TAO Methodology: Transition of Legacy Systems to
Semantic Enabled Application

{ }@cs.man.ac.uk

Abstract. Despite expectations being high, the industrial take-ug@fantic

Web technologies in developing services and applicatiasskeen slower than
expected. One of the main reasons is that many systems hawedeeeloped

without considering the potential of the web in integratgggvices and sharing
resources. Without a systematic methodology and propéstpport, the migra-
tion from legacy systems to Semantic Web Service-basedragstan be a very
tedious and expensive process, which carries a definiteofi&lure. There is

an urgent need to provide strategies which allow the mignatf legacy systems
to Semantic Web Services platforms, and also tools to stgpeh a strategy.
In this paper we propose a methodology for transitioningehapplications to
Semantic Web Services by taking the advantage of rigoroubematical meth-

ods. Our methodology allows users to migrate their appdoatto Semantic Web
Services platform automatically or semi-automatically.

1 Introduction

Semantic Web Services combines the Web Services and Seriégti enabling tech-
nologies. By semantically annotating the relevant aspefctieclarative Web Service
descriptions in a machine-readable format that can fatdlitogical reasoning, such
service descriptions become interpretable based on treanmgs, rather than simply
on a symbolic representation. The advantage of this is tlaayrof the tasks involved
in using Web Services can be (semi-) automated, for exandgdeovery, selection,
composition, mediation, execution, monitoring, etc. THBemantic Web Service Re-
search [10] has been recognized as one of the most proméihgdlogies to emerge,
exhibiting huge commercial potential, and attracting Bigant attention from both in-
dustry and the research community. Despite its great pobsfpsuccess, the industrial
take-up of Semantic Web Services technologies has beeristhan expected. This
was mainly due to the fact that many legacy systems have beatoghed without con-
sidering the potential of the Web for integrating serviaed sharing resources. The mi-
gration of legacy systems into semantically web-enableit@mments involves many
recursive operations that have to be executed with rigortdiube magnitude of the
investment in systems, and the technical complexity infitaresuch projects. In this
context, there are three main issues to be considered, p&vedl Accessibility dealing
with the transformation of components of the legacy systeat are exposed as Web
services, Service Transformation where the exposed Weficesrare mapped to the
corresponding Semantic Web Service representations andrgie Annotation where
the Semantic Web Service is annotated using the relevanaiticontology. Without a
systematic methodology and proper tool support, the magrdtom legacy systems to

semanticly enabled applications could be a very tediousapdnsive process, which
carries a definite risk of failure. There is an urgent neech&rdfore provide strate-
gies that support the construction of ontologies whichlitgdihe migration of legacy

systems to Semantic Web Services platforms, and also telgxport such a strategy.

This paper proposes a new methodology for addressing theeaksues in particu-
lar Web Accessibility and Componentization, which in tuould lead to an automatic
Platform Transformation. The main idea of the methodolagiidentify the compo-
nents/steps for creating web services to represent systemsonality and semanti-
cally annotate such services through domain ontologiegesdi from system documen-
tations. Typically, the step for creating web services h&lmerged with the procedures
of learning ontologies (from system documentation) tolfi@té future ontology prun-
ing and refinement of web service descriptions which evéigtieads to bridging the
gab of interoperability and hence moving the system clas8QAs. This methodology
is part of Transitioning Applications to Ontologies (TAOject. (TAO) is a project
in the European Sixth Framework Program. The goal of the TAGept is to define
methods and tools for transition of legacy information eyst to semantic enabled
services, enabling semantic interoperability betweearbgeneous data resources and
distributed applications.

The remainder of this paper is organized as follows. Se@&iprovides a high level
explanation about the methodology. Section 3 presentshmmikstyle guidelines on
how to adopt the methodology using the tools developed by.T@€ation 4 discusses
some related works. Finally, Section 5 presents the coioeis®f this paper and future
work.

Iden_tify
Services
gnno_tate D [Knowledge [Ontology]
OIVIGEs Acquisition l Leamning
Depl Y
eploy Design
—{=

[Evaluate [Refine] [Refine] Evaluate]
Services Services Ontology Ontology

(a) SOA design lifecycle (b) Ontology design lifecycle
Fig. 1. SOA and ontology design lifecycle

2 High-level methodology

The transitioning methodology outlined in this sectionregented as a high-level com-
posite lifecycle, which highlights the interactions betmeexisting methodologies for
developing Service-Oriented Architectures (which inelileb Services and Enterprise

Yhttp://ww. t ao- proj ect. eu/

Architectures), and for ontology design. In this paper, weadop this abstracted lifecy-
cle sketches of SOAs and building domain ontologies from txd demonstrate how
and where these should be linked. The design lifecycle faraice-oriented system
is largely divorced from both the specific methodology usedreate the system, and
from the lifecycle of the individual services within suchystem. Figure 1(a) shows a
sketch of the design lifecycle for an SOA system.

