
TAO Methodology: Transition of Legacy Systems to
Semantic Enabled Application

Hai H. Wang1 Terry Payneinst1 Nick Gibbins1

Danica Damljanovic2 Kalina Bontcheva2 Ahmed Saleh1

1 University of Southampton,{hw, trp, nmg, amms}@ecs.soton.ac.uk
2 University of Sheffield,{D.Damljanovic, bontcheva}@dcs.shef.ac.uk

Abstract. Despite expectations being high, the industrial take-up ofSemantic
Web technologies in developing services and applications has been slower than
expected. One of the main reasons is that many systems have been developed
without considering the potential of the web in integratingservices and sharing
resources. Without a systematic methodology and proper tool support, the migra-
tion from legacy systems to Semantic Web Service-based systems can be a very
tedious and expensive process, which carries a definite riskof failure. There is
an urgent need to provide strategies which allow the migration of legacy systems
to Semantic Web Services platforms, and also tools to support such a strategy.
In this paper we propose a methodology for transitioning these applications to
Semantic Web Services by taking the advantage of rigorous mathematical meth-
ods. Our methodology allows users to migrate their applications to Semantic Web
Services platform automatically or semi-automatically.

1 Introduction

Semantic Web Services combines the Web Services and Semantic Web enabling tech-
nologies. By semantically annotating the relevant aspectsof declarative Web Service
descriptions in a machine-readable format that can facilitate logical reasoning, such ser-
vice descriptions become interpretable based on their meanings, rather than simply on a
symbolic representation. The advantage of this is that manyof the tasks involved in us-
ing Web Services can be (semi-)automated, for example: discovery, selection, composi-
tion, mediation, execution, monitoring, etc. Thus, Semantic Web Service Research [15]
has been recognized as one of the most promising technologies to emerge, exhibiting
huge commercial potential, and attracting significant attention from both industry and
the research community. Despite its great prospect of success, the industrial take-up
of Semantic Web Services technologies has been slower than expected. This is mainly
due to the fact that many legacy systems have been developed without considering the
potential of the Web for integrating services and sharing resources. The migration of
legacy systems into semantically web-enabled environments involves many recursive
operations that have to be executed with rigor due to the magnitude of the investment
in systems, and the technical complexity inherent in such projects. In this context, there
are three main issues to be considered, namely: 1) Web Accessibility dealing with the
transformation of components of the legacy system that are exposed as Web services,

2) Service Transformation where the exposed Web services are mapped to the corre-
sponding Semantic Web Service representations and 3) Semantic Annotation where
the Semantic Web Service is annotated using the relevant domain ontology. Without a
systematic methodology and proper tool support, the migration from legacy systems to
semantically enabled applications could be a very tedious and expensive process, which
carries a definite risk of failure. There is an urgent need to therefore provide strategies
that support the construction of ontologies which facilitythe migration of legacy sys-
tems to Semantic Web Services platforms, and also tools to support such a strategy.

This paper proposes a new methodology for addressing the above issues in particu-
lar Web Accessibility and Componentization, which in turn could lead to an automatic
Platform Transformation. The main idea of the methodology is to identify the compo-
nents/steps for creating web services to represent system functionality and semantically
annotate such services through domain ontologies elicitedfrom system documentations.
Typically, the step for creating web services will be mergedwith the procedures of
learning ontologies (from system documentation) to facilitate future ontology pruning
and refinement of web service descriptions which eventuallyleads to bridging the gab
of interoperability and hence moving the system closer to SOAs. This methodology is
part of Transitioning Applications to Ontologies (TAO) project1. TAO is a project in the
European Sixth Framework Program. The goal of the TAO project is to define methods
and tools for transition of legacy information systems to semantic enabled services, en-
abling semantic interoperability between heterogeneous data resources and distributed
applications.

The remainder of this paper is organized as follows. Section2 provides a high level
explanation of the methodology. Section 3 presents cookbook-style guidelines on how
to adopt the methodology using the tools developed by TAO. Section 4 discusses the
evaluation of the methodology and tools. Finally, Section 5and 6 present the related
work, conclusions of this paper and future work.

Identify
Services

Annotate
Services

Evaluate
Services

Deploy
Services

Refine
Services

(a) SOA design lifecycle

Knowledge
Acquisition

Ontology
Learning

Design
Ontology

Evaluate
Ontology

Refine
Ontology

(b) Ontology design lifecycle

Fig. 1. SOA and ontology design lifecycle

1 http://www.tao-project.eu/

2 High-level methodology

The transitioning methodology outlined in this section is presented as a high-level com-
posite lifecycle, which highlights the interactions between existing methodologies for
developing Service-Oriented Architectures (which include Web Services and Enterprise
Architectures), and for ontology design. In this paper, we develop this abstracted lifecy-
cle sketches of SOAs and building domain ontologies from text, and demonstrate how
and where these should be linked. The design lifecycle for a service-oriented system
is largely divorced from both the specific methodology used to create the system, and
from the lifecycle of the individual services within such a system. Figure 1(a) shows a
sketch of the design lifecycle for an SOA system.

