
Enhanced Semantic Access of Software Artefacts

Danica Damljanovic and Kalina Bontcheva

Department of Computer Science
University of Sheffield

Regent Court, 211 Portobello Street
S1 4DP, Sheffield, UK

{D.Damljanovic,K.Bontcheva}@dcs.shef.ac.uk

Abstract. Large software frameworks and applications tend to have a
significant learning curve both for new developers working on system ex-
tensions and for other software engineers who wish to integrate relevant
parts into their own applications. Recent research has begun to demon-
strate that Semantic technologies are a promising way to address some of
these issues. In this paper, we present a semantic-based prototype that
is made for an open-source software engineering project with the goal
to explore the methods for assisting open-source developers and soft-
ware users to learn and maintain the system without major effort. The
paper describes how we learned the domain ontology from the software
artefacts, which we then used in the process of semantic annotation to
enrich all documentation, source code, user forum postings , and tutorial
materials. Generated annotations are being transformed into OWL and
natural language-based semantic queries are offered. Transparently to
users, these are being translated to SeRQL in order to provide enhanced
semantic-based access.

Key words: semantic annotation, ontology learning, semantic access,
software artefacts

1 Introduction

Successful code reuse and bug avoidance in software engineering requires nu-
merous qualities, both of the library code and of the development staff; two
important qualities are ease of identification of relevant components and ease of
understanding of their parameters and usage profiles. The attraction of using
semantic technology to address this problem lies in its potential to transform
existing software documentation into a conceptually organised and semantically
interlinked knowledge space that incorporates unstructured data from multiple
software artefacts: forum postings, manuals, structured data from source code
and configuration files. The enriched information can then be used to add novel
functionality to web-based documentation of the software concerned, providing
the developer with new and powerful ways to locate and integrate components
(either for reuse or for integration with new development).



2 Enhanced Semantic Access of Software Artefacts

In this context, one of the key requirements towards the semantic web tech-
nology is that it should be applied to existing software projects and require little
human involvement in its creation and maintenance. Due to the fact that the
majority of projects do not maintain an ontology already, an essential part of our
methodological and technological approach is in developing automatic methods
for ontology learning and content augmentation, specifically tailored to software
artefacts.

Overall, there are three kinds of tasks to be completed in order to enable
semantically an existing (legacy) software application:

– semi-automatic elicitation of an ontology to represent the application-specific
concepts;

– alongside this, exposure of semantic-based access to software artefacts;
– finally, uniting the results of these two processes, to provide semantic-based

access through an intuitive natural language-based interface.

This paper discusses each of these steps in terms and details their imple-
mentation in a prototype system, developed on the basis of GATE1 – a very
widely used open-source software project with hundreds and users and over
twenty active developers, distributed over the internet. The goal of this pro-
totype is to explore the methods for assisting distributed, dynamic groups of
software developers and users to learn and maintain this system without major
effort, through the application of semantic web technologies. As the core of any
semantic-enabled system is in ontologies, we first acquired the domain ontology
semi-automatically from the GATE source code, documentation, manuals and
other software artefacts. Once a domain ontology is in place, semantic content
augmentation methods are used to annotate automatically all software artefacts,
with respect to the ontology. The results are stored in a knowledge store to en-
able users to carry out semantic searches and find easily all information relevant
to a given GATE concept.

The paper is structured as follows. In Section 2 we discuss scenarios for the
GATE case study and requirements derived from them. As the basic requirement
for a semantic-based system is to build the domain ontology, in Section 4 we
first describe how we learned the ontology from the available software artefacts,
followed by a detailed description of the prototype for enhanced access of soft-
ware artefacts. In Section 5 we describe preliminary evaluation of the prototype
components, followed by a discussion on our next steps for evaluating the pro-
totype as a whole. In Section 6 we position our work in the context of other
semantic-enabled systems for software engineering. Section 7 draws conclusions
and outlines directions for future work.

