Enhanced Semantic Access to Software Artefacts

Danica Damljanovi¢ and Kalina Bontcheva

Department of Computer Science
University of Sheffield
Regent Court, 211 Portobello Street
S1 4DP, Sheffield, UK
{D.Damljanovic,K.Bontcheva}@dcs.shef.ac.uk

Abstract. Large software frameworks and applications tend to have a
significant learning curve both for new developers working on system ex-
tensions and for other software engineers who wish to integrate relevant
parts into their own applications. Recent research has begun to demon-
strate that semantic technologies are a promising way to address some of
these issues. In this paper, we present a semantic-based prototype that
is made for an open-source software engineering project with the goal to
explore the methods for assisting open-source developers and software
users to learn and maintain the system without major effort.

Key words: semantic annotation, ontology learning, semantic access,
software artefacts

1 Introduction

Successful code reuse and bug avoidance in software engineering requires nu-
merous qualities, both of the library code and of the development staff; two
important qualities are ease of identification of relevant components and ease of
understanding of their parameters and usage profiles.

The attraction of using semantic technology to address this problem lies
in its potential to transform existing software documentation into a conceptu-
ally organised and semantically interlinked knowledge space that incorporates
unstructured data from multiple software artefacts: forum postings, manuals,
structured data from source code and configuration files. The enriched informa-
tion can then be used to add novel functionality to web-based documentation
of the software concerned, providing the developer with new and powerful ways
to locate and integrate components (either for reuse or for integration with new
development).

In the context of the TAO (tao-project.eu), we have developed a semantic-
based prototype, on the basis of GATE (gate.ac.uk) — widely used open-source
software project. The goal of this prototype is to explore the methods for assisting
distributed, dynamic groups of software developers and users to learn and main-
tain this system without major effort, through the application of semantic web
technologies. As the core of any semantic-enabled system is in ontologies, we first

2 Enhanced Semantic Access to Software Artefacts

acquired the domain ontology semi-automatically from the GATE source code,
documentation, manuals and other software artefacts. The domain ontology is
used for the semantic content augmentation process, to annotate automatically
all software artefacts. The results are stored in a semantic annotation repository
to enable users to carry out semantic searches and easily find all information
relevant to a given GATE concept.

The paper is structured as follows. In Section 2 we discuss requirements for
the GATE case study. In order to meet these requirements, we developed the
semantic-enabled prototype which is described in Section 3. Section 4 draws
conclusions and outlines directions for future work.

2 The Case Study

GATE [1] is an open-source, general architecture for text engineering, used by
thousands of users at hundreds of sites. The development team consists at present
of over 15 people, but over the years more than 30 people have been involved
in the project. As such, this software product exhibits all the specific problems
that large long-running open-source projects encounter.

While GATE has increasingly facilitated the development of knowledge-based
applications with semantic features (e.g. [2-4]), its own implementation has con-
tinued to be based on functionalities justified on the syntactic level, understood
by informal human-readable documentation. By its very nature as a successful
and accepted ’general architecture’, a systematic understanding of its concepts
and their relation is shared between its human users. It is simply that this under-
standing has not been formalised into a description that can be reasoned about
by machines or made easier to access by new users. Indeed, novice GATE users
are finding it difficult due to the large amount of heterogeneous information,
which cannot be accessed via a unified interface.

Using machine-understandable language to interpret facts about GATE means
using ontologies to transform existing software documentation (user manuals,
source code, forum posts) into a conceptually organised and semantically in-
terlinked knowledge space. Such a knowledge space could be a step towards
enhanced knowledge access to support distributed teams of software developers
and users. In order to build and query such a knowledge space, following needs
to be done:

— develop domain ontology based on software artefacts,

— implement a semantic annotation process which indexes software artefacts
regularly with respect to the domain ontology and updates the knowledge
base/semantic annotation repository,

— enable accessing the knowledge base in a user-friendly manner.