Service Identification: This process refers both to the identification of existing ser-
vices which can be repackaged within an SOA system, and also to the identification
of required functionality (from a business process modeling exercise, for example)
that does not currently exist in operational form, and the subsequent implementa-
tion of such functionality as services.

Service Annotation: In order to facilitate loose coupling of component servicesthrough
brokerage and matchmaking, it is necessary to describe the services in an SOA sys-
tem in sufficient detail that a service requester can find an appropriate service that
meets their needs.

Service Deployment: Here we refer to the deployment of services within a service
execution environment. This may include publishing/advertising services through
public service registries, discovering services where by clients can identify candi-
date services that may fulfill their requirements, selecting services where they chose
the most appropriate service(s), composing services whereclients integrate several
independent services to achieve an overall goal, and finallyexecuting services ei-
ther through direct invocation or through workflow management systems.

Service Evaluation: This process refers to the ongoing monitoring of an SOA system
to determine whether it meets its design goals.

Service Refinement:The refinement of an SOA system typically takes one of three
forms: the introduction of new functionalities through thecreation of new services;
the refactorisation of existing service functionality (through aggregation or further
decomposition, for example); or the refinement of the service descriptions to better
facilitate service matchmaking and brokerage.

As the design lifecycle for an SOA system is largely independent of the particular
methodology used, the design lifecycle for a domain ontology (Figure 1(b)) can be
separated from the specific knowledge acquisition and modeling methodology used.
Domain ontologies usually describe the conceptualizationof entities, relations between
them, instantiations and the axioms related to a specific domain (such as wines or cars).
These domain ontologies can either specialise concepts introduced in some other top-
level ontologies (which describe very general concepts like space, time, event, which
are independent of a particular problem or domain), such asDolce2 andOpenCyc 3 or

2 http://www.loa-cnr.it/DOLCE.html
3 http://www.opencyc.org

they can be created from scratch for a particular domain. A common process to create
domain ontologies from scratch can contain several steps:

Ontology learning: Ontology learningrefers to the use of techniques for automati-
cally or semi-automatically extracting ontologies from existing document corpora.
As such, the output from an ontology learning process shouldnot be considered
as the finished product, but as a first cut that is solidly grounded in the available
documentation, and which will inform the later design of a more polished ontology
for production use.

Ontology Design: The ontology design process refers to the process of formally cod-
ifying the knowledge that has either been manually acquiredfrom a domain ex-
pert, or (semi-)automatically extracted from a document corpus. This process may
also encompass the identification and reuse of appropriate components within pre-
existing ontologies, the alignments of the designed ontology with pre-existing on-
tologies, or the modularisation of the ontology to facilitate such alignment in future.

Ontology Evaluation: The ontology evaluation process assesses whether or not the
designed ontology is fit for purpose.

Ontology Refinement: This process refers to the refactorisation of the designed ontol-
ogy to better represent the problem domain.

The TAO transitioning methodology provides a logical approach for connecting
the above lifecycles (i.e. SOA and Ontology design) throughthe following three main
points.

Learning ontologies from service descriptions:In the ontology design lifecycle, the
Ontology Learning process attempts to automatically or semi-automatically derive
a knowledge model from a document corpus. In our Transitioning Methodology,
we have refined this to reflect the contribution made by the structured (but not
ontologically-informed) description of an existing body of services (for example,
service APIs and developer documentation, SOA design documentation, and so on).
We call this refinementService-Oriented Ontology Learning. It is our expectation
that the ontology resulting from an automated ontology learning process should
be treated as a candidate ontology which will be subsequently be evaluated and
refined in the Ontology Design process. Whilst the ontology extraction process may
yield some conceptualization of the relevant domain, much of the implicit domain
knowledge inherent in a service description will not be captured; thus the extraction
of an ontology from structured sources such as those mentioned above may not
obviate the need for further work on the domain ontology. However, such structured
sources relating to existing services do provide sufficientinitial information that
suggests the creation of a domain ontology, which can be further evolved.

Using domain ontologies to augment semantic content and service: The Service An-
notation process described in the SOA methodology refers tothe description of
services at the signature level in languages like WSDL4. While these allow rudi-
mentary service matchmaking and brokerage on the basis of the types of the inputs

4 The signature within WSMO [16] describes a functional or atomic interface with inputs and
outputs (defined as messanges).

Knowledge
Acquisition

Ontology
Learning

Identify
Services

Design
Ontology

Evaluate
Ontology

Refine
Ontology

Annotate
Services

Evaluate
Services

Deploy
Services

Refine
Services

Fig. 2. High-level methodology.

and outputs of a service, these types are typically datatypes based on XML Schema,
rather than richer knowledge-based types taken from an ontological characterisa-
tion of the domain. Thus, these interfaces need to be mapped to equivalent concepts
within Semantic Web frameworks (such as OWL-S, WSMO or WS-WSDL) and
annotated using the relevant domain ontology.

