLOnE, NEBOnE’s functions will create classes and superclasses as
required in order to accommodate instances and subclasses, respectively; it does
not require every class to be explicitly created before it is used. The NEBOnE
library does, however, reject function calls that would otherwise try to create an
instance with the same name as an existing class, or the other way round.

3 Related work

Lexico-syntactic pattern-based ontology population has proved to be reasonably
successful for a variety of tasks [13]. The idea of acquiring semantic information
from texts dates back to the early 1960s with Harris’ distributional hypothesis [14]
and Hirschman and Sager’s work in the 1970s [15], which focused on determining
sets of sublanguage-specific word classes using syntactic patterns from domain-
specific corpora. A detailed description and comparison of lexical and syntactic
pattern matching can be found in [16], In particular, research in this area has
been used in specific domains such as medicine, where a relatively small number
of syntactic structures is often found, for example in patient reports. Here the
structures are also quite simple, with short and relatively unambiguous sentences
typically found: this makes syntactic pattern matching much easier.

Text20nto [17] performs synonym extraction on the basis of patterns. It
combines machine learning approaches with basic linguistic processing such as
tokenisation or lemmatisation and shallow parsing. Since like SPRAT it is based
on the GATE framework, it offers flexibility in the choice of algorithms to be
applied. Compared with SPRAT, it has a smaller number of lexico-syntactic pat-
terns. On the other hand, it applies additional statistical clustering and parsing
for relation extraction All in all, this leads to more data, but not necessarily to
an improvement of the resulting ontology in terms of precision.

We also took inspiration from some currently unpublished research carried
out at DFKI in the Musing project?®, which looks at deriving T-Box Relations
from unstructured texts in German. In this work, attention is focused primar-
ily on deriving relations between parts of German compound nouns, but we
can make use of similar restrictions. For example, in their work they might de-
rive from the compound noun ”bank manager” that there is a property ”has
manager” belonging to "bank”, and that a "bank manager” is a subclass of
”manager” .

Within the range of activities required for ontology learning, SPRAT covers
a number of intermediate stages in the process of ontology acquisition, namely
term recognition and relation extraction. In the initial acquisition stage, it will
recognise terms from the corpus only if they participate in any of the patterns.
This guarantees termhood only up to a certain extent. Further term filtering re-
sults in improved precision. For relation extraction, SPRAT does not make use

3 http://www.musing.eu

8 GATE in NeOn

of a parser. There are many applications that make use of syntactic dependen-
cies e.g. [18,19]. Our approach differs from this in that our patterns are defined
at low levels of syntactic constituency, such as noun phrases, and by means of
finite state transducers. Identifying and engineering on the basis of the linguistic
building blocks that are relevant for each ontology editing task eliminates the
need for a parser. Patterns are encoded locally, i.e. not embedded into a syntac-
tic structure., but bottom-up created by combinations of finite-state patterns.
Pattern variations can therefore be easily encoded. This bottom-up approach
is much faster and less error-prone than a parser, because it robustly identifies
syntactic building blocks rather than complete syntactic parses. Our approach
is more in line with the ontology bootstrapping approach advocated in [20].

4 Ontology change management in GATE

The bottom-up approach to ontology change embodied by applications such as
SPRAT is only half the story. The ontology development lifecycle also requires
a change log management system which allows the managing of changes made
by users in a collaborative environment [21]. This is necessary because different
people, who may be experts in their domain, sometimes end up making changes
to the same ontology, often at distributed locations. Where it is not possible to
have access to a shared repository, other people wishing to make changes to the
same ontology have to wait for others to finish their tasks. Changes made to an
ontology may involve additions, deletions and modifications [22].

The basic idea behind producing a change log is to allow people to share their
changes with others and thus collaborate on manipulating ontology data. This
allows them to work independently but simultaneously on the same ontology.
However, some ontologies can be extremely large and unwieldy, whereas the
changes made to such ontologies may be only very minor. Instead of exchanging
different versions of ontologies, it makes it easier to exchange change logs which
can then be applied over the original ontology to get the modified version.