2 The Case Study

GATE [1] is an open-source architecture and infrastructure for the building and
deployment of Human Language Technology applications, used by thousands of
1 http://gate.ac.uk



Enhanced Semantic Access of Software Artefacts 3

users at hundreds of sites. The development team consists at present of over
15 people, but over the years more than 30 people have been involved in the
project. As such, this software product exhibits all the specific problems that
large long-running open-source projects encounter.

While GATE has increasingly facilitated the development of knowledge-based
applications with semantic features (e.g. [2–4]), its own implementation has con-
tinued to be based on compositions of functionalities justified on the syntactic
level, understood by informal human-readable documentation. By its very nature
as a successful and accepted ’general architecture’, a systematic understanding
of its concepts and their relation is shared between its human users. It is sim-
ply that this understanding has not been formalised into a description that can
be reasoned about by machines or made easier to access by new users. Indeed,
GATE users who want to learn about the system are finding it difficult due to
the large amount of heterogeneous information, which cannot be accessed via a
unified interface.

In the context of the TAO project2, GATE is used as a case study where the
main stress is on transitioning this application to ontologies in order to enable
enhanced knowledge access to support distributed teams of software developers
and users.

The first challenge to be addressed is learning domain ontologies from multi-
ple sources associated with the software project, i.e., software code, user guide,
and discussion forums. What is needed is a technique which does not simply
deal with these sources independently, but can also exploit their redundancy
and diverse formats in order to improve the resulting ontology.

Another important aspect that needs to be dealt with is dynamics of software
artefacts, i.e., software artefacts grow and are updated continuously (e.g., forum
postings, APIs between software versions). Therefore, one needs to implement a
semantic annotation process which indexes them regularly with respect to the
latest domain ontology and updates the knowledge base/semantic annotation
repository as artefacts evolve over time.

In the context of semantic-based access, several scenarios have been identified
as relevant:

Automatic generation of reference pages from the ontology – provides
users with a single point of access to all knowledge, continuously kept up to
date. The current GATE web site provides links to various kinds of docu-
mentation about the system: user/developer manuals, source code, javadoc,
papers, tutorials, movies, etc. In addition, there is a link to the discussion
forum, which is hosted on sourceforge.net. A new user who wishes to find out
information about a GATE component, e.g., POS (part-of-speech) Tagger,
needs to do these searches in two separate places, i.e., even for important
GATE components there are no single comprehensive reference pages. In
addition, the user does not have control over the results, i.e., see results
ordered by recency (only possible in the forum search) or type of source (re-
quest results only from papers or the user guide). Another problem is that

2 http://tao-project.eu



4 Enhanced Semantic Access of Software Artefacts

there are typically more than one terms referring to the same concept (POS
Tagger, Hepple Tagger, part-of-speech tagger). Currently searching for these
gives different results, whereas a concept-based search would return the same
hits. Instead of being shown triples about the POSTagger instance in a for-
mal way (e.g., as does Protege or the KIM KnowledgeBase Explorer[5]), the
prototype generates automatically a web page, which can be shown on its
own or alongside the ontology tree, where POSTagger is selected.

Natural language-based queries for semantic search – this is an intuitive
way to formulate semantic queries without need for knowledge of the under-
lying query language of the semantic repository. When compared to the
traditional keyword search, semantic search is capable of providing better
results, across the multiple software artefacts. However, there is a problem
with helping non-expert users to formulate their queries in an intuitive fash-
ion, without any knowledge of formal languages (e.g. SeRQL). One promis-
ing solution explored here is to offer natural language queries, so that soft-
ware developers and users can easily access the knowledge without the need
to learn about semantic technologies and formal languages like SeRQL3 or
SPARQL4.

Semantic-based filtering of forum postings – allow users to filter which
postings they see, by defining a set of relevant concepts from the domain on-
tology. GATE’s discussion forum has on average about 120 posts per month,
with up to 15 on some days. Due to the volume of this information, it would
be helpful if developers could choose to read only postings related to their
areas of interest. Therefore, what is required is automatic classification of
postings with respect to concepts in the ontology and a suitable interface for
semantic-based search and browse.