Using feedback from service evaluation to refine ontologies: Both the ontology de-
sign lifecycle and the SOA lifecycle contain evaluate-and-refine steps that represent
a reflection on the performance of a system and the subsequentreengineering.

Figure 2 depicts an overview of the methodology and a representation of these steps.
The interactions between the components of the two life cycles are effectively a re-
finement of processes within those lifecycles, and reflect the relationship between the
products of each individual lifecycle. In particular, we note the task-oriented nature of
a domain ontology which is defined with service annotation inmind when compared
with a general-purpose ontology for the same domain.

3 Methodology cookbook, tool support and case study

The methodology presented in the previous section providesan abstract view about
the important phases needed to be performed during the transition process. In order
to support this methodology, TAO project has developed an open source infrastructure
and a series of tools to aid the transitioning process. In this section, we present a cook-
book style guideline about the usage of TAO tools. To better illustrate the idea, we
use the transition of GATE system as a case study. GATE5 is a leading open-source
architecture and infrastructure for the building and deployment ofHuman Language
Technologyapplications, used by thousands of users at hundreds of sites. GATE exhibits
all the specific problems that large software architecturesencounter, which enables us
to evaluate the methodology and tools intensively . [8] presents the detailed view of the
advantages and possibilities arising from building domainontology and application of
semantic enrichment of software artifacts in the GATE case study.

5 http://gate.ac.uk

3.1 Transitioning cookbook

As mentioned before, TAO methodology has three main phases:the knowledge acqui-
sition phase, the ontology learning phase and semantic content and the service augmen-
tation phase. Each phase contains a set of tasks which may interact with each other.
Figure 5 presents a UML diagram to illustrate the main transitioning process and we
explain major activities in detail.

Given a legacy application, the domain engineers first checkif there are some
previously-developed ontologies for the application. Some public ontology search en-
gines or public ontology libraries can be used for this task6. If such an ontology is found,
it can be saved into the knowledge store developed by TAO for future usage, otherwise
users have to derive the domain ontology from the legacy software. For the GATE case,
we develop the ontology from scratch with the assitance of TAO tools.

Knowledge acquisition To derive the domain ontology from the legacy application
using the TAO tools, users first need to collect the relevant resources about the legacy
application.
– Resources collection

We identify some data sources which are commonly relevant tothe description of
a legacy application, such as application source codes, API, Java Doc etc. For more
information about the potential data sources which may be related to the description
of a legacy systems and their classification, please refer to[3]. For the GATE case
study, first Java source code and JavaDoc files are collected.Those documents can be
downloaded fromhttp://gate.ac.uk/download/index.html.
–Save the resource corpuses to TAO Repository

After collecting all the related data sources, we store themin the repository. TAO
project develops a heterogeneous knowledge store to store these data sources. The het-
erogeneous knowledge store is designed for efficient management of different types
of knowledge: unstructured content (documents), structured data (databases), ontolo-
gies, and semantic annotations, which augment the content with links to machine-
interpretable metadata. More information about this heterogeneous knowledge store
can be found in [19].

Ontology Learning The purpose of ontology learning from software artifacts ises-
sentially discovering concepts and relations from the source code, accompanying docu-
mentation, and external sources (such as the Web). Ontologylearning is one of the most
significant approaches proposed to date for developing ontologies. Previously, we have
presented a detailed review of different ontology learningapproaches [3]. In this paper,
we show how to learn domain ontologies based on the TAO scenario; The final output
of TAO will be a prototype that will include all pieces of software developed during
the project and will be available as TAO Suite. LATINO7, a part of the TAO Suite, is
used for Ontology Learning. LATINO is a more-or-less general data-mining framework

6 http://swoogle.umbc.edu or http://swse.deri.org
7 http://www.tao-project.eu/researchanddevelopment/
demosanddownloads/ontology-learning-software.html

that joins text mining and link analysis for the purpose of (semi-automated) ontology
construction. The ontologies are constructed from the knowledge extracted from the
data that accompany typical legacy applications. We introduce the term “application
mining” which denotes the process of extracting this knowledge.

In the previous step, we collected a set of related data resources that describe the
legacy application. To use LATINO to get ontologies from these resources, we need to
first identify these resources’ contents and structures.
–Identify content and structure of software artifacts
*Identify the text-mining instances

*Assign textual document to instances

*Determine the structure between instances

Given a concrete TAO scenario, the first question that needs to be answered by a
software engineer is – what are thetext-mining instances(which are used as graph
vertices when dealing with the structure) in this particular case, i.e., the user need to
study the data at hand and decide which data entities will play the role of instances in
the transitioning process. It is impossible to answer this question in general it depends
on the available sources. Some potential choices include Java/C++ classes, methods,
Database entities and the like. In the GATE case study, the instances are Java classes.