In the next section, we present a semantic-based prototype system for en-
hanced access to software artefacts developed in order to meet the requirements
above. The core of this prototype is in the domain ontology, which has been
designed semi-automatically using ontology learning tools. Due to the space

Enhanced Semantic Access to Software Artefacts 3

limitations we will not detail learning domain ontology from software artefacts
here, as that is explained elsewhere (see [5]).

3 The Semantic Annotation and Knowledge Access
Prototype

In order to collect software artefacts about GATE which are dispersed across
different locations on the Web, we implemented a crawler which is downloading
relevant data (Section 3.1). These data are then being processed by the CA
Service for semantic annotation (Section 3.2). Automatically produced anno-
tations are exported by the CA (Content Augmentation) Index (Section 3.3)
and stored in the knowledge store. Finally, these annotations are made accessible
through text-based queries (Section 3.4).

3.1 Data Collection

Gathering relevant data about GATE required implementing a crawler which
visits gate.ac.uk and downloads manuals, JavaDoc, source code, papers (in-
cluding those from external links) and other software artefacts. Additionally, the
crawler is visiting the GATE mailing list which is hosted on sourceforge.net,
and downloading all new posts, which have not been indexed already in previous
iterations (see Figure 1). This process is run on a daily basis to capture and index
new software artefacts, as soon as they become available. At the time of writing
we have collected around 2GB of content (10000 documents), the majority of
which is text-based.

When downloading documents, we not only store their content (docCon-
tent in Figure 1) but also the URL from which the document was downloaded
(docURL) and the type of the document (docType). We use several simple
heuristic rules in order to predict what is the type of the document based on the
URL. For example, if the URL contains javadoc, it is easy to conclude that the
document is a source documentation file. Other types are: paper, forum post,
Web page, and source code. Once all software artefacts are downloaded and
stored, they need to be enriched with semantic information. In our case, that
process is performed automatically, as explained next.

3.2 Automatic Content Augmentation

For annotation purposes we use the CA (Content Augmentation) Service (see
Figure 1) which wraps Key Concept Identification Tool (KCIT). KCIT is an In-
formation Extraction application, based on several general-purpose GATE [6]
components plus an ontology-based gazetteer which is capable of producing
ontology-aware annotations automatically, i.e., annotations referring to classes,
instances and properties in the ontology [7].

The output of the semantic annotation process is a set of annotations and
their features: the URI of the ontology resource to which the term refers to, its

4 Enhanced Semantic Access to Software Artefacts

m JavaDoc <—4 Document
publications GATE mailing list Finder
Knowledge

D / 3T
source
code \

docType
docURL
docContent]

d
reftype] doclR
L gate.ac.ukitaolindsx. htm

A

2| ,mememeeea, : |
| CA Service ! [P
! .annotate ! | CA Index: :
v ! annotations ! . '
Exprt st

Fig. 1. System architecture

type (e.g., an instance, a class, or a property), and other features that could be
used later during search. An example of a semantically annotated document (a
Java class from the GATE source code) is shown in Figure 2. The pop-up ta-
ble depicts annotation features created by KCIT for the annotated term ’Niraj
Aswani’. From these features, it can be concluded that this name is referring to
a GATE developer as, according to the features, this name is a value (property-
Value) of the property rdfs:label (propertyURI) for an instance (type) that is of
type GATE developer (classURI). Value 0 for heuristic level indicates that no
heuristic rules were used during the semantic annotation process.

Once the semantic content augmentation stage is completed, document an-
notations needs to be merged with document metadata (docURL and docType)
and saved in a way that makes them accessible through semantic search.