Expertise location – enable a (new) team member to identify which are the
most appropriate team members to consult on a given problem. Developer
expertise will be discovered automatically from forum postings. As part of
the process of designing the semantic-based search and browse facilities,
we carried out a small experiment with using a set of domain concepts to
discover who is the most suitable GATE developer to address for a given
problem. A subset of the GATE forum postings were analysed to identify all
responses by GATE developers, whose names were supplied as a list. The
result was an association of domain concepts, developer names (as initials),
and frequency of answers. Some examples are: POS tagger (DM (43 post-
ings), IR (12)), Jena ontologies (VT (45), KB (6), IR (2)). The goal is to
enable developers to identify easily who they should consult when working
on a new topic. Conversely, as already discussed, the assignment of GATE
concepts to forum postings will enable our system to provide developers with
the facility to be notified only of postings related to their area of expertise.

In order to meet the requirements described in the context of these scenar-
ios, we have developed a semantic-based prototype system for enhanced access
3 http://www.openrdf.org/doc/sesame/users/ch06.html
4 http://www.w3.org/TR/rdf-sparql-query



Enhanced Semantic Access of Software Artefacts 5

to software artefacts. The next section describes how we acquired the domain
ontology, followed by details on the prototype architecture and evaluation.

3 Ontology Acquisition

The acquisition of the domain ontology is the enabling block that enables semantic-
based access to software artrefacts. Whereas traditionally such an ontology would
be defined by hand, in our case we first apply ontology learning tools to the
GATE source code and javadocs to obtain a draft ontology (model bootstrap-
ping), which is then post-edited by a domain expert (i.e. a GATE expert) to
obtain the gold-standard.

The goal of OL methods is to derive automatically (parts of) an ontology from
existing data (for state of the art overview see [6]). In earlier work it has been
demonstrated that textual sources attached to software artifacts (e.g., software
documentation) contain a wealth of domain knowledge that can be extracted
automatically to build a domain ontology [4]. It was observed however that
existing generic ontology learning approaches need to be adapted to handle the
particularities of software specific textual sources (i.e., low grammatical quality,
using a sublanguage). The approach presented in [4] explores the particularities
of the sublanguage specific to software documentation to manually derive knowl-
edge extraction rules. While the most generic rules can be used across domains
they only extract a limited amount of knowledge. More specific rules need to
be manually identified for new domains. Also, this technique has been applied
on a single type of software specific textual sources, namely short functionality
descriptions. This is a drawback because the work of Ankolekar et al. [7] showed
that knowledge about a software project is often spread in several different in-
formation sources such as source code, discussion messages, bug descriptions,
documentation and manuals.

Taking into consideration the lessons learnt from previous approaches, we
experimented with acquiring a domain ontology from the multiple artefacts as-
sociated with any given software project, i.e., software code, user guide, and
discussion forums [8]. Our technique does not simply deal with these different
types of sources, but it goes one step further and exploits the redundancy of
information to obtain better results. The strength of our technique is that it
relies on learning methods that are portable across domains.

After further post-editing by a domain expert, the final version of the on-
tology contains 42 classes and 23 object properties. It is available online at
http://gate.ac.uk/ns/gate-ontology. OWLIM[9] is used to reason over the
created ontology and reveal any inconsistencies, as well as for semantic queries.

In addition to the generic ontology learning experiment, we also implemented
a mapping between the application-specific entries in the software’s XML config-
uration files to instances in the domain ontology. The resulting populated ontol-
ogy, including all 594 automatically acquired instances, is available at http://gate.
ac.uk/ns/gate-kb. It is this populated ontology which is used in the semantic
annotation and language-based semantic search experiments discussed next.



6 Enhanced Semantic Access of Software Artefacts

4 The Semantic Annotation and Knowledge Access
Prototype

Once the domain ontology is in place, the next step is to design a system so that
it uses this ontology both for semantic annotation of the software artefacts, and
for advanced semantic access to them.