Service Identification: This process refers both to the identification of existing se
vices which can be repackaged within an SOA system, andatbe identification
of required functionality (from a business process modgléxercise, for example)
that does not currently exist in operational form, and thesequent implementa-
tion of such functionality as services.

Service Annotation: In order to facility loose coupling of component servica®tigh
brokerage and matchmaking, it is necessary to describeetivices in an SOA
system in sufficient detail that a service requester can findpgropriate service
that meets their needs.

Service Deployment: Here we refer to the deployment of services within a service
execution environment. This may include publishing/atisigrg services through
public service registries, discovering services wherellants can identify candi-
date services that may fulfil their requirements, seletirgices where they chose
the most appropriate service(s), composing services wtlenets integrate sev-
eral independent services to achieve an overall goal, aatiyfiexecuting services
either through direct invocation or through workflow managat systems.

Service Evaluation: This process refers to the ongoing monitoring of an SOA syste
to determine whether it meets its design goals.

Service Refinement: The refinement of an SOA system typically takes one of three
forms: the introduction of new functionalities through tireation of new services;
the refactorisation of existing service functionalityr(ibgh aggregation or further
decomposition, for example); or the refinement of the serdiescriptions to better
facilitate service matchmaking and brokerage.

As the design lifecycle for an SOA system is largely indemsmicf the partic-
ular methodology used, so the design lifecycle for a domailogy (Figure 1(b))
can be separated from the specific knowledge acquisitiomatelling methodology
used. Domain ontologies usually describe the conceptialdiz of entities, their rela-
tionships to each other, instantiations and the axiomse@k® a specific domain (such
as wines or cars). These domain ontologies can either diseaiancepts introduced in
some other top-level ontologies (which describe very gareemcepts like space, time,
event, which are independent of a particular problem or deynsuch asDolce? and
OpenClyc 2 or they can be created from scratch for a particular domainomon
process to create domain ontologies from scratch can eoseaeral steps:

Ontology learning: Ontology learningefers to the use of techniques for automatically
or semi-automatically extracting ontologies from exigtatocument corpuses. As

Zhttp://ww. | oa-cnr.it/DOLCE htm
Shttp://ww. opencyc. org

such, the output from an ontology learning process shoultd@considered as the
finished product, but as a first cut that is solidly groundethm available docu-
mentation, and which will inform the later design of a mordigieed ontology for
production use.

Ontology Design: The ontology design process refers to the process of foyrnat-
ifying the knowledge that has either been manually acquirech a domain ex-
pert, or (semi-)automatically extracted from a documenpas. This process may
also encompass the identification and reuse of appropoat@anents within pre-
existing ontologies, the alignments of the designed omgtpleith pre-existing on-
tologies, or the modularisation of the ontology to factitauch alignmentin future.

Ontology Evaluation: The ontology evaluation process assesses whether or not the
designed ontology is fit for purpose.

Ontology Refinement: This process refers to the refactorisation of the designéal-o
ogy to better represent the problem domain.

The TAO transitioning methodology provides a logical agmio for connecting
the above lifecycles (i.e. SOA and Ontology design) throtighfollowing three main
points.

Learning ontologies from service descriptions:In the ontology design lifecycle, the
Ontology Learning process attempts to automatically orismrtromatically derive
a knowledge model from a document corpus. In our Transitigmilethodology,
we have refined this to reflect the contribution made by thecsired (but not
ontologically-informed) description of an existing bodfyservices (for example,
service APIs and developer documentation, SOA design dentation, and so on).
We call this refinemen$ervice-Oriented Ontology Learninky is our expectation
that the ontology resulting from an automated ontologyreey process should
be treated as a candidate ontology which will be subsequéstlevaluated and
refined in the Ontology Design process. Whilst the ontolodseetion process may
yield some conceptualization of the relevant domain, muddh@implicit domain
knowledge inherentin a service description will not be oagd; thus the extraction
of an ontology from structured sources such as those mettiabove may not
obviate the need for further work on the domain ontology. Eeev, such structured
sources relating to existing services do provide sufficieitial information that
suggests the creation of a domain ontology, which can bbdugvolved.

