TAO Methodology: Transition of Legacy Systems to
Semantic Enabled Application

Hai H. Wang Terry Payneinst Nick Gibbing
Danica Damljanovi¢ Kalina Bontchevd Ahmed Saleh

1 University of Southamptor{hw, trp, nmg, ammg@ecs.soton.ac.uk
2 University of Sheffield{D.Damljanovic, bontcheva@dcs.shef.ac.uk

Abstract. Despite expectations being high, the industrial take-ug@fantic

Web technologies in developing services and applicati@sstieen slower than
expected. One of the main reasons is that many systems hawedegeloped

without considering the potential of the web in integratgggvices and sharing
resources. Without a systematic methodology and propéstmport, the migra-
tion from legacy systems to Semantic Web Service-basedragstan be a very
tedious and expensive process, which carries a definiteofi&lure. There is

an urgent need to provide strategies which allow the mignatf legacy systems
to Semantic Web Services platforms, and also tools to stigpoh a strategy.
In this paper we propose a methodology for transitioningehapplications to
Semantic Web Services by taking the advantage of rigoroukemetical meth-

ods. Our methodology allows users to migrate their appbioatto Semantic Web
Services platform automatically or semi-automatically.

1 Introduction

Semantic Web Services combines the Web Services and Seriégtii enabling tech-
nologies. By semantically annotating the relevant aspefctieclarative Web Service
descriptions in a machine-readable format that can fati#lipgical reasoning, such ser-
vice descriptions become interpretable based on their mgsyrather than simply on a
symbolic representation. The advantage of this is that méthe tasks involved in us-
ing Web Services can be (semi-)automated, for exampleodisy, selection, composi-
tion, mediation, execution, monitoring, etc. Thus, SencdiVeb Service Research [15]
has been recognized as one of the most promising technsltmEmerge, exhibiting
huge commercial potential, and attracting significantrditbe from both industry and
the research community. Despite its great prospect of ssctle industrial take-up
of Semantic Web Services technologies has been slower peatied. This is mainly
due to the fact that many legacy systems have been develdgealitconsidering the
potential of the Web for integrating services and sharirspueces. The migration of
legacy systems into semantically web-enabled environsriemblves many recursive
operations that have to be executed with rigor due to the matmof the investment
in systems, and the technical complexity inherent in suofepts. In this context, there
are three main issues to be considered, namely: 1) Web Abiiégslealing with the
transformation of components of the legacy system thatges=d as Web services,

2) Service Transformation where the exposed Web servieemapped to the corre-
sponding Semantic Web Service representations and 3) Sienfamotation where
the Semantic Web Service is annotated using the relevanaitaontology. Without a
systematic methodology and proper tool support, the mardtom legacy systems to
semantically enabled applications could be a very tedinadeapensive process, which
carries a definite risk of failure. There is an urgent needhévdfore provide strategies
that support the construction of ontologies which facitlty migration of legacy sys-
tems to Semantic Web Services platforms, and also toolgfecstisuch a strategy.

This paper proposes a new methodology for addressing theedémues in particu-
lar Web Accessibility and Componentization, which in tuould lead to an automatic
Platform Transformation. The main idea of the methodolagiidentify the compo-
nents/steps for creating web services to represent systeetidnality and semantically
annotate such services through domain ontologies elifrid@a system documentations.
Typically, the step for creating web services will be mergéth the procedures of
learning ontologies (from system documentation) to feat#i future ontology pruning
and refinement of web service descriptions which eventladlgis to bridging the gab
of interoperability and hence moving the system closer t&&Qhis methodology is
part of Transitioning Applications to Ontologies (TAO) jgot'. TAO is a project in the
European Sixth Framework Program. The goal of the TAO ptdgeto define methods
and tools for transition of legacy information systems tmaetic enabled services, en-
abling semantic interoperability between heterogeneats iksources and distributed
applications.

The remainder of this paper is organized as follows. Se@iprovides a high level
explanation of the methodology. Section 3 presents codidsbde guidelines on how
to adopt the methodology using the tools developed by TAQti@e 4 discusses the
evaluation of the methodology and tools. Finally, Sectioan8l 6 present the related
work, conclusions of this paper and future work.

Identify
[cevis J—

Annotate 1, | Knowledge Ontology
Services Acquisition Learning
Depl Y
eploy Design
—{(
[Evaluate [Refine] [Refine] Evaluate
Services Services Ontology Ontology

(a) SOA design lifecycle (b) Ontology design lifecycle
Fig. 1. SOA and ontology design lifecycle

Yhttp://ww. t ao- proj ect. eu/

2 High-level methodology

The transitioning methodology outlined in this sectionregented as a high-level com-
posite lifecycle, which highlights the interactions begmeexisting methodologies for

developing Service-Oriented Architectures (which inelieb Services and Enterprise
Architectures), and for ontology design. In this paper, wesdop this abstracted lifecy-

cle sketches of SOAs and building domain ontologies fror taxd demonstrate how

and where these should be linked. The design lifecycle faraice-oriented system

is largely divorced from both the specific methodology usedreate the system, and
from the lifecycle of the individual services within suchystem. Figure 1(a) shows a
sketch of the design lifecycle for an SOA system.