Next, we need to assign a textual document (description) to each text-mining in-
stance. This step is not obligatory, and perhaps not even possible when the data is such
that it does not contain any unstructured textual data. Again, there is not a universal
standard for which text should be included, but it is important to include only those
bits of text that are relevant and will not mislead the text-mining algorithms. Users
should develop several (reasonable) rules for what to include and what to leave out, and
evaluate each of them in the given setting, choosing the rulethat will perform best. In
general, for most legacy applications that have well-commented Java/C++ source code
available,class comment, class name, field names, field comments, method namesand
method commentscan be used.

The user may also identify the structural information, which is evident from the
data. This step is also not obligatory, provided that textual documents have been at-
tached to the instances. The user should consider any kind ofrelationships between the
instances (e.g. links, references, computed similarities, and so on). Note that it is some-
times necessary to define the instances in a way that makes it possible to exploit the
relationships between them. For Java/C++ classes, the potential links that can be ex-
tracted include inheritance and interface implementationgraph, type reference graph,
class, operation name similarity graph, and comment reference graph, etc. After this
step, the data pre-processing phase is complete. More information about those types of
links and the different calculations of link weight can be found in [12].
Creating feature vectors from contents and structures

The text-mining algorithms employed by LATINO (and also by many other data-
mining tools) work with feature vectors. Therefore, once the text-mining instances have
been enriched with the textual documents we need to convert them into feature vectors.
LATINO is able to compute the feature vectors from a documentnetwork. When this
network is created based on the source code, such as in the GATE case study, it is com-

mon that a class has methods that return values of the type represented by another class.
Also, comments in Java classes usually refer to other classes. For each of these cases,
one graph would be created. In these graphs, vertices represent Java classes and edges
represent references between these classes. After creating several such graphs they all
have the same set of vertices. Next, different weights (ranging from 0 to 1) are assigned
to each graph. In extreme case, 0 would be used to exclude the graph, and 1 to include
it. Assigning weights is not a trivial process and requires lots of experimenting, expe-
rience, and intuition. Following the intuition, the user has to specify the weight setting
and examine the results. If the results are not satisfying, the user has to change the set-
tings and repeat the process again. To help the user set the parameters, OntoSight [13],
an application that gives the user insight into document networks and semantic spaces
through visualization and interaction, has been developed. For the usage of LATINO,
we refer reader to [13].

These feature vectors are further used as an input for OntoGen8 which is a semi-
automatic data-driven ontology construction tool that creates suggestions for new con-
cepts for the ontology automatically. OntoGen will be integrated with LATINO in later
version.
Create domain ontology from feature vectors.

The most important step of ontology development is identifying the concepts in a
domain. Using OntoGen, this can be performed by using eithera fully automated ap-
proach such as unsupervised learning (e.g. clustering), ora semi-automated supervised
learning (e.g. classification) approach.

In the unsupervised approach, the system provides suggestions for possible sub-
concepts of the selected concept and The supervised approach is based on Support
vector machines (SVM) active learning method, which are a set of related supervised
learning methods used for classification and regression. The user can start this method
by submitting a query. After the user enters a query, the active learning system starts
asking questions and labeling the instances. On each step the system asks if a particular
instance belongs to the concept. The main advantage of unsupervised methods is that
they require very little input from the user. The unsupervised methods provide well-
balanced suggestions for sub-concepts based on the instances and are also good for
exploring the data. The supervised method on the other hand requires more input. The
user has first to figure out what the sub-concept is, then to describe the sub-concept
trough a query and go through the sequence of questions to clarify the query. This is
intended for the cases where the user has a clear idea of the sub-concept he wants to
add to the ontology, although the unsupervised methods is not capable to discover it.

For the GATE case study, we have chosen the unsupervised approach, because we
have little knowledge about the ontology. An example of automatically generated con-
cepts visualised using OntoGen is shown on Figure 3. This figure depicts three concepts,
namelyNominal Coreferencer, Pronominal CoreferencerandSearchPR. Each of these
three concepts represent a separate Processing Resource (PR) in GATE. In OntoGen
they are being clustered as belonging to the same group of concepts. If we decide to
add this group to the ontology, one class will be created and three instances for each
mentioned PR.

8 http://ontogen.ijs.si/

Fig. 3. Concepts derived from GATE source code using OntoGen.