As an extension to the OMV (Ontology Metadata Vocabulary)?, a taxonomy
has been defined called OWLChanges, consisting of a concept in the ontology
representing each different type of change possible. Figure 2 shows a snapshot of
part of this ontology, loaded in GATE. This includes concepts such as AddClass,
RemoveClass, AddIndividual, Removelndividual etc. In the case of the NeOn
Toolkit change log, every change made to an ontology is recorded as an instance
of the relevant concept in the OWLChanges ontology. Recording changes this
way makes it possible to represent the final change log as a separate ontology
where every instance refers to a change made in the ontology. In addition to
the information about changes made by users, the change log contains other
useful information such as who made those changes, when and in which order
etc. Since the change log is a valid OWL ontology, it can be loaded as well as
queried independently.

* http://ontoware.org/projects/omv/

GATE in NeOn 9

€% GATE 5.0-snapshot build 3128 L

File Options Tools Help

dk IR N Y

ATE Messages| goa OWLChanges_\.rO.Q...|
Chpplicait IR AR® DO & B XQ
’ Language Resource Information

Classes & Instances M

Classes and Instances

B Addindividual

http: /fornv. ontoware. argf 20071

. EemaoveTransitivebjectPro A

¢ Processin

OntologyChange TYFPE Ontology Class
Data st
' ata stor AddClass Direct Super Classes
AddDatatype =
A cldinclvicual B OntologyChange
AddProperty All Super Classes
AddDataProperty
AddObjectProperty
FemoveClass
EemoveDatatype
Rerovelndividual
1 > EermoveProperty Property Types
—_— RemoveDataProperty @ annotationValue [ALL CLASSES]
I: RemovelbjectProperty)
=M PropertyChange @ appliedToOntalogy [Ontalogy]
‘B DomainChange @ axiomAnnotation [ALL CLASSES]
B AddDomain
I BRI S Y . @ causeChange [Change]

|A
|»

<

FATE Nrralnme Fitnr ‘ Initialisation Parameters

Fig. 2. Part of the OWLChanges ontology loaded in GATE

GATE has several different plugins useful for carrying out different types of
information extraction tasks. It also has its own ontology API, which can be
used together with these resources to take the maximum advantage of the com-
bination. There are several applications that use these resources and manipulate
ontologies (automatically) using the ontology API. We implemented GATE On-
tology Services (GOS) to allow people to connect to a central repository and
manage ontologies centrally. It has been implemented in such way that it can be
used with other resources available in GATE.

GOS supports storing ontologies in a shared repository on a remote server.
GOS is based on OWLIM [23], which is a high performance semantic repository
developed in Java. It is packaged as a Storage and Inference layer (SAIL) for
the Sesame® RDF database. It has its own published API that a user can use
to make changes to the ontologies stored on the server. Software clients such as
the NeonOntologyServiceClient allow users to connect to this server, upload new
ontologies or use existing ones and manipulate data using the service methods
published by the GOS. Similar to the NeOn Toolkit, GOS also produces a change
log that describes changes made by the various users.

® http://www.openrdf.org/

10 GATE in NeOn

When making changes to the ontology, users contribute to the change log
maintained on the server. The GOS maintains only one instance of change log per
repository and accumulates changes made by different users in the same change
log. Users wishing to download the entire change log can do so by selecting one
of the options provided in the NeonOntologyService Client. When users download
a change log, it not only contains changes made by them but also the changes
that took place ever since the server was started.

In its current version, GOS inherits Sesame’s repository management system
which allows giving different rights to different users on different repositories.
In other words if proper rights are assigned, multiple users can connect to the
same repository from different locations and make changes. It is up to the sys-
tem using OWLIM /Sesame as backend to utilise this functionality and restrict
multiple users from editing the same ontology at the same time. In GOS, cur-
rently only one user is allowed to modify the ontology at a time. Other users
are given read-only access if they connect to a repository which is already being
edited by another user. However, since the different repositories are stored on
the same central server, different users connecting to the same repository one
after the other see the latest modified version. If simultaneous access is needed,
one can carefully distribute or make copies of the same ontology across different
repositories and ask users to connect to a different copy. Users wishing to make
changes can then contribute by adding new instances or deleting existing ones
in their copy. GOS does not allow making changes to the implicit resources (im-
ported ontologies). This helps in restricting users from making changes to the
basic taxonomy. Since making changes produces change logs, these change logs
can be investigated for debugging purposes. More information on GOS, how to
access it, its methods and the change log can be found in [24].