Using domain ontologies to augment semantic content and séce: The Service An-
notation process described in the SOA methodology refethagadescription of
services at the signature level in languages like WSD\hile these allow rudi-
mentary service matchmaking and brokerage on the basis ¢fples of the inputs
and outputs of a service, these types are typically datatyased on XML Schema,
rather than richer knowledge-based types taken from arlagital characterisa-
tion of the domain. Thus, these interfaces need to be mappgiivalent concepts
within Semantic Web frameworks (such as OWL-S, WSMO or WSBISand
annotated using the relevant domain ontology.

4 The signature within WSMO [] describes a functional or atoriniterface with inputs and
outputs (defined as messanges).

Knowlle.qge Ontolc?gy s ldeqtify

Acquisition Leamning Services
v ¥

Design __p| An notate

Ontolo Services

[Refine] Evaluate] [Deploy]
Services

Ontology Ontology
N

<«
Evaluate Refine
Services Services

Fig. 2. High-level methodology.

Using feedback from service evaluation to refine ontologiesBoth the ontology de-
sign lifecycle and the SOA lifecycle contain evaluate-aefine steps that represent
a reflection on the performance of a system and the subsecpagineering.

Figure 2 depicts an overview of the methodology and a reptaten of these steps.
The interactions between the components of the two lifeesyelre effectively a re-
finement of processes within those lifecycles, and reflectr#éationship between the
products of each individual lifecycle. In particular, wetethe task-oriented nature of
a domain ontology which is defined with service annotatiomind when compared
with a general-purpose ontology for the same domain.

3 Methodology cookbook, tool support and case study

The methodology presented in the previous section prowatieabstract view about
the important phases needed to be performed during theticengrocess. In order to

support this methodology, TAO project has developed an sparce infrastructure and
a series of tools to aid the transitioning process. In thit@e, we present a cook-book
style guideline about the usage of TAO tools. To better tthte the idea, we use the
transition of GATE system as a case study.

3.1 GATE as a legacy application — an overview

GATE® is a leading open-source architecture and infrastruciurénie building and
deployment oHuman Language Technologpplications, used by thousands of users at
hundreds of sites. The development team consists at prefsever 15 people, but over
the years more than 30 people have been involved in the prédjesuch, this software
product exhibits all the specic problems that large soféveachitectures encounter and
has been chosen as the data-intensive case study in the tf€atpr

Shttp://gate. ac. uk

The advantage of transitioning GATE to ontologies will b@+feld. Firstly, GATE
components and services will be easier to discover andratiegithin other applica-
tions due to the use of semantic web service technologyriéiggaisers will be able to
use knowledge access tools and nd easily all informati@vael to a given GATE con-
cept, searching across all different sotware artefacess@ATE documentation, XML
conguration les, video tutorials, screen shots, user gison forum, etc. [5] presents
the detailed usages of the Semantic enable GATE.

3.2 Transitioning cookbook

As mentioned before, TAO methodology, has three main phéseg&nowledge acqui-
sition phase, the ontology learning phase and semantiesband the service augmen-
tation phase. Each phase contains a set of tasks which meadhtwith each other.
Figure 5 presents a UML diagram to illustrate the main tr#orsing process and we
explain major activities in detail.

Given a legacy application, the domain engineers first chithere are some
previously-developed ontologies for the application. 8gmublic ontology search en-
gines or public ontology libraries can be used for this 4Kf such an ontology is
found, it can be saved into the knowledge store developedAty for future usage,
otherwise users have to derive the domain ontology fromeabady software. For the
GATE case, we develop the ontology from scratch with thet@ssée of TAO tools.

Knowledge acquisition To derive the domain ontology from the legacy application
using the TAO tools, users first need to collect the relevaspurces about the legacy
application.

— Resources collection

We identify some data sources which are commonly relevatitealescription of
a legacy application, such as application source codes, Js®h Doc etc. For more
information about the potential data sources which maytedl#o the description of a
legacy systems and their classification, please refer tdfi2jur GATE case, its Java
source codes, JavaDoc files are collected. Those documemtsecdownloaded from
http://gate. ac. uk/ downl oad/ i ndex. ht i .

— Save the resource corpuses to TAO Repository

After collecting all the related data sources, we store tirethe repository. TAO
project develops a heterogeneous knowledge store to iese tata sources. The het-
erogeneous knowledge store is designed for efficient manageof different types
of knowledge: unstructured content (documents), strectulata (databases), ontolo-
gies, and semantic annotations, which augment the contigntliwks to machine-
interpretable metadata. More information about this fegfeneous knowledge store
can be found from [11].