Service Identification: This process refers both to the identification of existing se
vices which can be repackaged within an SOA system, andatbe identification
of required functionality (from a business process modgdirercise, for example)
that does not currently exist in operational form, and thesequent implementa-
tion of such functionality as services.

Service Annotation: In order to facilitate loose coupling of component servitesugh
brokerage and matchmaking, it is necessary to describethiess in an SOA sys-
tem in sufficient detail that a service requester can find anagiate service that
meets their needs.

Service Deployment: Here we refer to the deployment of services within a service
execution environment. This may include publishing/atisiry services through
public service registries, discovering services wherell@nts can identify candi-
date services that may fulfill their requirements, selersiervices where they chose
the most appropriate service(s), composing services vdiiergs integrate several
independent services to achieve an overall goal, and fiealyuting services ei-
ther through direct invocation or through workflow managehsgstems.

Service Evaluation: This process refers to the ongoing monitoring of an SOA syste
to determine whether it meets its design goals.

Service Refinement: The refinement of an SOA system typically takes one of three
forms: the introduction of new functionalities through tireation of new services;
the refactorisation of existing service functionalityr(ibgh aggregation or further
decomposition, for example); or the refinement of the serdiescriptions to better
facilitate service matchmaking and brokerage.

As the design lifecycle for an SOA system is largely indemeriaf the particular
methodology used, the design lifecycle for a domain ontpl(igigure 1(b)) can be
separated from the specific knowledge acquisition and nmoglehethodology used.
Domain ontologies usually describe the conceptualizatf@ntities, relations between
them, instantiations and the axioms related to a specificailo(such as wines or cars).
These domain ontologies can either specialise conceptslinted in some other top-
level ontologies (which describe very general concepts $igace, time, event, which
are independent of a particular problem or domain), sudi@se? andOpenCyc 2 or

Zhttp://ww. | oa-cnr.it/DOLCE htm
Shttp://ww. opencyc. org

they can be created from scratch for a particular domain.rroon process to create
domain ontologies from scratch can contain several steps:

Ontology learning: Ontology learningrefers to the use of techniques for automati-
cally or semi-automatically extracting ontologies fronisting document corpora.
As such, the output from an ontology learning process shoatde considered
as the finished product, but as a first cut that is solidly gdewdhin the available
documentation, and which will inform the later design of arenpolished ontology
for production use.

Ontology Design: The ontology design process refers to the process of foyrnatl-
ifying the knowledge that has either been manually acquirech a domain ex-
pert, or (semi-)automatically extracted from a documenpus. This process may
also encompass the identification and reuse of appropoat@anents within pre-
existing ontologies, the alignments of the designed omgtpleith pre-existing on-
tologies, or the modularisation of the ontology to factitauch alignmentin future.

Ontology Evaluation: The ontology evaluation process assesses whether or not the
designed ontology is fit for purpose.

Ontology Refinement: This process refers to the refactorisation of the designéal-o
ogy to better represent the problem domain.

The TAO transitioning methodology provides a logical agmio for connecting
the above lifecycles (i.e. SOA and Ontology design) throtighfollowing three main
points.

Learning ontologies from service descriptions:In the ontology design lifecycle, the
Ontology Learning process attempts to automatically orismrromatically derive
a knowledge model from a document corpus. In our Transitigmilethodology,
we have refined this to reflect the contribution made by thecsired (but not
ontologically-informed) description of an existing bodfyservices (for example,
service APIs and developer documentation, SOA design dentation, and so on).
We call this refinemen$ervice-Oriented Ontology Learninky is our expectation
that the ontology resulting from an automated ontologyrewy process should
be treated as a candidate ontology which will be subsequéstlevaluated and
refined in the Ontology Design process. Whilst the ontolodseetion process may
yield some conceptualization of the relevant domain, mudheimplicit domain
knowledge inherentin a service description will not be oagd; thus the extraction
of an ontology from structured sources such as those mettiabove may not
obviate the need for further work on the domain ontology. Eeev, such structured
sources relating to existing services do provide sufficieitial information that
suggests the creation of a domain ontology, which can bedugvolved.

Using domain ontologies to augment semantic content and séce: The Service An-
notation process described in the SOA methodology refethagadescription of
services at the signature level in languages like WSD\hile these allow rudi-
mentary service matchmaking and brokerage on the basis ¢fples of the inputs

4 The signature within WSMO [16] describes a functional omgitointerface with inputs and
outputs (defined as messanges).

Knowlle.qge Ontolc?gy s ldeqtify

Acquisition Leamning Services
v ¥

Design __p| An notate

Ontolo Services

[Refine] Evaluate] [Deploy]
Services

Ontology Ontology
N

Evaluate Refine
Services Services

-

Fig. 2. High-level methodology.

and outputs of a service, these types are typically datatypsed on XML Schema,
rather than richer knowledge-based types taken from ariagital characterisa-
tion of the domain. Thus, these interfaces need to be mappgiivalent concepts
within Semantic Web frameworks (such as OWL-S, WSMO or WSBISand
annotated using the relevant domain ontology.