Apart from concept identification, OntoGen/LATINO also implicitly infers sub-
sumption relations (i.e. subClassOf) between concepts (newer version will also be able
to discover some other types of relations).The user can fully customize each of the
concepts by defining its instances. The system helps here by detecting outliers both
inside and outside the concept. If new data becomes available after the ontology is
constructed, the system can help by automatically classifying new instances into appro-
priate concepts. For more detailed instructions about the usage of OntoGen/LATINO,
please refer to [12].
Design Ontology

An important point to make is that the automated methods are not intended to ex-
tract the perfect ontology, they only offer support to domain experts in acquiring this
knowledge. This help is especially useful in situations like ours when the knowledge is
distributed in several documents. In fact no existing OL technique is completely unsu-
pervised: a domain expert must be included somewhere in the knowledge acquisition
loop. Therefore, the automatically acquired knowledge is post-edited, using an exist-
ing ontology editor, to remove irrelevant concepts and add missed ones. The changes
mainly included deleting suggested concepts, as for the ontology it was not important to
include too much details in certain cases, for instance distinguishing between the more
than 30 types of Exceptions that could be thrown from the different Java classes.

After creating the domain ontology, we can save it into the TAO repository.
Now we are ready to augment the existing content of a legacy application (including

the service definition) semantically. We present the details in the following subsections.

Service and content augmentationContent augmentation is a specific metadata gen-
eration task aiming to enable new information access methods. It enriches the text
with semantic information, linked to a given ontology, thusenabling semantic-based
search over the annotated content. In the case of legacy software applications, im-
portant parts are the service description, the software code and documentation. While
there has been a significant body of research on semantic annotation of textual con-
tent (in the context of knowledge management applications), only limited attention

has been paid to processing legacy software artefacts, and in general, to the prob-
lem of semantic-based software engineering. TAO has developed a tool namedCon-
tent Augmentation Tool (CAT)to assist users to annotate heterogeneous software ar-
tifacts automatically (semi-automatically). In essence,CAT is capable of performing
two tasks: semantic annotation – using Information Extraction some parts of the docu-
ment content are marked and then linked to an ontology; and, persistent storage and
lookup of augmented content, where document retrieval is based on relevance to a
selected set of semantic annotations instead of relevance to words (like in keyword
lookup). More information aboutCAT can be found at [7]. The main component of
CAT is Key Concept Identification Tool (KCIT)which has been exposed as a Web ser-
vice (CA service) and can be accessed athttp://gate.ac.uk/ca-service/
services/CAService. More information about CAT, KCIT and CA service can
be found onhttp://www.tao-project.eu/researchanddevelopment/
demosanddownloads/content-augmentation-software.htmland also
in [7] and [1].

To useCAT, we first need to identity which Web services users want to provide and
also what kinds of other content need to be annotated.
Identify services and other content to be annotated.

Please note that normally the first step in creating a Web service is to design and
implement the application that represents the Web service.This step includes the design
and coding of the service implementation, and the testing toverify that all of its inter-
faces work correctly. After the Web service is developed, the service interface definition
can be generated from the implementation of the service (i.e. the service interface can
be derived from the application’s Application ProgrammingInterface (API)). Web ser-
vices interfaces are usually developed in WSDL documents that define the interface and
binding of the corresponding Web service implementations.In this paper, we assume
that the Web services and the corresponding WSDL definitionsfor a legacy applica-
tion have already been developed. Therefore, we focus on helping users to annotate the
existing WSDL definitions to get SA-WSDL definitions. SA-WSDL [9] is one of the
latest W3C recommendation for Semantic Web Service.
Annotate – automatically and manually

As mentioned before, the main tool for performing Content Augmentation auto-
matically is KCIT. KCIT identifies key concepts from software-related legacy content
intelligently (more than exact text match, like many other existing approaches). It can
also be configured to better adopt different use cases. For example, when preparing a
document such as WSDL, it can be configured so that the tags’ processing is enabled.
Users then just click a button and KCIT goes through the WSDL file or other legacy
content and automatically identifies the pieces of text or tag, which are related to con-
cepts or relations defined in the domain ontology by using NLPtechniques. After the
process of automatic annotation is finished, users can validate results by visualising
them e.g. in GATE GUI, correcting annotations if necessary,and adding new ones by
manually selecting the text they want to link to the relevantconcept from the ontology.
View and revise annotations

The results of the content augmentation process can be viewed graphically by the
users as highlights over the original content inside the GATE GUI. For example, Fig-

ure 4(a) shows the results of processing the GATE classDocumentFormat.java by
the CA service . The highlights are the created semantic annotations, and the blue table
at the bottom shows further details, in this case, of the annotation forLanguageResource

that refers to the classLanguageResource from the GATE ontology.
The automatic annotating results could contain some flaws, and we need to ensure

that these semantic metadata are correctly asserted. The annotation could be improper
in several ways.

– Missed annotations. If the domain experts realize that there are some WSDL ele-
ments or texts in the legacy document, which should be annotated, but were missed
by CA service, users can manually annotate them. If there is no proper concept
within the existing ontology, new concept will be asserted into the ontology.

– Unnecessary annotations. It is possible that CA service hascreated some unneces-
sary annotations. Domain experts have to delete those annotations manually.