Shttp://protegewi ki.stanford. edu/i ndex. php/ Prot ege_Ont ol ogy_
Li brary

"http://swoogl e. unbc. edu

Shttp://swse.deri.org

Ontology Learning The purpose of ontology learning from pieces of softwarssea-
tially discovering concepts and relations in the sourceecadcompanying documen-
tation, and external sources (such as the Web). Ontologyitenis one of the most
significant approaches proposed to date for developindagits. Previously, we have
presented a detailed review of different ontology learr@pgroaches [2]. In this paper,
we show how to learn domain ontologies based on the TAO siteha#ATINO?®, a part
of the TAO Suite, supports this. The development of LATIN@ imore-or-less general
data-mining framework that joins text mining and link arsdyfor the purpose of (semi-
automated) ontology construction. The ontologies aretcocted from the knowledge
extracted from the data that accompany typical legacy eaiins. We introduce the
term “application mining” which denotes the process of &sting this knowledge.

In the previous step, we collected a set of related data ressuhat describe the
legacy application. To use LATINO to get ontologies from3deesources, we need to
first identify these resources’ contents and structures.

— ldentify content and structure of software artifacts
e |dentify the text-mining instances
e Assign textual document to instances
e Determine the structure of between instances

Given a concrete TAO scenario, the first question that neetie tanswered by a
software engineer is — what are thext-mining instanceé which are used as graph
vertices when dealing with the structure) in this partic@ase, i.e., the user need to
study the data at hand and decide which data entities wijl {hla role of instances in
the transitioning process. It is impossible to answer thisstjon in general it depends
on the available sources. Some potential choices inclug/Qa+ classes, methods,
Database entities and etc. In the GATE case study, the tesaare the source code
Java classes.

Next, we need to assign as textual document (descriptioeqith text-mining in-
stance. This step is not obligatory, and perhaps not evesilgesvhen the data is such
that it does not contain any unstructured textual data. Mgaere is not a universal
standard for which text should be included, but it is impotte include only those
bits of text that are relevant and will not mislead the texting algorithms. Users
should develop several (reasonable) rules for what to dechnd what to leave out, and
evaluate each of them in the given setting, choosing thethalewill perform best. In
general, for most legacy applications that have well-comed Java/C++ source code
available class commentlass namefield namesfield commentanethod nameand
method commentsan be used.

The user may also identify the structural information, vbhis evident from the
data. This step is also not obligatory, provided that tdxtie@uments have been at-
tached to the instances. The user should consider any kiradadfonships between the
instances (e.g. links, references, computed similariéied so on). Note that it is some-
times necessary to define the instances in a way that makessihte to exploit the

®http://ww.tao- project. eul/ resear chanddevel oprent /
denpsanddownl oads/ ont ol ogy- | ear ni ng- sof tware. ht m

relationships between them. For Java/C++ classes, thatiténks that can be ex-

tracted include inheritance and interface implementadi@ph, type reference graph,
class, operation name similarity graph, and comment refergraph, etc. After this

step, the data pre-processing phase is complete. Morenat@n about those types of
links and the different calculations of link weight can berd in [7].

— Creating feature vectors from contents and structures

The text-mining algorithms employed by LATINO (and also marther data-mining
tools) work with feature vectors. Therefore, once the takting instances have been
enriched with the textual documents and discovered stre@tdormation, we need to
convert them into feature vectors. LATINO is able to comphtefeature vectors from
a document network. For source code resources (such as the Gase), it is com-
mon that a class has methods that return values of the typeesgnted by another
class. Also, comments in Java classes usually refer to othsses. For each of these
cases, one graph would be created. In these graphs, vegmesent Java classes and
edges represent references between these classes. Afitingrseveral such graphs
they all have the same set of vertices. Next, different wisigfanging from 0 to 1) are
assigned to each graph. In extreme case, 0 would be used Italexbe graph, and
1 to include it. Assigning weights is not a trivial processlaaquires lots of experi-
menting, experience, and intuition. Following the intoiitj the user has to specify the
weight setting and examine the results. If the results atesatisfying, the user has to
change the settings and repeat the process again. To halisehset the parameters,
OntoSight [8], an application that gives the user insigld idocument networks and
semantic spaces through visualization and interactionplkan developed. For the us-
age of LATINO, please refer to [8]. The feature vectors fa& @ATE case study can be

These feature vectors are further used as an input for Ont8@#hich is a semi-
automatic data-driven ontology construction tool thatitee suggestions for new con-
cepts for the ontology automatically. OntoGen will be imtegd with LATINO in later
version.