Using feedback from service evaluation to refine ontologiesBoth the ontology de-
sign lifecycle and the SOA lifecycle contain evaluate-aefire steps that represent
a reflection on the performance of a system and the subsecpesmgineering.

Figure 2 depicts an overview of the methodology and a reptatien of these steps.
The interactions between the components of the two lifeesyelre effectively a re-
finement of processes within those lifecycles, and reflectétationship between the
products of each individual lifecycle. In particular, wetedhe task-oriented nature of
a domain ontology which is defined with service annotatiomind when compared
with a general-purpose ontology for the same domain.

3 Methodology cookbook, tool support and case study

The methodology presented in the previous section prowatleabstract view about
the important phases needed to be performed during theittoenprocess. In order
to support this methodology, TAO project has developed anaource infrastructure
and a series of tools to aid the transitioning process. kgaction, we present a cook-
book style guideline about the usage of TAO tools. To bettastrate the idea, we
use the transition of GATE system as a case study. GASE leading open-source
architecture and infrastructure for the building and dgplent of Human Language
Technologypplications, used by thousands of users at hundreds sfGifd E exhibits
all the specific problems that large software architecteremunter, which enables us
to evaluate the methodology and tools intensively . [8] enésthe detailed view of the
advantages and possibilities arising from building donmaitology and application of
semantic enrichment of software artifacts in the GATE caseys

Shttp://gate. ac. uk

3.1 Transitioning cookbook

As mentioned before, TAO methodology has three main phése&nowledge acqui-
sition phase, the ontology learning phase and semantiesband the service augmen-
tation phase. Each phase contains a set of tasks which mermadhtwith each other.
Figure 5 presents a UML diagram to illustrate the main tr#orsing process and we
explain major activities in detail.

Given a legacy application, the domain engineers first cliethere are some
previously-developed ontologies for the application. 8gmublic ontology search en-
gines or public ontology libraries can be used for this tallsuch an ontology is found,
it can be saved into the knowledge store developed by TACuUfiiré usage, otherwise
users have to derive the domain ontology from the legacyvsoé. For the GATE case,
we develop the ontology from scratch with the assitance @ 1éols.

Knowledge acquisition To derive the domain ontology from the legacy application
using the TAO tools, users first need to collect the relevasburces about the legacy
application.
— Resources collection

We identify some data sources which are commonly relevatitealescription of
a legacy application, such as application source codes, Jsh Doc etc. For more
information about the potential data sources which may ke® to the description
of a legacy systems and their classification, please refg8]td-or the GATE case
study, first Java source code and JavaDoc files are collebttede documents can be
downloaded fromht t p: / / gat e. ac. uk/ downl oad/ i ndex. ht i .
—Save the resource corpuses to TAO Repository

After collecting all the related data sources, we store tirethe repository. TAO
project develops a heterogeneous knowledge store to stese tlata sources. The het-
erogeneous knowledge store is designed for efficient manageof different types
of knowledge: unstructured content (documents), strectulata (databases), ontolo-
gies, and semantic annotations, which augment the contintliwks to machine-
interpretable metadata. More information about this loegfeneous knowledge store
can be foundin [19].

Ontology Learning The purpose of ontology learning from software artifactess
sentially discovering concepts and relations from the s®uoode, accompanying docu-
mentation, and external sources (such as the Web). Onttdagying is one of the most
significant approaches proposed to date for developindagits. Previously, we have
presented a detailed review of different ontology learr@ipgroaches [3]. In this paper,
we show how to learn domain ontologies based on the TAO sieffdre final output
of TAO will be a prototype that will include all pieces of safire developed during
the project and will be available as TAO Suite. LATINIGa part of the TAO Suite, is
used for Ontology Learning. LATINO is a more-or-less gehdasia-mining framework

Shttp://swoogl e. unbc. eduorhttp://swse. deri.org
"http://ww.tao- proj ect. eu/ resear chanddevel oprent /
denpsanddownl oads/ ont ol ogy- | ear ni ng- sof tware. ht m

that joins text mining and link analysis for the purpose @&nfsautomated) ontology
construction. The ontologies are constructed from the kedge extracted from the
data that accompany typical legacy applications. We intcedthe term “application
mining” which denotes the process of extracting this knolgke

In the previous step, we collected a set of related data ressuhat describe the
legacy application. To use LATINO to get ontologies from3beesources, we need to
first identify these resources’ contents and structures.
—Identify content and structure of software artifacts
*Identify the text-mining instances
*Assign textual document to instances
*Determine the structure between instances

Given a concrete TAO scenario, the first question that neztie tanswered by a
software engineer is — what are thext-mining instanceé which are used as graph
vertices when dealing with the structure) in this partic@ase, i.e., the user need to
study the data at hand and decide which data entities wijl {hla role of instances in
the transitioning process. It is impossible to answer thisstjon in general it depends
on the available sources. Some potential choices inclug®Qa+ classes, methods,
Database entities and the like. In the GATE case study, gtariges are Java classes.