However, in order to reach our goal which is to provide users with a single
point of access to all domain knowledge and artefacts, and continuously keep
it up to date, we first need to gather these software artefacts as they are often
dispersed across different locations on the Web. As shown in Figure 1), after we
have collected the data, the second step is semantic annotation with regards to
the domain ontology, which is performed by the CA Service. The automatically
produced annotations need to be exported to the Content Augmentation (CA)
Index and stored in the knowledge store. Finally, these annotations are made
accessible via a tool which accepts natural language queries as an input (Docu-
ment Finder in Figure 1). The following sections describe each of these steps in
further detail.

Fig. 1. System architecture



Enhanced Semantic Access of Software Artefacts 7

4.1 Data Collection

The first step is to gather all data about the software application which could
be of interest to developers and users (especially novice ones). In our case study,
we implemented a crawler that visits first gate.ac.uk and downloads the relevant
content (manuals, papers, JavaDoc, source code). This content includes all data
related to the GATE software linked from the GATE home page, including
external links if there are any (for example, PDF files of publications about the
system). Additionally, the crawler is visiting the GATE mailing list which is
hosted on sourceforge.net, and downloading all new posts, which have not been
indexed already in previous iterations. This process is run on a daily basis to
capture and index new software artefacts, as soon as they become available. At
the time of writing we have collected around 2GB of content, the majority of
which is text-based.

When storing documents, we not only store their content but also associated
metadata: the URL from which the document was downloaded and the type of
the document (e.g. publication, forum post, manual, source code). We use several
simple heuristic rules in order to predict what is the type of the document based
on the URL. For example, if the URL contains javadoc, it is easy to conclude
that the document is a JavaDoc file.

Once all software artefacts are downloaded and stored, they need to be en-
riched with semantic information. For annotation purposes we use a Content
Augmentation (CA) web service (see Figure 1) which wraps our Key Con-
cept Identification Tool (KCIT). KCIT is an Information Extraction application,
based on several general-purpose GATE [10] components plus an ontology-based
gazetteer which is capable of producing semantic annotations given an ontology.
Next we discuss this process in more detail.

4.2 Automatic Content Augmentation

Given an ontology and a document, KCIT attaches ontology-aware annotations
to the document, i.e., annotations refering to classes, instances and properties
in the ontology. During the KCIT initialisation phase, all ontology resources are
processed automatically in order to extract any human-understandable lexicali-
sations which could be used at runtime. To achieve this we first extract a list of
the following:

– names of all ontology resources i.e. fragment identifiers 5 and
– assigned property values for all ontology resources (e.g., label and datatype

property values)

Each item from the list is processed further so that:
5 An ontology resource is usually identified by an URI concatenated with a set

of characters starting with ’#’. This set of characters is called a fragment iden-
tifier. For example, if the URI of a class representing GATE POS Tagger is:
’http://gate.ac.uk/ns/gate-ontology#POSTagger’, the fragment identifier will be
’POSTagger’.



8 Enhanced Semantic Access of Software Artefacts

– any name containing dash ("-") or underscore ("_") characters is processed
so that each of these characters is replaced by a blank space. For example,
Project_Name or Project-Name would become a Project Name.

– any name that is written in camelCase style is actually split into its con-
stituent words, so that ProjectName becomes a Project Name.

Next, each item from this list is analysed separately by our Onto Root Appli-
cation (see Figure 2), which carries out shallow linguistic analysis of the ontology
resources and derives their base (root) forms, in order to enable successful match-
ing of the different syntactic forms. In a nutshell, the Onto Root Application is
a pipeline of several linguistic analysis modules. It first tokenises each list item
(i.e., splits the text into its constituent words) and then assigns part-of-speech
and lemma (i.e. root) information to each token. It is this lemma or a set of lem-
mas which are then added to a dynamic gazetteer list (the Ontology Resource
Root Gazetteer).

Fig. 2. Building a Dynamic Gazetteer from the Ontology

For instance, if there is a resource with a fragment identifier ProjectName,
with assigned property rdfs:label with value project names, the created list before
executing the Onto Root application will contain the following strings:

– ProjectName as a fragment identifier,
– Project Name as split fragment identifier,
– project names as the value of rdfs:label.

Each of the items from the list is then analysed separately and the results
would be:

– For ProjectName and Project Name the output will be the same as the input,
as the lemmas are the same as the input tokens.