— Create domain ontology from feature vectors.

The most important step of ontology development is idemtgythe concepts in a
domain. Using OntoGen, this can be performed by using eaHally automated ap-
proach such as unsupervised learning (e.g. clustering)semi-automated supervised
learning (e.g. classification) approach.

In the unsupervised approach, the system provides suggsdtr possible sub-
concepts of the selected concept and The supervised appiodased on Support
vector machines (SVM) active learning method, which aretafeclated supervised
learning methods used for classification and regressioa uBkr can start this method
by submitting a query. After the user enters a query, thevadtiarning system starts
asking questions and labelling the instances. On eachtstegystem asks if a particular
instance belongs to the concept. The main advantage of engsed methods is that

10 http://ontogen.ijs.si/

they require very little input from the user. The unsupesdisnethods provide well-
balanced suggestions for sub concepts based on the instandeare also good for
exploring the data. The supervised method on the other fendres more input. The
user has to first figure out what should the sub-concept beati¢ohdescribe the sub-
concept trough a query and go through the sequence of gnssticlarify the query.

This is intended for the cases where the user has a clear fdéa sub-concept he
wants to add to the ontology but the unsupervised methodstdiscover it.

For the GATE case study, we have chosen the unsupervisedagtpibecause we
have little knowledge about the ontology. An example of edtically generated con-
cepts visualised using OntoGen is shown on Figure 3. This depicts three concepts,
namelyNominal CoreferenceiPronominal CoreferencesindSearchPREach of these
three concepts represent a separate Processing ResoRjci (BATE. In OntoGen
they are being clustered as belonging to the same group akpté If we decide to
add this group to the ontology, one class will be created hrektinstances for each
mentioned PR.

Fig. 3. Concepts derived from GATE source code using OntoGen.

Apart from concept identification, OntoGen/LATINO also iliefily infers sub-
sumption relations between concepts (newer version veid bk able to discover some
other types of relations).The user can fully customize edthe concepts by defining
its instances. The system helps here by detecting outlmisibside and outside the
concept. If new data becomes available after the ontologyistructed, the system
can help by automatically classifying new instances injorapriate concepts.

For more detailed instructions about the usage of OntoGanNO, please refer
to [7].

— Design Ontology

An important point to make is that the automated methods aréntended to ex-
tract the perfect ontology, they only offer support to damexperts in acquiring this
knowledge. This help is especially useful in situations ldurs when the knowledge is

distributed in several documents. In fact no existing Olhtegue is completely unsu-
pervised: a domain expert must be included somewhere inrtbelkedge acquisition
loop. Therefore, the automatically acquired knowledgedstyedited, using an exist-
ing ontology editor, to remove irrelevant concepts and aisbsed ones. The changes
mainly included deleting suggested concepts, as for thaagy it was notimportant to
include too much details in certain cases, for instancéngjstshing between the more
than 30 types of Exceptions that could be thrown from theedffit Java classes in the
GATE case study.

Furthermore, the resulting ontology should be consistedifferent levels. Firstly,
the ontology languages have predefined syntax, e.g. RDF/%§ttax. Knowledge
represented in these languages must be well formed. Moslogyteditors, including
LATINO, can be used to check that the ontology is well-fornféelcondly, to meet dif-
ferent usages, ontology languages often comes in variduasguages or “species”.
OWL has three different flavours “OWL FULL”", “OWL DL” and ‘OWILITE". Thus,
the ontology must be built to fall inside the desired spetsesl. For most cases, the
user wants to keep their ontologies within the scope of “OWL Br “OWL LITE”
for ease of reasoning. Tools like the OWL Ontology Validatan be used to check
the species of ontology. Furthermore, an ontology cannetaio contradictory infor-
mation. Therefore, next user needs to make sure that theidamology is logically
consistent. For example it would be a mistake if we assetiatla pizza was both
“Meaty Pizza” and “Vegetarian Pizza” in a knowledge baseeni“Meaty Pizza” and
“Vegetarian Pizza” are disjoint. Reasoners like PelleCTFa+ normally can pick up
the logical inconsistency. If an ontology is logically c@tent, it does not necessarily
follow that it accurately represents the real world. Forregle, without asserting that
“Meaty Pizza” and “Vegetarian Pizza” are disjoint, the dagy is logically consistent
even if we define a meaty-vegetarian pizza, even though shés iobvious error. To
discover this kind of problems, the ontology needs to betesy domain experts.

After creating the domain ontology, we can save it into th©T&pository.