One of the problems with the original version of the GOS change log is that
it restricted users to use it only within GOS and was not directly compatible
with the NeOn Toolkit. Change logs produced by GOS could only be interpreted
by GOS. The same was true for NeOn Toolkit change logs which could not be
interpreted by GOS. This meant that users of GATE who modified an ontology
could not publish their changes to the NeOn Toolkit so that toolkit users having
access to the same ontology could make use of them. Similarly if a toolkit user
modified an ontology, the change log was not applicable in GATE.

It is important that the GOS change log is not restricted to use only with
GATE, otherwise the modified ontology is only useful within GATE itself and
cannot be then used inside other tools, architectures and ontology editors. We
therefore provide an implementation in the GOS that not only understands but
also produces the change logs that are compatible with the NeOn Toolkit. In
other words, it bridges the gap between the GOS and the NeOn Toolkit that will
allow people to use and transport change logs (instead of the entire ontologies)
across the two systems. For example, a typical scenario involves an ontology
originating from an organisation such as FAO, a part of which is then modified
in the NeOn Toolkit using the loosely coupled SPRAT plugin. Since SPRAT
relies on the GATE architecture, the change log is produced by GATE as part of

GATE in NeOn 11

the ontology modification process. In order for the new version of the ontology
to be then recoupled with the existing original ontology, and for further tools to
be used on it, the change log must be readable also by the NeOn Toolkit so that
the changes can be applied. Figure 3 shows the interaction between a GATE
application (SPRAT), the change log created and the Neon Toolkit.

NTK other NTK plug-ins

MeOn change log

MNeOn change log interpreter
hottom upitop down

MeOn change log propagation

repository
ontology
NeonOntologyServicesClient text tation change prog. iti
caontains one single ontology
and change lag in memaory
persistence through saving on disc
GATE text with annotations
NEBONE
ontology SPRAT

Fig. 3. Interaction between GATE, the change logs and the NeOn toolkit

The system works in both directions. Given this setup, users can choose to
work using a system of their choice (NeOn Toolkit or GATE) and produce a
change log that can be interpreted by both the toolkit and GOS to bring the
ontologies in the same state.

The NeonOntologyServiceClient uses the graphical interface of the Gate On-
tology Editor to allow users to create and populate new and existing ontolo-
gies. The same ontology editor is also used by a standalone resource known as
OWLIMOntologyLR © which is a part of the core GATE system.

In a scenario where different people are contributing their efforts into the final
outcome, it is very important to know what was contributed by whom. The client
adds information about the authors along with the timestamps to record when

5 http://gate.ac.uk/sale/tao/splitch10.html#x12-34800010.3

12 GATE in NeOn

the changes occurred. Change logs are produced as valid RDF /XML documents
where every change made to an ontology is an instance of some appropriate class.

4.1 Recording and interpreting changes

The change ontology, as explained earlier, has a number of concepts that define
every possible change in the ontology. For example, whenever a new class is
added, an instance of AddClass is created and added to the change log. This
instance has several properties such as when the change occurred, who made
the change, which ontology this change belongs to, the URI(s) of the affected
resource(s) and so on.

Every change in the ontology can be classified as either an Addition or a
Remowal. An instance of a concept called ChangeSpecification is created for every
Addition or Removal made to the ontology. This instance is associated with the
axiom that provides more details about the change itself. Since the changes
are recorded in the ontology, it is difficult to say which change occurred first.
However, in order to apply the changes, it is very important to know the order
in which changes occurred. To solve this problem, every change is associated
with the change that took place just before the latest change, using a property
called hasPreviousChange. Iterating over the values of these properties helps to
identify the correct order in which these changes occurred.