3.3 Storing Implicit Annotations

The annotation extraction phase (performed via the CA Index shown in Fig-
ure 1) comprises of reading produced annotation features, merging them with
document-level metadata, and exporting them in a format which is then easily
queried via a formal language such as SPARQL. More specifically, this extracted
information needs to 'connect’ a document with different mentions of the on-
tology resources inside that document. For example, if a document contains
mentions of the class Sentence Splitter, the output should be modeled in a way
that preserves this information during query time (i.e. the URLs of all docu-
ments mentioning this class should be found easily). For this purpose, we use

Enhanced Semantic Access to Software Artefacts 5

* licence.html, and is also available at hoep:/fgare. ac. uk fgareflicence. html.
w
A C -
" OntoRes -
*f
URI « |htep: / fgate. ac.ukfns fgate-ontalogyihia v @

packane 932l | ocir) it {fgate.ac.ukns/gate-ontology#GATEDeveloper @
import java.util classURIList [http: f fgate ac uk fnsfgate-ontologyE#CATEDeveloper] @
fmpert gate uti heuristic_level Ll v @
import gate.™;
irport gate. col propertyURI |t f s w3, org 2000707 frodf-schema#flabel ~ @
MBOMTONEEE o opernvalue v Niraj Aswani v @
i type + instance - @
"

<p> 3 3 @
* Title: Flexibld
" efp P Cpen Search & Annotate tool
o
* The Flezible Gazetteer provides users with the flexibility to choose
" fp
T ops
¥ their own customized input and an external [GEEEREER For example,

Fig. 2. Annotating FlexibleGazetteer. java class with KCIT

the PROTON KM ontology*!, and more specifically, the Mention and Document
classes.

The Document class has several properties defined, among which we use: re-
sourceType (refers to the type of the document) and informationResourcelden-
tifier property (refers to the URL of the annotated document). In the example
of the extracted OWL output, generated from the annotated document shown
in Figure 2, the Document class is instantiated as follows:

<rdf:Description rdf:about=
"gate:id_ee7bab6b-cd71-4993-9635-777b24£46372">
<protont:informationResourceldentifier>
http://gate.ac.uk/gate/doc/java2html/gate/creole/gazetteer/
FlexibleGazetteer. java.html
</protont:informationResourceldentifier>
<protonkm:resourceType> Source Code </protonkm:resourceType>
</rdf :Description>

For the Mention class, defined properties for storing the position of the seman-
tic annotation within the document content are used, namely hasStartOffset
and hasEndOffset. Property occursIn links the two classes, Mention and Docu-
ment.Property refersAnything is newly defined in order to preserve the URI of
the resource to which a Mention is referring to.

An example instance of Mention and its relation to the above mentioned
instance of Document is encoded as follows:

<rdf:Description rdf:about=
"gate:mention_Oc45bldc-efab-48a2-8242-bb78c1ddd3b5">
<rdf:type rdf:resource=
"http://proton.semanticweb.org/2005/04/protonkm#Mention" />

! http://proton.semanticweb.org/2005/04/protonkm

6 Enhanced Semantic Access to Software Artefacts

<protonkm:occursIn rdf:resource=
"gate:id_ee7bab6b-cd71-4993-9635-777b24£46372" />
<protonkm:hasStartOffset> 404 </protonkm:hasStartOffset>
<protonkm:hasEndOffset> 409 </protonkm:hasEndOffset>
<gate:refersAnything

rdf :resource=" http://gate.ac.uk/ns/gate-ontology#NA"/>
</rdf :Description>

Note that gate: is used in the examples above instead of the full namespace of
the ontology which is http://gate.ac.uk/ns/gate-ontology# simply for the
sake of brevity. The long names for the new instances of both Document and
Mention classes are created automatically.

The extracted annotations are stored in an OWL-compatible knowledge repos-
itory (OWLIM [8]), and accessible for querying using formal query languages
(e.g.,SeRQL, SPARQL). Such languages — while having a strong expressive power
— require detailed knowledge of their formal syntax and understanding of ontolo-
gies. One of the ways to lower the learning overhead and make semantic-based
queries more straightforward is through a text-based queries.