Now we are ready to augment the existing content of a legaaljcapion (including
the service definition) semantically. We present the deiaithe following subsections.

Service and content augmentationContent augmentation is a specific metadata gen-
eration task aiming to enable new information access metHbenriches the text with
semantic information, linked to a given ontology, thus dimgpsemantic-based search
over the annotated content. In the case of legacy softwaniecafions, important parts
are the service description, the software code and docatiemt\While there has been
a signicant body of research on semantic annotation ofaégtintent (in the context of
knowledge management applications), only limited attentias been paid to process-
ing legacy software artefacts, and in general, to the pmlolesemantic-based software
engineering. TAO has developed a tool nan@&mhtent Augmentation (CAD assist
users to annotate heterogeneous software artifacts atitaitya(semi-automatically).
In essenceCAis capable of performing two tasks: semantic annotatiomgukdt some
parts of the document content are marked and then linked tmtntogy; and, persis-
tent storage and lookup of augmented content, where dodumigieval is based on
relevance to a selected set of semantic annotations instealgvance to words (like in

keyword lookup). More information abo@A can be found atq] and it can be accessed
athttp://gate.ac. uk/ ca- service/ servi ces/ CAServi ce.

To useCA, we first need to identity which Web services users want teigeand
also what kinds of other contents to be annotated.

— ldentify services and other contents to be annotated.

Please note that normally the first step in creating a Wehlicgers to design and
implement the application that represents the Web serVhis.step includes the design
and coding of the service implementation, and the testingetdy that all of its inter-
faces work correctly. After the Web service is developed srvice interface definition
can be generated from the implementation of the servicetliieeservice interface can
be derived from the application’s Application Programmintggrface (API)). Web ser-
vices interfaces are usually developed in WSDL documeatgitfine the interface and
binding of the corresponding Web service implementatitmshis paper, we assume
that the Web services and the corresponding WSDL definitiona legacy applica-
tion have already been developed. Therefore, we focus @ingalisers to annotate the
existing WSDL definitions to get SA-WSDL definitions. SA-WBI6] is one of the
latest W3C recommendation for Semantic Web Service.

— Annotate — automatically and manually

CA can annotate the legacy contents either automaticathesually. Users can just
click a button and CA then goes through the WSDL file or othgats content and au-
tomatically identifies the pieces of text or tag, which atated to concepts or relations
defined in the domain ontology by using NLP techniques. Usansalso manually se-
lect the text they want to annotate and link it to the properept from ontology. The
most important component of CA is the Key Concept Identizafiool (KCIT) [4],
which can automatically identify key concepts from softe«aealted legacy content in-
telligently (more than exact text match, like many otheisérg approaches). CA can
also be configured to better adopt different use cases. Fonghe, when preparing a
document such as WSDL, we can configure CA so that the tagsépsing is enabled.

— View and revise annotations

The results of the content augmentation process can be digreghically by the
users as highlights over the original content . For exankitgire 4(a) shows the results
of processing the GATEE clad3ocument Format.java by the CA . The highlights
are the semantic annotations created by the CA serviceharlue table at the bottom
shows further details, in this case, of the annotatiomfatguage Resource that refers
to the classLanguageResource from the GATE ontology. The resulting SA-WSDL
descriptions for GATE services can be downloaded.at.

The automatic annotating results could contain some flamésyae need to ensure
that these semantic metadata are correctly asserted. Tiogation could be improper
in several ways.

— Missed annotations. If the domain experts realize thaethee some WSDL ele-
ments or texts in the legacy document, which should be ateththut were missed

by CA, users can manually annotated them. If there is no prapecept within the
existing ontology, new concept will be asserted into thelmgy.

— Unnecessary annotations. It is possible that CA has put smmecessary annota-
tions. Domain experts have to delete those annotations atignu

— Annotations with wrong concepts. If domain experts reaiteat the concept CA
has chosen for annotation is not the most suitable, they toeedise them.

Domain experts need to manually check the correctness of.tRer example, as
shown in Figure 4(b), the stringniversity of Shefeldvas not annotated as angani-
sation To add this annotation to the document, rst the text is s=déuighlighted, and
then the relevant ontology resource is chosen from the fitieyaon the right or from
the drop-down list of resource names in the dialogue. Inghiticular examples we are
annotating the string University of Shefeld as referringhim class Organisation.