Next, we need to assign a textual document (descriptionath ¢ext-mining in-
stance. This step is not obligatory, and perhaps not evesilgesvhen the data is such
that it does not contain any unstructured textual data. ghiere is not a universal
standard for which text should be included, but it is impotte include only those
bits of text that are relevant and will not mislead the texting algorithms. Users
should develop several (reasonable) rules for what to dechnd what to leave out, and
evaluate each of them in the given setting, choosing thethalewill perform best. In
general, for most legacy applications that have well-comed Java/C++ source code
available class commentlass namefield namesfield commentanethod nameand
method commentsan be used.

The user may also identify the structural information, vbhis evident from the
data. This step is also not obligatory, provided that tdxtia@uments have been at-
tached to the instances. The user should consider any kiredadifonships between the
instances (e.qg. links, references, computed similariéied so on). Note that it is some-
times necessary to define the instances in a way that makessibte to exploit the
relationships between them. For Java/C++ classes, thatiténks that can be ex-
tracted include inheritance and interface implementatiaph, type reference graph,
class, operation name similarity graph, and comment refergraph, etc. After this
step, the data pre-processing phase is complete. Morenatan about those types of
links and the different calculations of link weight can berfd in [12].

Creating feature vectors from contents and structures

The text-mining algorithms employed by LATINO (and also bgmyg other data-
mining tools) work with feature vectors. Therefore, oncetiéext-mining instances have
been enriched with the textual documents we need to corent into feature vectors.
LATINO is able to compute the feature vectors from a docunmexvork. When this
network is created based on the source code, such as in thE Gk study, it is com-

mon that a class has methods that return values of the typesegted by another class.
Also, comments in Java classes usually refer to other dafse each of these cases,
one graph would be created. In these graphs, vertices maprésva classes and edges
represent references between these classes. After grsatirral such graphs they all
have the same set of vertices. Next, different weights {rayigom 0 to 1) are assigned
to each graph. In extreme case, 0 would be used to excludedpl,gand 1 to include
it. Assigning weights is not a trivial process and requiags bf experimenting, expe-
rience, and intuition. Following the intuition, the useistia specify the weight setting
and examine the results. If the results are not satisfyhguser has to change the set-
tings and repeat the process again. To help the user setrtmagi@rs, OntoSight [13],
an application that gives the user insight into documentoits and semantic spaces
through visualization and interaction, has been developedthe usage of LATINO,
we refer reader to [13].

These feature vectors are further used as an input for Onfo@eich is a semi-
automatic data-driven ontology construction tool thatitee suggestions for new con-
cepts for the ontology automatically. OntoGen will be imtegd with LATINO in later
version.

Create domain ontology from feature vectors.

The most important step of ontology development is idemtgythe concepts in a
domain. Using OntoGen, this can be performed by using e#@Heatly automated ap-
proach such as unsupervised learning (e.g. clustering)semi-automated supervised
learning (e.g. classification) approach.

In the unsupervised approach, the system provides suggsdtir possible sub-
concepts of the selected concept and The supervised appiodased on Support
vector machines (SVM) active learning method, which aretafeelated supervised
learning methods used for classification and regressioa uskr can start this method
by submitting a query. After the user enters a query, thevadtiarning system starts
asking questions and labeling the instances. On each ®egystem asks if a particular
instance belongs to the concept. The main advantage of engsed methods is that
they require very little input from the user. The unsupesdisnethods provide well-
balanced suggestions for sub-concepts based on the iastand are also good for
exploring the data. The supervised method on the other femndres more input. The
user has first to figure out what the sub-concept is, then toritbesthe sub-concept
trough a query and go through the sequence of questionsrifydlze query. This is
intended for the cases where the user has a clear idea of heosgept he wants to
add to the ontology, although the unsupervised methodg isapable to discover it.

For the GATE case study, we have chosen the unsupervisedagtpibecause we
have little knowledge about the ontology. An example of endtically generated con-
cepts visualised using OntoGen is shown on Figure 3. Thisdidepicts three concepts,
namelyNominal CoreferenceiPronominal CoreferencesndSearchPREach of these
three concepts represent a separate Processing ResoRjci (BATE. In OntoGen
they are being clustered as belonging to the same group akepets If we decide to
add this group to the ontology, one class will be created hrektinstances for each
mentioned PR.

8 http://ontogen.ijs.si/

Fig. 3. Concepts derived from GATE source code using OntoGen.