3.4 Semantic-based Access through Text-based Queries

In order to enable advanced semantic-based access through text-based queries,
we have customised a Question-based Interface to Ontologies — QuestIO (Doc-
ument Finder in Figure 1), which we have developed in our previous work [7,
9]. QuestIO is a domain-independent system which translates text-based queries
into the relevant SeRQL queries, executes them and presents the results to the
user. QuestlO works so that it first recognises key concepts inside the query,
detects any potential relations between them, and creates the required seman-
tic query. For example, if the query consisted of two concepts (e.g. 'plugins in
GATE’) the matching triples from the ontology will be extracted and shown (in
this case — a list of all instances of GATE plugins).

In order to access the data stored in the implicit annotations (i.e. the URLs
of Documents with particular Mentions) we had to make QuestIO more intu-
itive, by customising it so that the user can omit some obvious concepts when
posting the query. For example, if the user needs more information about the
Sentence Splitter parameters (i.e. doc URLs which mention these concepts), the
query for QuestIO would need to be formed as documents about Sentence Splitter
parameters. We customised QuestIO so that document is added to the query by
default, so that users do not have to specify this explicitly each time.

Also, as the output of QuestlO is a set of triple-like rows, we have customised
it to produce a two column table of results (the first column showing document
URLs, the second showing document types), rather than a table with relations
between concepts. An example query with results is shown in Figure 3. For
the query ’niraj’, list of documents mentioning this term is returned, among
which the last link points to the documentation about Flexible Gazetteer. This
is inline with the Figure 2, from which it can be concluded that Niraj is the
author of the class FlexibleGazetteer.java. The advantage of the semantics used

Enhanced Semantic Access to Software

in the prototype is such that queries are observed as concepts,

Artefacts

not like a set of

characters — as it is the case in traditional search engines. For example, Niray,
Niraj Aswani, or NA (as initials) would all return the same results as soon as
the ontology encodes that these terms refer to the one particular concept.

Question-based Interface to Ontologies (QuestlO)

Search knowledge about GATE

niraj Search

Result:

httpiy/gate ac.ukjigate/docfiavazhtmljgate/creclefontology/TransitiveProperty.java.html

Source Code

http:yigate ac.ukjigate/docfiavazhtmljgate/creclefontology/invalidURIException java.html

Source Code

http:y/gate ac.uk/gate/docjjavazhtmlgatefcreclefontology/owlim/TransitivePropertyimpljava html

Source Code

http:igate ac.ukigate/docijavazhtmljgatefcrenlefontology/owlim/SymmetricPropertyimpljava.html

Source Code

http:ygate ac.ukjjgate/docfiavazhtmljgate/creclejontology/Literal java.html

Source Code

http:yigate ac.ukjigate/docfiavazhtmljgate/creclefontology/TestOntologyAPl java.html

Source Code

http:yigate ac.ukjigate/docfiavadoc/gate/creclejtokeniser/chinesetokeniser/ChineseTokeniser.html

Source Documentation

httpiy/gate ac.ukigate/docijavazhtmljgatefcrenlefontology/owlim/Utils java.html

Source Code

http:gate ac.ukjigate/docfiavazhtmljgate/creclefontology/URLjava.html

Source Code

http:yjgate ac.uk/gate/docjjavazhtmljgatefcrenlefontology/owlim/AnonymouscClassimpl.java.html

Source Code

http:yigate ac.ukjigate/docfiavazhtmljgate/creclefontology/OntologyMadificationListener java.html

Source Code

http:jgate ac.ukjjigate/docfjavazhtmlfgate/creclejontology/DataType.java.html

Source Code

http:/gate ac.ukfisaleftao/split.html

Web Page

httpiyigate ac.ukjjgate/docfiavazhtmljgate/creclefontology/AnnotationProperty java.html

Source Code

httpiy/gate ac.ukjjgate/docfjavazhtmlfgate/creclejontology/0Constant s java.html

Source Code

httpiy/gate ac.ukfigate/docfiavadoc/gate/crecle/gazetteer/ModePosition.html

Source Documentation

httpiyjgate ac.ukjjigate/docfiavadoc/gate/crecle/gazetteer/Flexible Gazetteer. html

Source Documentation

Fig. 3. List of results for the query ’'niraj’

At the moment, our prototype is returning a list of all relevant documents,
without any ranking. In future work we will investigate methods for result sum-

marisation and clustering.