Enhanced Semantic Access of Software Artefacts 9

– For project names the output will be the set of lemmas from the input,
resulting in project name.

The overall performance of KCIT is directly proportional to the quality of the
formal descriptions residing inside the ontology: the more human understandable
descriptions there are in the ontology – the better the quality of the annotations.

The output of the semantic annotation process is a set of annotations in
XML format which contains different features about the term from the text that
is being annotated. For example, the URI of the ontology resource to which
the term refers to, the type of that ontology resource (e.g., an instance, a class
or a property), and other features that could be used later in the process of
annotation extraction. An example of semantically annotated document (a Java
class from the GATE source code) is shown in Figure 3.

Fig. 3. An example of annotating a Java class with KCIT

The pop-up table in Figure 3 shows an annotation created by KCIT and
all its features. In particular, the annotated term (’Niraj Aswani’ in this case)
shows the features of the annotation such as the URI of the corresponding
ontology resource and the class URI from which we can see that this name
refers to a GATE developer. Additionally, from the list of annotation features
in Figure 3 we can see that Niraj Aswani is a value of the property rdfs:label
for an instance that is of type GATE developer. Heuristic level feature which
is 0 in this case indicates that no heuristic rules were used during the semantic
annotation process.

Once the semantic content augmentation stage is completed, these annota-
tions needs to be saved with the documents, or stored separately in a way that
makes them accessible through semantic search. Namely, there are two types of
annotations that could be generated [12]:



10 Enhanced Semantic Access of Software Artefacts

– explicit annotations: add new tags to the content so that these tags refer to
resources in the ontology

– implicit annotations: the software artefact remains unchanged, but instead
the positional and semantic information are stored in an externally specified
knowledge base.

In our case, we store both explicit and implicit annotations, in order to make
the output suitable for processing different tools. However, for the following
document retrieval step, we use only the latter annotations, and therefore we
only focus on them in this paper.

4.3 Storing Implicit Annotations

The annotation extraction phase (performed via the CA Index shown in Figure
1) comprises of reading the produced annotations and their features, in order
to generate the OWL output which merges document-level metadata and the
semantic annotations in a format which is then easily queried via a formal lan-
guage such as SPARQL. More specifically, this extracted information needs to
’connect’ a document with different mentions of the ontology resources inside
that document. For example, if the document contains mentions of the class
Sentence Splitter, the output should be modeled in a way that preserves this
information during query time (i.e. the URLs of all documents mentioning this
class should be found easily). For this purpose, we use the PROTON KM ontol-
ogy6, and more specifically, the Mention and InformationResource classes and
the occursIn property, which links the two classes. The Mention class also con-
tains properties which enable storing the position of the semantic annotation
within the document content, namely hasStartOffset and hasEndOffset.

An example of an extracted OWL output, where the Document class is in-
stantiated, is as follows:

<rdf:Description rdf:about=

"gate:id_ee7ba66b-cd71-4993-9635-777b24f46372">

<rdf:type rdf:resource=

"http://proton.semanticweb.org/2005/04/protont#Document"/>

<rdfs:label>

Flexible Gazetteer

</rdfs:label>

<protont:informationResourceIdentifier>

http://gate.ac.uk/gate/doc/java2html/gate/creole/gazetteer/

FlexibleGazetteer.java.html

</protont:informationResourceIdentifier>

<protonkm:resourceType>

Java Class

</protonkm:resourceType>

</rdf:Description>

6 http://proton.semanticweb.org/2005/04/protonkm



Enhanced Semantic Access of Software Artefacts 11

An example of instance of Mention and the relation between the foremen-
tioned instance of Document is encoded as follows:

<rdf:Description rdf:about=

"gate:mention_0c45b1dc-efab-48a2-8242-bb78c1ddd3b5">

<rdf:type rdf:resource=

"http://proton.semanticweb.org/2005/04/protonkm#Mention"/>

<rdfs:label>

Niraj

</rdfs:label>

<protonkm:occursIn rdf:resource=

"gate:id_ee7ba66b-cd71-4993-9635-777b24f46372"/>

<protonkm:hasStartOffset>

404

</protonkm:hasStartOffset>

<protonkm:hasEndOffset>

409

</protonkm:hasEndOffset>

<protonkm:hasString>

http://gate.ac.uk/ns/gate-ontology#NA

</protonkm:hasString>

</rdf:Description>

Note that gate: is used in the above examples instead of the full namespace of
the ontology which is http://gate.ac.uk/ns/gate-ontology# simply for the
sake of brevity. The long names for the new instances of both Document and
Mention classes are created automatically.