& Annotator GUI [Connected in DIRECT mode: DocumentFormatjava_ 1200307305338 __3157] o @ &
=

ENSNLEIGRS
| Document Editor |
[TypeSetstanendreatures

4 ontalogy Tree® | opuions

[omorosvawi[<]
e ontsisgyow -
v| B GATEPIugin
o [v] B GATEDeveloper
¢ v/ M GATEARefact
v W DataStore
+ i W GATEComBBHER
¢ [v] @ GATEResource
o v @ LanguageResource

MED

o 7] M ProcessingResource

«» @ 4 » [lApply To All [] Create Instance [| Dehighlight

Langusgeresource -

[ontotoay [| nttp:/ / gate.acuk owtim ~[x[=

|ctass |~ g/ gate.acul/ns gate-ontolagy *LanguageResource | v X |~

(a) Viewing results using Annotator GUI

5 Annotator GUI [Connected in DIRECT mode: DocumentFormatjava_1200307305338___3157)

B B0

Document Editor | Ontology Editor

[TypesetstanEndFeatures {| ontoloay Tree | options |

protonu |+

o [v] M GATEAREfact
v M Thing

o [v] M EntitySource

-@m

= [¥] W GATEPIugin

¢ [¥] M Entity

* Documentformat java E
3 & (| M Happening

* Copyright 7, The University of Sheffisid

| Apply To All (V] Create Instance

rganization ~

nttp:/ /prot 19/2005/

v " |linstance
$id: Documentrormat Java =
s hup:/ /prot 2005/

hup:/

D |
¥ 7 W Group
o v B Organization

java__1. ___3157

o @ X

(b) Adding a new annotation

Fig. 4. CA interface

— Ontology population

The CA can also identify a set of potential instances for fasses in the domain
ontology from the legacy content. User will decide whethenat to accept these as-

sertions.

During above processes, whenever the domain ontology ise@vusers need to

ensure the ontology is still correct.

Finally the legacy contents and the related semantic autatiens are stored in
the heterogeneous knowledge store. This is important ifsusee working with large
datasets. It is also the safest way to ensure that the afurstagn be reloaded as same

as before. The annotation can be saved either separatditivaitlegacy contents or

embedded within the legacy files.

In the SOA lifecycle, the next phases are service deploymedtservice descrip-

tions evaluation and refinement

— Deploy Services
— Evaluate and refine services

Service Deployment refer to the process of deploying sesatithin a service ex-
ecution environment and service evaluation refers to tlgoimy monitoring of a SOA
system to determine whether it meets its design goals. Dtin@ course, if users real-
ize any problems, the domain ontology and SA-WSDL defingiare revised. Because
that those phases are not focuses of the TAO project (thesfdA\O is just generating
the semantic descriptions), we will not give more detailsuttthem here. [2] presents
some general guidelines for these tasks.

4 Methodology evaluation

The methodology presented in this paper has been validasseral high-profile case
studies. For example, the GATE system, as presented indpisrpis a comprehensive
open source platform (with thousands of users) and an #iroantenance application
form Dassault Aviation is a data-intensive business pegplication (managing a
multi-million business). For information about these csisglies can be found at [1, 3].

The evaluation of TAO methodology and tools is conductebtbfahg the criteria
proposed in [9]. We carry out the evaluation from severatatp

What is the performance of the methodology and tools ontologextraction and annotation performance
Time and effort to develop GATE ontology and annotation....

Is the extracted ontology a good basis for ontology building expert evaluation The
resulting ontology and annotation is satisfiable?

Does the extracted ontology and semantic annotated resows support a certain task, such as more effectiv
Used for develop some applications. Query system? ...

5 Related works

A number of ontology-design methodologies that have beepqgsed to date to guide
the process of ontology development from scratch have histed lin a comprehensive
survey in [?,?]. While, Mariano et. al.] have identified seven of the most commonly
used methodologies for designing ontologies from scrdR,?] have outlined a set
of principles and design criteria that have been provedulisefdeveloping domain
ontologies. During the last decade several ontology-lagrsystems have been devel-
oped such as ASIUM [9], OntoLear?| Text20nto[?], OntoGenp], and others. Most
of these systems depend on linguistic analysis and maabémeihg algorithms to find
potentially interesting concepts and relations betweemth

Whilst several methodologies exist to develop domain agiiels either from scratch
or from text, there is no widely accepted methodology fon$itioning existing appli-
cations to SOA based on domain ontologies. In our methogptbg domain ontology
plays a key role in the transition process as it containdialsemantics required for an-
notating the services of the new SOA. Our methodology anid tore focused on legacy
application transitioning. We use various kinds of functrelated resources to derive

the domain ontology. Since most existing applications tenthve documentation de-
scribing their functionality and APIs, it is possible to lmgomatic processing tools to
abstract domain concepts from terms used in such docunenéatd build the domain

ontology. Furthermore, our methodology is fully suppottgan integrated tool studio.