4 Conclusion and Future Work

This paper described a prototype for enhanced semantic access

to software arte-

facts using the GATE open-source project as an example. In contrast to ap-
proaches such as OSEE [10], we do not alter the software development practices,
but rather layer some semantic technology on top, to enable new usage of already
existing software artefacts. In this respect, our work is similar to the Dhruv bug

resolution system [11], which, unlike us, however encountered

scalability prob-

lems with the semantic repository and also did not examine ontology learning

as a way of bootstrapping the process.

8 Enhanced Semantic Access to Software Artefacts

Our approach consists of three basic steps. Firstly, the domain ontology is
either authored manually or bootstrapped through ontology learning and popu-
lation techniques. The second phase is semantic annotation which is performed
fully automatically. The generated annotations together with document meta-
data are stored in a repository in OWL format and are made accessible via
natural language-based queries.

Our future work will focus on the improvement of the current interface, and
the implementation of result clustering and summarisation. For the evaluation
of the prototype, in the forthcoming months we will carry out a user-centric
evaluation which will be along the following dimensions:

— finding the specific information, with and without semantic-based access,
— benefits and usability of our language-based knowledge access approach,
— scalability of the knowledge stores and ability to store all software artefacts.

Acknowledgements. This research was partially supported by the EU Sixth
Framework Program project TAO (FP6-026460).

References

1. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications.
In: Proceedings of the 40th Anniversary Meeting of the Association for Computa-
tional Linguistics (ACL’02). (2002)

2. Bontcheva, K., Tablan, V., Maynard, D., Cunningham, H.: Evolving GATE to
Meet New Challenges in Language Engineering. Natural Language Engineering
10(3/4) (2004) 349—373

3. Kiryakov, A., Popov, B., Ognyanoff, D., Manov, D., Kirilov, A., Goranov, M.:
Semantic annotation, indexing and retrieval. Journal of Web Semantics, ISWC
2003 Special Issue 1(2) (2004) 671-680

4. Sabou, M.: Building Web Service Ontologies. PhD thesis, Vrije Universiteit (2006)

5. Bontcheva, K., Sabou, M.: Learning Ontologies from Software Artifacts: Explor-
ing and Combining Multiple Sources. In: Workshop on Semantic Web Enabled
Software Engineering (SWESE), Athens, G.A., USA (November 2006)

6. Cunningham, H.: GATE, a General Architecture for Text Engineering. Computers
and the Humanities 36 (2002) 223-254

7. Damljanovic, D., Tablan, V., Bontcheva, K.: A text-based query interface to owl
ontologies. In: 6th Language Resources and Evaluation Conference (LREC), Mar-
rakech, Morocco, ELRA (May 2008)

8. Kiryakov, A.: OWLIM: balancing between scalable repository and light-weight
reasoner. In: Proc. of WWW2006, Edinburgh, Scotland (2006)

9. Tablan, V., Damljanovic, D., Bontcheva, K.: A natural language query interface
to structured information. In: Proceedings of the 5h European Semantic Web
Conference (ESWC 2008), Tenerife, Spain (June 2008)

10. Thaddeus, S., Raja, S.K.: A Semantic Web Tool for Knowledge-based Soft-
ware Engineering. In: Workshop on Semantic Web Enabled Software Engineering
(SWESE), Athens, G.A., USA (2006)

11. Ankolekar, A., Sycara, K., Herbsleb, J., Kraut, R.: Supporting Online Problem
Solving Communities with the Semantic Web. In: Proc. of WWW. (2006)