Apart from concept identification, OntoGen/LATINO also iliefily infers sub-
sumption relations (i.e. subClassOf) between conceptsdneersion will also be able
to discover some other types of relations).The user cay fulstomize each of the
concepts by defining its instances. The system helps herestegtihg outliers both
inside and outside the concept. If new data becomes awailHbdr the ontology is
constructed, the system can help by automatically clasgifiyew instances into appro-
priate concepts. For more detailed instructions about fage of OntoGen/LATINO,
please refer to [12].

Design Ontology

An important point to make is that the automated methods aréntended to ex-
tract the perfect ontology, they only offer support to domekperts in acquiring this
knowledge. This help is especially useful in situations likurs when the knowledge is
distributed in several documents. In fact no existing Olhtégue is completely unsu-
pervised: a domain expert must be included somewhere inrtbelkdge acquisition
loop. Therefore, the automatically acquired knowledgedstyedited, using an exist-
ing ontology editor, to remove irrelevant concepts and aiksed ones. The changes
mainly included deleting suggested concepts, as for th@agy it was not important to
include too much details in certain cases, for instancéngjstshing between the more
than 30 types of Exceptions that could be thrown from theediiit Java classes.

After creating the domain ontology, we can save it into th©T&pository.

Now we are ready to augment the existing content of a legaaljcapion (including
the service definition) semantically. We present the deiaithe following subsections.

Service and content augmentationContent augmentation is a specific metadata gen-
eration task aiming to enable new information access msthibcenriches the text
with semantic information, linked to a given ontology, thrersabling semantic-based
search over the annotated content. In the case of legaoyageftapplications, im-
portant parts are the service description, the software emdl documentation. While
there has been a significant body of research on semantid¢adiomoof textual con-
tent (in the context of knowledge management applicatiomsly limited attention

has been paid to processing legacy software artefacts,ragerieral, to the prob-
lem of semantic-based software engineering. TAO has dpedla tool nameon-
tent Augmentation Tool (CATY assist users to annotate heterogeneous software ar-
tifacts automatically (semi-automatically). In essenCAT is capable of performing
two tasks: semantic annotation — using Information Exinactome parts of the docu-
ment content are marked and then linked to an ontology; amigtent storage and
lookup of augmented content, where document retrieval gedhan relevance to a
selected set of semantic annotations instead of relevanemitds (like in keyword
lookup). More information abou€AT can be found at [7]. The main component of
CAT is Key Concept Identification Tool (KCITyhich has been exposed as a Web ser-
vice (CA service) and can be accessethtat p: / / gat e. ac. uk/ ca- servi ce/
servi ces/ CASer vi ce. More information about CAT, KCIT and CA service can
be found onht t p: / / www. t ao- pr oj ect . eu/ r esear chanddevel opnent /
denpsanddownl oads/ cont ent - augnent at i on- sof t war e. ht M and also

in [7]and [1].

To useCAT, we first need to identity which Web services users want toigeoand
also what kinds of other content need to be annotated.
Identify services and other content to be annotated.

Please note that normally the first step in creating a Wehlicers to design and
implement the application that represents the Web serVhis.step includes the design
and coding of the service implementation, and the testingetdy that all of its inter-
faces work correctly. After the Web service is developed srvice interface definition
can be generated from the implementation of the servicetliieeservice interface can
be derived from the application’s Application Programminggrface (API)). Web ser-
vices interfaces are usually developed in WSDL documeatgsitfine the interface and
binding of the corresponding Web service implementatitmshis paper, we assume
that the Web services and the corresponding WSDL definitiona legacy applica-
tion have already been developed. Therefore, we focus @ingalisers to annotate the
existing WSDL definitions to get SA-WSDL definitions. SA-WBI®] is one of the
latest W3C recommendation for Semantic Web Service.

Annotate — automatically and manually

As mentioned before, the main tool for performing Contenggfentation auto-
matically is KCIT. KCIT identifies key concepts from softvearelated legacy content
intelligently (more than exact text match, like many otheisgng approaches). It can
also be configured to better adopt different use cases. FEonghe, when preparing a
document such as WSDL, it can be configured so that the tagsepsing is enabled.
Users then just click a button and KCIT goes through the WSIELdT other legacy
content and automatically identifies the pieces of text grwehich are related to con-
cepts or relations defined in the domain ontology by using kdPniques. After the
process of automatic annotation is finished, users canatalicesults by visualising
them e.g. in GATE GUI, correcting annotations if necessamnyg adding new ones by
manually selecting the text they want to link to the relevaricept from the ontology.
View and revise annotations

The results of the content augmentation process can be digreghically by the
users as highlights over the original content inside the BE&UI. For example, Fig-

ure 4(a) shows the results of processing the GATE dasaiment Format.java by
the CA service . The highlights are the created semantictations, and the blue table
at the bottom shows further details, in this case, of the &tiom for Language Resource
that refers to the clasGanguage Resource from the GATE ontology.