6 Conclusion and future works

A key requirement of transitioning applications to Semaweb Services has promoted
the urgent need of systematic methodologies and tools ist &lss migration process.
In this paper we have taken an ontological view of Semantib Bervices. Both the
lifecycle of SOA and building ontologies were examined, ider to understand the re-
quirements for transitioning legacy systems to SOAs. Tasstheen used for developing
an initial methodology for the transitioning process basedomain ontologies learned
from such applications. To support this methodology, a tttals and a detailed cook-
book style guide are presented as well. This transitionnoggss has be validated by a
few large case studies.

Next, these tools will be integrated as a single suite whaoh grovide a one-stop
service to assist users to migrate their legacy applicatiorsemantic enable services.
More intensive evaluation is currently under performing.

Acknowledgements.
This work is partially supported by the EU-funded TAO praj@&T-2004-026460).

References

1. Damljanovic D., Bontcheva K., Tablan V., Roberts I., Agaivic M., Andrey S., and Sun J.
Gate case study: Domain ontology and semantic augmentatiegacy content. Technical
Report D6.2, TAO project, 2008.

2. Amardeilh F., Vatant B., Gibbins N., Payne T., Saleh Ad ¥ang H. H. Sws bootstrapping
methodology. Technical Report D1.2, TAO project, 2008.

3. Cerbah F. Case study 2: Domain ontology building and sémangmentation of legacy
content. Technical Report D7.2, TAO project, 2008.

4. Bontcheva K., Damljanovic D., Aswani N., Agatonovic Mand Sun J. Key concept iden-
tication and clustering of similar content. Technical Ref8.1, TAO project, 2007.

5. Bontcheva K., Roberts I., Agatonovic M., Nioche J., and $uGate case study: Requirement
analysis and application of tao methodology in data intenapplications. Technical Report
D6.1, TAO project, 2006.

6. Holger Lausen and Joel Farrell. Semantic annotationg®/bL and XML schema. W3C
recommendation, W3C, August 2007. http://www.w3.org/AWY7/REC-sawsdI-20070828/.

7. Grcar M. Ontology learning services library (v1). TedatiReport D2.1-v1, TAO project,
2007.

8. Grcar M. Ontology learning services library (v2). TedatiReport D2.1, TAO project,
2008.

9. Sabou M. Learning web service ontologies: an automatiaetion method and its evalua-
tion. Ontology Learning from Text: Methods, Evaluation and Aqugiion, 2005.

10. S. Mcllraith, T. Son, and H. Zeng. Semantic web servi2zé6l.
11. Marinova Z. Heterogeneous knowledge store. TechniepbR D4.2, TAO project, 2008.

Check If there already
exists some ontolologies

lication domain : v

v

Identity structure and

content software

[Identify the text-mining instances)

[Assign textual document to]
instances

Determining the structure
between instances

artefacts.

®
v

[

Transform content and }

structure into feature vectors

Domain
Ontology

for the aj No Ves
A{ Save the ontology }
Collect reference
manuals
Collect
textual Collect source
docs code comments
for G : Document
ollect
the 4 conon
disucussion
app Save
corpora
g e D into TAO
% @ Repository
-
g ¢
®
@ Collect source
ob codes
3
= Collect |G et wsoL
S structure definations
Q docs for
the Collect APIs
legaCy Collect XML
app
Collect Database
schema

(@)

Activity supported by HKS)

Create domain
ontology from feature

Create Concept
Supervised

Create Concept
Unsupervised

Manage relations
Manage instances

vectors

Ontology learning

Design Ontology

\

[Ensure the ontology is well-formed]

[Ensure the ontology has right formalismj

(Ensure the ontology is consisitant)

Ensure the ontology is ®
contextually correct

D

[Evaluate and refine Ontology]

(-

Activity supported by LATINO

Save
Ontology

into TAO
Repository

Figure 5. Cookbook methodology overview.

Service and content augmentation

Check if WSDL
definitions
exists?

. $/>\
Identify
servicis/

WSDL
Definitions

Identify other
contents for
annotating

Documents for
annotating

Load/import WSDL
or other resources
Load domain ontology
Start annotating
Automatic
annotating

View and revise
annotations

Ontology population

/

Manually
annotating

Annotate services and other
contents using WP3

Activity supported by CA MANAGER

<

Evaluate and refine the domain Ontology