The extracted annotations are then stored in an OWL-compatible knowl-
edge repository (OWLIM [9] in our case) and can be accessed using SeRQL or
SPARQL. However, in order to query this semantic information successfully, one
must be familiar with at least one of the two formal query languages. Such lan-
guages – while having a strong expressive power – require detailed knowledge of
their formal syntax and understanding of ontologies and the way in which they
are encoded in OWL. One of the ways to lower the learning overhead and make
semantic-based queries more straightforward and easily accessible to software
developers and users, is through a Natural Language Interface (NLI).

4.4 Semantic-based Access through Text-based Queries

In order to enable advanced semantic-based access through natural language, we
developed a Question-based Interface to Ontologies (QuestIO). QuestIO [13, 14]
is a domain-independent system which translates natural language queries into
the relevant SeRQL queries, executes them and presents the results to the user.
QuestIO works so that it first recognises key concepts inside the query, detects
any potential relations between them, and creates the required semantic query.
For example, if the query consisted of two concepts (e.g. ’plugins in GATE’) the
matching triples from the ontology will be extracted and shown (in this case –
a list of all instances of GATE plugins).



12 Enhanced Semantic Access of Software Artefacts

In order to access the data stored in the implicit annotations and retrieve all
relevant information (i.e. the URLs of Documents with particular Mentions) we
had to make QuestIO more intuitive, by customising it so that the user can omit
some obvious concepts when posting the query. For example, if the user needs
more information about the countries in Europe (i.e. doc URLs which mention
these concepts), the query for QuestIO would need to be formed as information
resource about countries in europe or documents about countries in europe. We
customised QuestIO so that document or information resource is added to the
query by default, so that users do not have to specify this explicitly each time.

Also, as the output of QuestIO is a set of triple-like rows, we have customised
it to produce a list of results (list of document URLs), rather than a table with
all relations between concepts. At the moment, our prototype is showing a list
of all relevant documents, without any ranking. Our next step is to investigate
methods for result summarisation and clustering.

5 Evaluation

In order to evaluate the prototype described in this paper, we started with
evaluating its components, prior to user experiments with the complete proto-
type. As QuestIO and its performance directly influences the performance of the
prototype, we have evaluated it using the GATE knowledge base and a set of
questions collected from the GATE mailing list. Namely, 36 questions were col-
lected from the GATE user mailing list where users are enquiring about various
GATE modules and plugins. These questions were run against the GATE ontol-
ogy. This ontology (as described in Section 3) encodes the component model of
GATE, the available plug-ins, the types of components included in each plug-
in, the parameters for the different modules, etc. In the terms of precision and
recall, the score for QuestIO was 82.14% and 71.87% respectively 7. We also eval-
uated QuestIO’s performance against other similar systems and further details
are available in [13, 14].

For the evaluation of the prototype as a whole, in the forthcoming months we
will carry out a user-centric evaluation and report the results at the workshop.
The evaluation will be along the following dimensions:

– ease of finding information on a given topic, with and without semantic-based
access

– benefits and usability of our language-based knowledge access approach
– scalability of the knowledge stores and ability to store all software artefacts

6 Related work

6.1 Semantic Technologies for Software Engineering

Perhaps the closest work to our approach is the Dhruv system [7], which relies on
a semantic model obtained by instantiating hand-built domain ontologies with
7 The definition of precision and recall we use here is that adapted from information

retrieval (see [15, 16]).



Enhanced Semantic Access of Software Artefacts 13

data from different information sources associated with an open source project
to support bug resolution.