– Annotations with wrong concepts. If domain experts realizethat the CA service has
chosen the concept that is not the most suitable, they need torevise it.

Domain experts need to manually check the correctness of them. For example, as
shown in Figure 4(b), the stringUniversity of Sheffieldwas not annotated as anorgani-
sation. To add this annotation to the document, first the text is selected/highlighted, and
then the relevant ontology resource is chosen from the hierarchy on the right or from
the drop-down list of resource names in the dialogue. In thisparticular examples we are
annotating the string University of Sheffield as referring to the class Organisation.

(a) Viewing results using Annotator GUI (b) Adding a new annotation

Fig. 4. CA interface

Ontology population
Some of the Content Augmentation Tools can also identify a set of potential in-

stances for the classes in the domain ontology from the legacy content. User will decide
whether or not to accept these assertions.

During above processes, whenever the domain ontology is revised, users need to
ensure the ontology is still correct.

Finally the legacy contents and the result of related semantic augmentation is stored
in the heterogeneous knowledge store. This is important if users are working with large
datasets. It is also the safest way to ensure that the annotations can be reloaded as same
as before. The annotation can be saved either separately with the legacy content or
embedded within the legacy files.

In the SOA lifecycle, the next phases are service deploymentand service descrip-
tions evaluation and refinement.

Service Deployment refers to the process of deploying services within a service
execution environment and service evaluation refers to theongoing monitoring of an
SOA system to determine whether it meets its design goals. During the course, if users
encounter any problems, the domain ontology and SA-WSDL definitions are revised.
As these phases are outside of the scope of the TAO project (the scope of TAO is just
generating the semantic descriptions), we will not give more details about them here.
[3] presents some general guidelines for these tasks.

4 Methodology evaluation

The methodology presented in this paper has been validated in several high-profile case
studies. For example, the GATE system, as presented in this paper, is a comprehensive
open source platform (with thousands of users) and an aircraft maintenance application
form Dassault Aviation is a data-intensive business process application (managing a
multi-million business). More information about these case studies can be found in [1,
4].

The evaluation of TAO methodology and tools is conducted following the criteria
proposed in [14]. We carry out the evaluation from several aspects:

What is the performance of the methodology and tools: ontology extraction
and annotation performance.During experimenting with Ontology Learning tools,
due to the nature of this process, we have not measured the time spent for ontology
acquisition, therefore we report only empirical results here. During the experiments
with LATINO, the trickiest part was setting the weights. This requires a lot of experi-
menting and testing, and there is no common rule to be followed in order to derive the
most accurate hierarchy of concepts that can serve as a core of an ontology. The better
the weights settings, the more precise concepts are derivedand less time is left for the
expert to check automatically derived ontology and manually perform changes. How-
ever, OntoSight software which is currently being developed by Josef Stefan Institute
might speed up this process for future usage. This software will, given the golden stan-
dard ontology, provide means for automatically identifying which set of weights gives
best results, which will enable users to reduce time for experimenting with setting the
weights and changing them until the best results are achieved following the intuition.

Created GATE domain ontology was further used and evaluatedwith Content Aug-
mentation Tools, specifically KCIT. Given the time limitations, we could not report on
the precision and recall regarding the produced annotations over the GATE software
artefacts. However, these tools are available online and could be tested with any other
ontology9. To show the quantitative side regarding the KCIT performance, we measured

9 http://www.tao-project.eu/

the time to initialise it and run it over a corpora with 32 JavaClasses randomly chosen
from the GATE source code, and also with the GATE User Manual10. Table 1 shows
the results in seconds.

Table 1. Initialization time for KCIT with GATE knowledge base(http://gate.ac.uk/ns/gate-kb)
and execution times for producing ontology-aware annotations automatically. Shown times are in
seconds.

Initialization time 6.265
Corpora Execution time
GATE User Manual 0.688
32 Java classes from GATE source code16.422

Average execution time 0.518

Is the extracted ontology a good basis for ontology building: expert evalua-
tion? To measure the quality of the ontology that has been created,we have collected
36 questions from GATE user mailing list, where the GATE users enquire about vari-
ous GATE modules, plugins, processing resources, and problems they encounter while
using these modules. We manually examined these questions,and identified that out of
these 36 questions, 61.1% (22 questions) wereanswerable: the GATE domain ontology
that is developed following the methodology described in this paper, contained the an-
swers for these questions. For the rest of the 14 questions (38.9%), the answer was not
in the knowledge base. This is due to the questions that were usually enquiring about
too specific details such as:Can someone send me the codes for all characters that are
classified as DEFAULTTOKEN?or What is the the correct location of the lexicon files
for Hepple Tagger?. Another set of questions for which answer was not in the knowl-
edge base enquired about specific features that were usuallynot included inside user
manuals and documentation, but were related to the knowledge of experienced GATE
users, e.g. the familiarity with GATE GUI, or types of parsers for language processing
available in GATE. For example,Which Gate plugin parsers can find object and subject
of a sentence?or Is it possible to see the POS tagging from the GATE GUI?. Another set
of queries were enquiring about Processing Resources, thathave not been yet included
in the GATE knowledge base due to various reasons (i.e. they have been included in
the GATE distribution recently). This is when the Ontology Refinement phase of our
methodology comes to place: we need to refine the ontology if needed and enrich the
knowledge base so that we reach 100% ofanswerablequestions.