The automatic annotating results could contain some flamagwa need to ensure
that these semantic metadata are correctly asserted. Tibgation could be improper

in several ways.

— Missed annotations. If the domain experts realize thaethee some WSDL ele-
ments or texts in the legacy document, which should be ateththut were missed
by CA service, users can manually annotate them. If ther@ iproper concept
within the existing ontology, new concept will be asserted the ontology.

— Unnecessary annotations. It is possible that CA serviceteded some unneces-
sary annotations. Domain experts have to delete thoseatior manually.

— Annotations with wrong concepts. If domain experts redliet the CA service has
chosen the concept that is not the most suitable, they naedise it.

Domain experts need to manually check the correctness of.tRer example, as
shown in Figure 4(b), the stririgniversity of Sheffieldvas not annotated as argani-
sation To add this annotation to the document, first the text iscsetihighlighted, and
then the relevant ontology resource is chosen from the ftieyaon the right or from
the drop-down list of resource names in the dialogue. Inghaiticular examples we are
annotating the string University of Sheffield as referringte class Organisation.

=]

WFormatava__1200307305338__3157

(a) Viewing results using Annotator GUI (b) Adding a new annotation

Fig. 4. CA interface

Ontology population
Some of the Content Augmentation Tools can also identifytaobgotential in-

stances for the classes in the domain ontology from the Yegmutent. User will decide
whether or not to accept these assertions.

During above processes, whenever the domain ontology isedvusers need to
ensure the ontology is still correct.

Finally the legacy contents and the result of related seimangmentation is stored
in the heterogeneous knowledge store. This is importasgfaiare working with large
datasets. It is also the safest way to ensure that the aiormstain be reloaded as same
as before. The annotation can be saved either separatdiythtiegacy content or
embedded within the legacy files.

In the SOA lifecycle, the next phases are service deploymedtservice descrip-
tions evaluation and refinement.

Service Deployment refers to the process of deploying sesvivithin a service
execution environment and service evaluation refers totigming monitoring of an
SOA system to determine whether it meets its design goalsn@the course, if users
encounter any problems, the domain ontology and SA-WSDlInitiefns are revised.
As these phases are outside of the scope of the TAO projecsébpe of TAO is just
generating the semantic descriptions), we will not give emetails about them here.
[3] presents some general guidelines for these tasks.

4 Methodology evaluation

The methodology presented in this paper has been validassberal high-profile case
studies. For example, the GATE system, as presented indpisrpis a comprehensive
open source platform (with thousands of users) and an #iroantenance application
form Dassault Aviation is a data-intensive business pmaegplication (managing a
multi-million business). More information about theseaatudies can be found in [1,
4].

The evaluation of TAO methodology and tools is conductebtbfahg the criteria
proposed in [14]. We carry out the evaluation from severpéats:

What is the performance of the methodology and tools: ontolgy extraction
and annotation performance.During experimenting with Ontology Learning tools,
due to the nature of this process, we have not measured tkespient for ontology
acquisition, therefore we report only empirical resultsehduring the experiments
with LATINO, the trickiest part was setting the weights. $hequires a lot of experi-
menting and testing, and there is no common rule to be follbwerder to derive the
most accurate hierarchy of concepts that can serve as afcaneomtology. The better
the weights settings, the more precise concepts are deaivetess time is left for the
expert to check automatically derived ontology and magyadirform changes. How-
ever, OntoSight software which is currently being devetbpg Josef Stefan Institute
might speed up this process for future usage. This softwdkegiven the golden stan-
dard ontology, provide means for automatically identifyimhich set of weights gives
best results, which will enable users to reduce time for Brpanting with setting the
weights and changing them until the best results are aathfellewing the intuition.

Created GATE domain ontology was further used and evalwsitbdContent Aug-
mentation Tools, specifically KCIT. Given the time limitatis, we could not report on
the precision and recall regarding the produced annottierr the GATE software
artefacts. However, these tools are available online anttldme tested with any other
ontology’. To show the quantitative side regarding the KCIT perforoeawe measured

Shttp://ww.tao- project.eu/

the time to initialise it and run it over a corpora with 32 J&lasses randomly chosen
from the GATE source code, and also with the GATE User MaSu@hble 1 shows
the results in seconds.

Table 1. Initialization time for KCIT with GATE knowledge base(httfgate.ac.uk/ns/gate-kb)
and execution times for producing ontology-aware annmatautomatically. Shown times are in
seconds.