The main differences of our work from that of Dhruv [7] are:

– The application-specific ontology is not represented explicitly in Dhruv,
whereas learning and using such ontologies is our focus. The ontologies in
Dhruv are general purpose software ontologies;

– Dhruv only populates the ABox (i.e., instances) and uses a fixed TBox (4
generic software engineering ontologies), whereas we address both ;

– The focus of Dhruv is different in that it aims at helping the developers at
a very low level (e.g., method names), aka JavaDoc on steroids. Our focus is
at higher, service/component level, although visualisations similar to those
in Dhruv can be used.

Another similar system is the Ontology-driven Software Engineering Envi-
ronment (OSEE) [17]. The goal of OSEE is to support semantic-based software
development. In contrast to the approach used in OSEE, we do not alter the soft-
ware development practices at all, but rather layer some semantic technology on
top, to enable new usage of already existing software artefacts.

The Hipikat [18] Eclipse plugin for supporting software development is rele-
vant to our forum postings and expertise location scenarios. The difference again
is that Hipikat is integrated with the software development environment, whereas
our scenarios address the problem of helping any user/reader with finding rel-
evant information from the forum postings, which are not tightly controlled
artefacts.

6.2 Semantic-based search and browsing

There is a lot of research on semantic-based search and browsing in areas other
than software engineering. We discuss here only those that are in a way similar
to our approach, even if they have not been trialed in the domain of sotware
engineering. More specifically, we mention systems which, similar to us, perform
the process of semantic annotation automatically in order to enable semantic-
based information retrieval or browsing in a user-friendly manner.

Magpie [19] is a suite of tools which supports the interpretation of webpages
and “collaborative sense-making”. Similar to KCIT, it annotates webpages with
metadata and needs no manual intervention by matching the text against in-
stances in the ontology. In effect, Magpie adapts the web browsing experience
for different users depending on their goals, knowledge, and context, which is one
approach to deriving user profiles and customised interfaces for our prototype.

KIM [5] is an extendable platform for knowledge management, which includes
semantic-based search. It also includes a set of front-ends for online use, that offer
semantically enhanced browsing. The KIMExplorer allows web-based browsing
of the ontology, which can also be quieried by constructing SERQL queries via
web forms.



14 Enhanced Semantic Access of Software Artefacts

Similar to KIM, the prototype presented in [12], automatically annotates
Web pages, which results in generating both explicit and implicit semantic an-
notations with regards to the domain ontology. Implicit annotations are stored
in a separate file with RDF data, where in addition to the specific features of
an annotation, they also store the name of the document - Web page where
this annotation belongs to, and also the instance position: the offset of the in-
stance in the cached web page. Querying annotated semantic Web pages is per-
formed by querying implicit annotations from RDF files, by generating appro-
priate SPARQL queries. Their system also supports querying these annotations
by using free-form text which is transformed to the relevant SPARQL queries.

Considering the application of their approach to different domains, the pro-
totype described in [12] is good for data-rich web pages in a narrow domain.
However, although there is no restriction in using their prototype for different
domains, as the domain of pages broadens their approach becomes less accu-
rate, because of the instance recognition semantics overlap more and become
harder to segment [12, p.13]. Also, the importance of the domain ontology is
essential here, and there is no information of how much effort is needed for cre-
ating an information-extraction ontology for the specific domain. Considering
resiliency, it is reported in [12] that while the system is “resilent to web page
layout changes”, there is a trade-off and that is execution speed and accuracy.

7 Conclusion and Future Work

This paper described a prototype for enhanced semantic access to software arte-
facts using the GATE open-source project as an example. The core of our system
is in the domain ontology which was learnt from the various software artefacts.
Once the ontology is acquired, it is used for semantic annotation which is per-
formed automatically. The generated annotations together with document meta-
data are stored in a repository in OWL format and are made accessible by natural
language-based queries. The preliminary evaluation results are encouraging.

The next steps include the improvement of the current interface and the
employment of result clustering and summarisation. Scalability evaluation also
needs to be performed, after which user-centric evaluation will follow.

Acknowledgements. This research was partially supported by the EU Sixth
Framework Program project TAO (FP6-026460).