Does the extracted ontology and semantic annotated resources support a cer-
tain task, such as more effective query and answer? – appropriateness for a task.
After finalising GATE domain ontology and populating the knowledge base with rele-
vant concepts, we need the means for accessing this knowledge in a user-friendly man-
ner. Although the ontology and semantically annotated software artefacts have poten-
tial to ease the process of finding relevant information for domain experts i.e. GATE
developers or GATE users in this case, we cannot expect from them to learn formal
languages for querying ontologies such as SeRQL or SPARQL. We also cannot assume

10 http://gate.ac.uk/sale/tao/index.html

that they understand Semantic Web technologies, ontologies and ontology languages.
That is why, in the context of the TAO project, we have been working on developing a
Question-based Interface to Ontologies (QuestIO). QuestIO accepts text-based Natural
Language queries as an input, transforms them into SeRQL queries, executes them and
render results in the user-friendly manner.

For the purpose of evaluating QuestIO as a part of the GATE case study, we have ran
it with previously collected 22answerablequestions and examined results. The overall
performance of QuestIO system was 68% of correctly answeredquestions, which, in
comparison with 58% accomplished by AquaLog system [10] in similar evaluation, we
consider quite a good performance. More details about this evaluation is outside the
scope of this paper, and we refer reader to [2] and [18].

5 Related work

A number of ontology-design methodologies that have been proposed to date to guide
the process of ontology development from scratch have been listed in a comprehensive
survey in [6, 11]. While, Mariano et. al. have identified seven of the most commonly
used methodologies for designing ontologies from scratch11. [5, 17] have outlined a set
of principles and design criteria that have been proved useful in developing domain on-
tologies. During the last decade several ontology-learning systems have been developed
such as ASIUM [9], OntoLearn, Text2Onto, OntoGen, and others. Most of these sys-
tems depend on linguistic analysis and machine learning algorithms to find potentially
interesting concepts and relations between them.

Whilst several methodologies exist to develop domain ontologies either from scratch
or from text, there is no widely accepted methodology for transitioning existing appli-
cations to SOA based on domain ontologies. In our methodology, the domain ontology
plays a key role in the transition process as it contains all the semantics required for an-
notating the services of the new SOA. Our methodology and tools are focused on legacy
application transitioning. We use various kinds of function related resources to derive
the domain ontology. Since most existing applications tendto have documentation de-
scribing their functionality and APIs, it is possible to useautomatic processing tools to
abstract domain concepts from terms used in such documentation and build the domain
ontology. Furthermore, our methodology is fully supportedby an integrated tool studio.

6 Conclusion and future works

A key requirement of transitioning applications to Semantic Web Services has promoted
the urgent need of systematic methodologies and tools to assist the migration process.
In this paper we have taken an ontological view of Semantic Web Services. Both the
lifecycle of SOA and building ontologies were examined, in order to understand the re-
quirements for transitioning legacy systems to SOAs. This has been used for developing
an initial methodology for the transitioning process basedon domain ontologies learned

11 http://www.aifb.uni-karlsruhe.de/WBS/ysu/publications/OntoWeb_
Del_1-4.pdf

from such applications. To support this methodology, a set of tools and a detailed cook-
book style guide are presented as well. This transitioning process has been validated
by a few large case studies. Next, these tools will be integrated as a single suite which
can provide a one-stop service to assist users to migrate their legacy applications to
semantic enable services. More intensive evaluation is currently under performing.

Acknowledgements.
This work is partially supported by the EU-funded TAO project (IST-2004-026460).

References

1. Damljanovic D., Bontcheva K., Tablan V., Roberts I., Agatonovic M., Andrey S., and Sun J.
Gate case study: Domain ontology and semantic augmentationof legacy content. Technical
Report D6.2, TAO project, 2008.

2. Danica Damljanovic, Valentin Tablan, and Kalina Bontcheva. A text-based query interface to
owl ontologies. In6th Language Resources and Evaluation Conference (LREC), Marrakech,
Morocco, May 2008. ELRA.

3. Amardeilh F., Vatant B., Gibbins N., Payne T., Saleh A., and Wang H. H. Sws bootstrapping
methodology. Technical Report D1.2, TAO project, 2008.

4. Cerbah F. Case study 2: Domain ontology building and semantic augmentation of legacy
content. Technical Report D7.2, TAO project, 2008.