Initialization time 6.265

Corpora Execution time
GATE User Manual 0.688

32 Java classes from GATE source cotie 422
|Average execution time [0.518 |

Is the extracted ontology a good basis for ontology buildingexpert evalua-
tion? To measure the quality of the ontology that has been createdhave collected
36 questions from GATE user mailing list, where the GATE asarquire about vari-
ous GATE modules, plugins, processing resources, andgrabthey encounter while
using these modules. We manually examined these questiod$gentified that out of
these 36 questions, 61.1% (22 questions) weverablethe GATE domain ontology
that is developed following the methodology described is ffaper, contained the an-
swers for these questions. For the rest of the 14 questi®®8%3, the answer was not
in the knowledge base. This is due to the questions that warally enquiring about
too specific details such aSan someone send me the codes for all characters that are
classified as DEFAULTTOKEN?or What is the the correct location of the lexicon files
for Hepple Tagger?Another set of questions for which answer was not in the know
edge base enquired about specific features that were uswlipcluded inside user
manuals and documentation, but were related to the knowletigxperienced GATE
users, e.g. the familiarity with GATE GUI, or types of pasér language processing
available in GATE. For exampl&Yhich Gate plugin parsers can find object and subject
of a sentence@r Is it possible to see the POS tagging from the GATE GBiibther set
of queries were enquiring about Processing Resourceshdliatnot been yet included
in the GATE knowledge base due to various reasons (i.e. theg heen included in
the GATE distribution recently). This is when the OntologgfiRement phase of our
methodology comes to place: we need to refine the ontologgatiad and enrich the
knowledge base so that we reach 100%m$werableguestions.

Does the extracted ontology and semantic annotated resows support a cer-
tain task, such as more effective query and answer? — approfateness for a task.
After finalising GATE domain ontology and populating the lwiedge base with rele-
vant concepts, we need the means for accessing this knosvle@guser-friendly man-
ner. Although the ontology and semantically annotatedisoft artefacts have poten-
tial to ease the process of finding relevant information fomdin experts i.e. GATE
developers or GATE users in this case, we cannot expect fn@m to learn formal
languages for querying ontologies such as SeRQL or SPAR@Lalgé cannot assume

10 http://gate.ac.uk/sale/tao/index.html

that they understand Semantic Web technologies, ontaa@gid ontology languages.
That is why, in the context of the TAO project, we have beenkivay on developing a
Question-based Interface to Ontologies (QuestlO). Qlesticepts text-based Natural
Language queries as an input, transforms them into SeRQilieguexecutes them and
render results in the user-friendly manner.

For the purpose of evaluating QuestlO as a part of the GATE stasly, we have ran
it with previously collected 22nswerablequestions and examined results. The overall
performance of QuestlO system was 68% of correctly answguedtions, which, in
comparison with 58% accomplished by Aqualog system [10jnmilar evaluation, we
consider quite a good performance. More details about tratuation is outside the
scope of this paper, and we refer reader to [2] and [18].

5 Related work

A number of ontology-design methodologies that have beepqgsed to date to guide
the process of ontology development from scratch have histed lin a comprehensive
survey in [6,11]. While, Mariano et. al. have identified sewé the most commonly
used methodologies for designing ontologies from sctat¢s, 17] have outlined a set
of principles and design criteria that have been proveduigefieveloping domain on-
tologies. During the last decade several ontology-legrsyistems have been developed
such as ASIUM [9], OntoLearn, Text20nto, OntoGen, and ahklost of these sys-
tems depend on linguistic analysis and machine learningrisihgns to find potentially
interesting concepts and relations between them.

Whilst several methodologies exist to develop domain agiiels either from scratch
or from text, there is no widely accepted methodology fon$itioning existing appli-
cations to SOA based on domain ontologies. In our methogptbg domain ontology
plays a key role in the transition process as it containdialsemantics required for an-
notating the services of the new SOA. Our methodology anid tore focused on legacy
application transitioning. We use various kinds of functrelated resources to derive
the domain ontology. Since most existing applications tenthve documentation de-
scribing their functionality and APIs, it is possible to lmgomatic processing tools to
abstract domain concepts from terms used in such docunnéatd build the domain
ontology. Furthermore, our methodology is fully suppottgan integrated tool studio.

6 Conclusion and future works

A key requirement of transitioning applications to Semaweb Services has promoted
the urgent need of systematic methodologies and tools ist &lss migration process.
In this paper we have taken an ontological view of Semantib \Bervices. Both the
lifecycle of SOA and building ontologies were examined, idey to understand the re-
quirements for transitioning legacy systems to SOAs. Tasstheen used for developing
an initial methodology for the transitioning process basedomain ontologies learned

Thttp://ww. ai fb. uni-karl sruhe. de/ WBS/ ysu/ publ i cati ons/ Ont oWeb_
Del _1- 4. pdf

from such applications. To support this methodology, a Ettals and a detailed cook-
book style guide are presented as well. This transitioninggss has been validated
by a few large case studies. Next, these tools will be intedras a single suite which
can provide a one-stop service to assist users to migraiteléigacy applications to
semantic enable services. More intensive evaluation i®ntly under performing.

Acknowledgements.
This work is partially supported by the EU-funded TAO prajd&T-2004-026460).