References

1. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications.
In: Proceedings of the 40th Anniversary Meeting of the Association for Computa-
tional Linguistics (ACL’02). (2002)



Enhanced Semantic Access of Software Artefacts 15

2. Bontcheva, K., Tablan, V., Maynard, D., Cunningham, H.: Evolving GATE to
Meet New Challenges in Language Engineering. Natural Language Engineering
10(3/4) (2004) 349—373

3. Kiryakov, A., Popov, B., Ognyanoff, D., Manov, D., Kirilov, A., Goranov, M.:
Semantic annotation, indexing and retrieval. Journal of Web Semantics, ISWC
2003 Special Issue 1(2) (2004) 671–680

4. Sabou, M.: Building Web Service Ontologies. PhD thesis, Vrije Universiteit (2006)
5. Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., Kirilov, A.: KIM – A semantic

platform for information extraction and retrieval. Natural Language Engineering
10 (2004) 375–392

6. Buitelaar, P., Cimiano, P., Magnini, B.: Ontology learning from text: Methods,
applications and evaluation. IOS Press (2005)

7. Ankolekar, A., Sycara, K., Herbsleb, J., Kraut, R.: Supporting Online Problem
Solving Communities with the Semantic Web. In: Proc. of WWW. (2006)

8. Bontcheva, K., Sabou, M.: Learning Ontologies from Software Artifacts: Explor-
ing and Combining Multiple Sources. In: Workshop on Semantic Web Enabled
Software Engineering (SWESE), Athens, G.A., USA (November 2006)

9. Kiryakov, A.: OWLIM: balancing between scalable repository and light-weight
reasoner. In: Proc. of WWW2006, Edinburgh, Scotland (2006)

10. Cunningham, H.: GATE, a General Architecture for Text Engineering. Computers
and the Humanities 36 (2002) 223–254

11. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A frame-
work and graphical development environment for robust NLP tools and ap-
plications. In: Proceedings of the 40th Anniversary Meeting of the Associ-
ation for Computational Linguistics (ACL’02), Philadelphia, USA (Jul 2002)
http://gate.ac.uk/sale/acl02/acl-main.pdf.

12. Ding, Y., Embley, D., Liddle, S.: Automatic creation and simplified querying of
semantic web content: An approach based on information-extraction ontologies.
In: Proceedings of the 1st Asian Semantic Web Conference, Springer Berlin / Hei-
delberg (September 2006) 400–414

13. Damljanovic, D., Tablan, V., Bontcheva, K.: A text-based query interface to owl
ontologies. In: 6th Language Resources and Evaluation Conference (LREC), Mar-
rakech, Morocco, ELRA (May 2008)

14. Tablan, V., Damljanovic, D., Bontcheva, K.: A natural language query interface
to structured information. In: Proceedings of the 5h European Semantic Web
Conference (ESWC 2008), Tenerife, Spain (June 2008)

15. Popescu, A.M., Etzioni, O., Kautz, H.: Towards a theory of natural language
interfaces to databases. In: IUI ’03: Proceedings of the 8th international conference
on Intelligent user interfaces, New York, NY, USA, ACM (2003) 149—157

16. Cimiano, P., Haase, P., Heizmann, J.: Porting natural language interfaces between
domains: an experimental user study with the orakel system. In: IUI ’07: Proceed-
ings of the 12th international conference on Intelligent user interfaces, New York,
NY, USA, ACM (2007) 180–189

17. Thaddeus, S., Raja, S.K.: A Semantic Web Tool for Knowledge-based Soft-
ware Engineering. In: Workshop on Semantic Web Enabled Software Engineering
(SWESE), Athens, G.A., USA (2006)

18. Cubranic, D., Murphy, G., Booth, K.: Hipikat: A Developer’s Recommender. In:
OOPSLA. (2002)

19. Domingue, J., Dzbor, M., Motta, E.: Magpie: Supporting Browsing and Navigation
on the Semantic Web. In Nunes, N., Rich, C., eds.: Proceedings ACM Conference
on Intelligent User Interfaces (IUI). (2004) 191–197