5. Thomas R. Gruber. A translation approach to portable ontology specifications. Knowl.
Acquis., 5(2):199–220, 1993.

6. D. Jones, T. Bench-Capon, and P. Visser. Methodologies for ontology development.
7. Bontcheva K., Damljanovic D., Aswani N., Agatonovic M., ,and Sun J. Key concept iden-

tication and clustering of similar content. Technical Report D3.1, TAO project, 2007.
8. Bontcheva K., Roberts I., Agatonovic M., Nioche J., and Sun J. Gate case study: Requirement

analysis and application of tao methodology in data intensive applications. Technical Report
D6.1, TAO project, 2006.

9. Holger Lausen and Joel Farrell. Semantic annotations forWSDL and XML schema. W3C
recommendation, W3C, August 2007. http://www.w3.org/TR/2007/REC-sawsdl-20070828/.

10. Vanessa Lopez, Victoria Uren, Enrico Motta, and MichelePasin. Aqualog: An ontology-
driven question answering system for organizational semantic intranets. Web Semantics:
Science, Services and Agents on the World Wide Web, 5(2):72–105, June 2007.

11. M. Lpez. Overview of the methodologies for building ontologies, 1999.
12. Grcar M. Ontology learning services library (v1). Technical Report D2.1-v1, TAO project,

2007.
13. Grcar M. Ontology learning services library (v2). Technical Report D2.1, TAO project,

2008.
14. Sabou M. Learning web service ontologies: an automatic extraction method and its evalua-

tion. Ontology Learning from Text: Methods, Evaluation and Application, 2005.
15. S. McIlraith, T. Son, and H. Zeng. Semantic web services,2001.
16. Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn,Rubn Lara, Michael Stollberg,

Axel Polleres, Cristina Feier, Christoph Bussler, and Dieter Fensel. Web services modeling
ontology.Journal of Applied Ontology, 39(1):77–106, 2005.

17. Bill Swartout, Ramesh Patil, Kevin Knight, and Tom Russ.Toward distributed use of large-
scale ontologies. In10th Workshop on Knowledge Acquisition, Canada, June 1996.

18. Valentin Tablan, Danica Damljanovic, and Kalina Bontcheva. A natural language query inter-
face to structured information. InProceedings of the 5h European Semantic Web Conference
(ESWC 2008), Tenerife, Spain, June 2008.

19. Marinova Z. Heterogeneous knowledge store. Technical Report D4.2, TAO project, 2008.

Collect

structure

docs for

the

legacy

app

Collect source

codes

Collect WSDL

definations

Collect APIs

Collect Database

schema

Collect XML

data

... ...

S
er
v
ic
e
a
n
d
 c
o
n
te
n
t
a
u
g
m
en
ta
ti
o
n

Identify
services

Identify other
contents for
annotating

A
n
n
o
ta
te
 s
e
rv
ic
e
s
 a
n
d
 o
th
e
r

c
o
n
te
n
ts
 u
s
in
g
 W
P
3

Load/import WSDL

or other resources

Load domain ontology

Start annotating

Manually

annotating

Save SA-WSDL and SA-Doc

into TAO repository

View and revise

annotations

Automatic

annotating

O
n
to
lo
g
y
 l
ea
rn
in
g

Identify the text-mining instances

Assign textual document to

instances

Determining the structure

between instances

Transform content and

structure into feature vectors

Create Concept

(Unsupervised)

Manage concepts

Manage relations

Manage instances

Create Concept

(Supervised)

... ...

Id
e
n
ti
fy

s
tr
u
c
tu
re
 a
n
d

c
o
n
te
n
t
s
o
ft
w
a
re

a
rt
e
fa
c
ts

C
re
a
te
 d
o
m
a
in

o
n
to
lo
g
y
 f
ro
m
 f
e
a
tu
re

v
e
c
to
rs

Ensure the ontology is well-formed

Ensure the ontology has right formalism

Ensure the ontology is consisitant

Ensure the ontology is

contextually correct D
e
s
ig
n
 O
n
to
lo
g
y

Evaluate and refine Ontology

Document

Corpora

Save

corpora

 into TAO

Repository

Collect

textual

docs

for

the

legacy

app

Collect reference

 manuals

Collect source

code comments

Collect

annotator's guide

Collect user's guide

Collect forum

disucussion

... ...

Check if there already
exists some ontolologies
for the application domain

Domain

Ontology

Check if WSDL
definitions
exists?

WSDL
Definitions

Documents for

annotating

Save

Ontology

 into TAO

Repository

Evaluation and refine

service discriptions

SA-WSDL SA-Doc

No Yes

Save the ontology
no

Yes

Activity supported by HKS) Activity supported by LATINO Activity supported by CA MANAGER

E
v
a
lu
a
te
 a
n
d
 r
e
fi
n
e
 t
h
e
 d
o
m
a
in
 O
n
to
lo
g
y

Ontology population

Figure 5. Cookbook methodology overview.