References

1. Damljanovic D., Bontcheva K., Tablan V., Roberts |., Agraivic M., Andrey S., and Sun J.
Gate case study: Domain ontology and semantic augmentatiegacy content. Technical
Report D6.2, TAO project, 2008.

2. Danica Damljanovic, Valentin Tablan, and Kalina BontheA text-based query interface to
owl ontologies. Irbth Language Resources and Evaluation Conference (LRE&)akech,
Morocco, May 2008. ELRA.

3. Amardeilh F., Vatant B., Gibbins N., Payne T., Saleh Ad Wang H. H. Sws bootstrapping
methodology. Technical Report D1.2, TAO project, 2008.

4. Cerbah F. Case study 2: Domain ontology building and sémangmentation of legacy
content. Technical Report D7.2, TAO project, 2008.

5. Thomas R. Gruber. A translation approach to portablelogyospecifications. Knowl.
Acquis, 5(2):199-220, 1993.

6. D. Jones, T. Bench-Capon, and P. Visser. Methodologiesnfmlogy development.

7. Bontcheva K., Damljanovic D., Aswani N., Agatonovic Mand Sun J. Key concept iden-
tication and clustering of similar content. Technical Ref8.1, TAO project, 2007.

8. Bontcheva K., Roberts I., Agatonovic M., Nioche J., and $uGate case study: Requirement
analysis and application of tao methodology in data intenapplications. Technical Report
D6.1, TAO project, 2006.

9. Holger Lausen and Joel Farrell. Semantic annotation®/®DL and XML schema. W3C
recommendation, W3C, August 2007. http://www.w3.org/AWY7/REC-sawsdI-20070828/.

10. Vanessa Lopez, Victoria Uren, Enrico Motta, and MicHedssin. Aqualog: An ontology-
driven question answering system for organizational séimamtranets. Web Semantics:
Science, Services and Agents on the World Wide ®@p72—-105, June 2007.

11. M. Lpez. Overview of the methodologies for building dotges, 1999.

12. Grcar M. Ontology learning services library (v1). TeicahReport D2.1-v1, TAO project,
2007.

13. Grcar M. Ontology learning services library (v2). Teiclh Report D2.1, TAO project,
2008.

14. Sabou M. Learning web service ontologies: an automatiaetion method and its evalua-
tion. Ontology Learning from Text: Methods, Evaluation and Aqugdiion, 2005.

15. S. Mcllraith, T. Son, and H. Zeng. Semantic web servi2é6l.

16. Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bri§abn Lara, Michael Stollberg,
Axel Polleres, Cristina Feier, Christoph Bussler, and &i¢ensel. Web services modeling
ontology. Journal of Applied Ontology39(1):77—-106, 2005.

17. Bill Swartout, Ramesh Patil, Kevin Knight, and Tom Russward distributed use of large-
scale ontologies. 120th Workshop on Knowledge Acquisiti@anada, June 1996.

18. Valentin Tablan, Danica Damljanovic, and Kalina Boeth A natural language query inter-

face to structured information. Proceedings of the 5h European Semantic Web Conference

(ESWC 2008)Tenerife, Spain, June 2008.
19. Marinova Z. Heterogeneous knowledge store. TechniepbR D4.2, TAO project, 2008.

Check If there already
exists some ontolologies

lication domain : v

v

Identity structure and

content software

[Identify the text-mining instances)

[Assign textual document to]
instances

Determining the structure
between instances

artefacts.

®
v

[

Transform content and }

structure into feature vectors

Domain
Ontology

for the aj No Ves
A{ Save the ontology }
Collect reference
manuals
Collect
textual Collect source
docs code comments
for G : Document
ollect
the 4 conon
disucussion
app Save
corpora
g e D into TAO
:‘5 @ Repository
-
g ¢
®
@ Collect source
ob codes
3
= Collect |G et wsoL
S structure definations
Q docs for
the Collect APIs
legaCy Collect XML
app
Collect Database
schema

(@)

Activity supported by HKS)

Create domain
ontology from feature

Create Concept | Create Concept
Unsupervised Supervised

Manage concepts

Manage relations

Manage instances

vectors

Ontology learning

Design Ontology

\

[Ensure the ontology is well-formed]

[Ensure the ontology has right formalismj

(Ensure the ontology is consisitant)

Ensure the ontology is ®
contextually correct

D

[Evaluate and refine Ontology]

(-

Figure 5. Cookbook methodology overview.

Activity supported by LATINO

Save
Ontology

into TAO
Repository

Service and content augmentation

Check if WSDL
definitions
exists?

. W\
Identify
servicis/

WSDL
Definitions

Identify other
contents for
annotating

Documents for
annotating

e

/

Load/import WSDL
or other resources
Load domain ontology
Start annotating
Automatic
annotating

View and revise
annotations

Ontology population

Manually
annotating

Annotate services and other
contents using WP3

Activity supported by CA MANAGER

<

Evaluate and refine the domain Ontology