File Options Tools Help

Messages changel.owl_000 |

OnnBsnn x]s]
Classes & Instances | Properties & wersionino =

Classes and Instances i @ impontedontology
B AddClass [a] |Z| @ superObjectProperty
B AddDatatype ;| @ hasduthor

B Addindividual
. subDataPropert
Al www.gate.acukdummy0_12 e Py

£ Applications

?&i‘ Annie_Mebo

Language Reso

... changel.ow

© Processing Res

i @ individual
A www.gate.acuk;dummy0_12
e AMNIE NE Tri| B ASarona | @ susciass
%E NP Chunker B AddDataProperty i @ performedBy
B AddObjectProperty i @ superClass
Q_ GATE Morph B RemovecClass A @ version
B RemoveDatatype | @ hasPreviousch
B anniEPos T || B Removelndividual | asPreviousthange
= A wwawgate.acukgdummy0_12 i @ Iabsl
lu [*] A www.gate.acuk;dummy0_12 i|w Property Values
- A www.gate.aculk;dummy0_12 @ timastamp

B RemoveProperty
B RemoveDataProperty
B RemoveObjectProperty
PropertyChange

@ hasRelatedEntity

@ hasAuthor

@ appliedToontolagy

@ consistsOfAtomicOperation

HE Il \]
GATE Ontology Editor L Initialisation Parameters |

[{]

4 1 Dl

o] Dk

Loading failed!

Fig. 4. Change log saved after modifications to the initial ontology

GATE in NeOn 13

Because every change log is an ontology, it is possible to store each one under
a separate ontology repository in GOS. As explained above, different statements
are added to this repository for registering different changes in the ontology.
GOS allows the exporting of ontologies in different formats. Thus the change
log can be exported in formats such as RDF /XML, NTriples, N3 and Turtle. By
default, the change logs are exported as RDF/XML. Having exported change
logs in one of the above formats, one can easily load them in any ontology editor
to see the change log as a separate ontology. Figure 4 depicts a snapshot of the
change log in the GATE Ontology Editor. It shows details such as the timestamp,
username, affected resource etc. of the first change made to the ontology. Having
done this, the next task is to load such change logs back and apply them over
to ontologies. GOS has an option that allows users to perform this task.

4.2 Compatibility Testing

The development of the GOS change logs presented here is very new and needs
thorough compatibility testing with both the GOS and the NeOn Toolkit sys-
tems. At least four tests need to be carried out to test the system. One of
these involves producing a change log from GOS and checking if it is a valid
RDF/XML. Since all the statements are added to a separate ontology reposi-
tory, adding an invalid statement would cause immediate complaint. Since they
do not produce complaint, we know that the ontologies (change logs) are guar-
anteed to be valid RDF/XMLs. The second test is to produce a change log from
GOS and apply it back in GOS. The test is successful if the changes registered
in the change log can be applied successfully in the correct order. Our system
has successfully passed this test. The third test is to take a change log produced
from the NeOn Toolkit and apply it over to the ontology in GOS. Finally, the
fourth test is to take a change log produced from GOS and apply it over to the
ontology in NeOn Toolkit. The last two tests are yet to be carried out and form
part of the work planned for the coming months.

5 Conclusions

In this paper we have described the implementation of the approach to modelling
some of the dynamics of (semantic) metadata, providing mutual support for on-
tology lifecycle development and an NLP toolkit. We have provided a tool for
people to derive new semantic information from unstructured text and represent
this information ontologically so that it may then be used for further process-
ing. The importance of this work is the interoperability achieved between the
ontology editing and natural language processing architectures. Users of both
tools may decide to modify the ontologies in question or to update the source
data or facts derived from them. By creating mechanisms for the interchange
and propagation of information in this way, including valuable change log data
and support for multiple users working individually or collaboratively in a po-
tentially distributed environment with networked ontologies, we have released
an important bottleneck.

14

GATE in NeOn

Acknowledgements. This research was partially supported by the EU Sixth
Framework Program project NeOn (IST-2005-027595).

References

ot

10.

11.

12.

13.

14.

Maynard, D., Peters, W., d’Aquin, M., Sabou, M.: Change management for
metadata evolution. In: ESWC International Workshop on Ontology Dynamics
(IWOD), Innsbruck, Austria (June 2007)

. Maynard, D., Li, Y., Peters, W.: NLP Techniques for Term Extraction and On-

tology Population. In Buitelaar, P., Cimiano, P., eds.: Bridging the Gap between
Text and Knowledge - Selected Contributions to Ontology Learning and Popula-
tion from Text. I0S Press (2008)

Bontcheva, K., Davies, J., Duke, A., Glover, T., Kings, N., Thurlow, I.: Semantic
Information Access. In Davies, J., Studer, R., Warren, P., eds.: Semantic Web
Technologies. John Wiley and Sons (2006)

Noy, N., Sintek, M., Decker, S., Crubézy, M., Fergerson, R., Musen, M.: Creating
Semantic Web Contents with Protégé-2000. IEEE Intelligent Systems 16(2) (2001)
60-71

Fellbaum, C., ed.: WordNet - An Electronic Lexical Database. MIT Press (1998)
Schuler, K.K.: VerbNet: A broad-coverage, comprehensive verb lexicon. PhD thesis,
University of Pennsylvania (2005)

Aswani, N., Tablan, V., Bontcheva, K., Cunningham, H.: Indexing and Querying
Linguistic Metadata and Document Content. In: Proceedings of Fifth International
Conference on Recent Advances in Natural Language Processing (RANLP2005),
Borovets, Bulgaria (2005)

Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Con-
ference on Computational Linguistics (COLING’92), Nantes, France, Association
for Computational Linguistics (1992)

de Cea, G.A., Gémez-Pérez, A., Ponsoda, E.M., Sudrez-Figueroa, M.C.: Natu-
ral language-based approach for helping in the reuse of ontology design patterns.
In: Proceedings of the 16th International Conference on Knowledge Engineering
and Knowledge Management Knowledge Patterns (EKAW 2008), Acitrezza, Italy
(September 2008)

Maynard, D., Funk, A., Peters, W.: SPRAT: a tool for automatic semantic pattern-
based ontology population. In: International Conference for Digital Libraries and
the Semantic Web (submitted), Trento, Italy (2009)

Cunningham, H., Maynard, D., Tablan, V.: JAPE: a Java Annotation Patterns
Engine (Second Edition). Research Memorandum CS—00-10, Department of Com-
puter Science, University of Sheffield (November 2000)

Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Davis, B., Handschuh, S.:
CLOnE: Controlled Language for Ontology Editing. In: Proceedings of the 6th
International Semantic Web Conference (ISWC 2007), Busan, Korea (November

2007)

Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A., Shaked,
T., Soderland, S., Weld, D.S., Yates, A.: Web-scale Information
Extraction in KnowItAll In: Proceedings of WWW-2004. (2004)

http://wuw.cs.washington.edu/research/knowitall/papers/www-paper.pdf.
Harris, Z.: Mathematical Structures of Language. Wiley (Interscience), New York
(1968)

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

GATE in NeOn 15

Hirschman, L., Grishman, R., Sager, N.: Grammatically based automatic word
class formation. Information Processing and Retrieval 11 (1975) 39-57

Maynard, D.G.: Term Recognition Using Combined Knowledge Sources. PhD
thesis, Manchester Metropolitan University, UK (2000)

Cimiano, P., Voelker, J.: Text20nto - A Framework for Ontology Learning and
Data-driven Change Discovery. In: Proceedings of the 10th International Con-
ference on Applications of Natural Language to Information Systems (NLDB),
Alicante, Spain (2005)

Cimiano, P., Hartung, M., Ratsch, E.: Learning the appropriate generalization
level for relations extracted from the Genia corpus. In: Proc. of the 5th Language
Resources and Evaluation Conference (LREC). (2006)

Gamallo, P., Gonzalez, M., Agustini, A., Lopes, G., de Lima, V.: Mapping syntactic
dependencies onto semantic relations. In: Proc. of the ECAI Workshop on Machine
Learning and Natural Language Processing for Ontology Engineering. (2006)
Maedche, A.: Ontology Learning for the Semantic Web. Kluwer Academic Pub-
lishers, Amsterdam (2002)

Palma, R., Haase, P., Ji, Q.: Change management to support collaborative work-
flows. Technical Report D1.3.2, NeOn Project Deliverable (2009)

Maynard, D., Peters, W., D’Aquin, M., Sabou, M., Aswani, N.: Dynamics of
metadata. Technical Report D1.5.1, NeOn Project Deliverable (2007)

Kiryakov, A.: OWLIM: balancing between scalable repository and light-weight
reasoner. In: Proc. of WWW2006, Edinburgh, Scotland (2006)

Maynard, D., Peters, W., Angeletou, S., D’Aquin, M.: Implementation of metadata
evolution. Technical Report D1.5.2, NeOn Project Deliverable (2008)

