
RoundTrip Ontology Authoring

Brian Davis1, Ahmad Ali Iqbal1,3, Adam Funk2, Valentin Tablan2, Kalina
Bontcheva2, Hamish Cunningham2, and Siegfried Handschuh1

1 Digital Enterprise Research Institute, Galway, Ireland
2 University of Sheffield, UK

3 University of New South Wales, Australia

Abstract. Controlled Language (CL) for Ontology Editing tools offer
an attractive alternative for naive users wishing to create ontologies, but
they are still required to spend time learning the correct syntactic struc-
tures and vocabulary in order to use the Controlled Language properly.
This paper extends previous work (CLOnE) which uses standard NLP
tools to process the language and manipulate an ontology. Here we also
generate text in the CL from an existing ontology using template-based
(or shallow) Natural Language Generation (NLG). The text generator
and the CLOnE authoring process combine to form a RoundTrip On-
tology Authoring environment: one can start with an existing imported
ontology or one originally produced using CLOnE, (re)produce the Con-
trolled Language, modify or edit the text as required and then turn
the text back into the ontology in the CLOnE environment. Building
on previous methodology we undertook an evaluation, comparing the
Round Trip Ontology Authoring process with a well-known ontology ed-
itor; where previous work required a CL reference manual with several
examples in order to use the controlled language, the use of NLG reduces
this learning curve for users and improves on existing results for basic
ontology editing tasks.

1 Introduction

Formal data representation can be a significant deterrent for non-expert users
or small organisations seeking to create ontologies and subsequently benefit
from adopting semantic technologies. Existing ontology authoring tools such
as Protégé4 attempt to resolve this. but they often require specialist skills in on-
tology engineering. This is even more exasperating for domain specialists, such
as clinicians, business analysts, legal experts, etc. Such professionals cannot be
expected to train themselves to comprehend Semantic Web formalisms and the
process of knowledge gathering; involving both a domain expert and an ontology
engineer can be time-consuming and costly. Controlled languages for Knowledge
creation and management offer an attractive alternative for naive users wishing
to develop small to medium sized ontologies or a first draft ontology which can
subsequently post-edited by the Ontology Engineer. In previous work[1], we pre-
sented CLOnE - Controlled Language for Ontology Editing which allows naive
4 http://protege.stanford.edu

users to design, create, and manage information spaces without knowledge of
complicated standards (such as XML, RDF and OWL) or ontology engineering
tools. CLOnE’s components are based on GATE’s existing tools for IE (infor-
mation extraction) and NLP (natural language processing).[2]

The CLOnE system was evaluated using a repeated-measures, task-based
methodology in comparison with a standard ontology editor (Protégé). CLOnE
performed favourably with test users in comparison to Protégé. Despite the
benefits of applying Controlled Language Technology to Ontology Engineering,
a frequent criticism against its adoption is the learning curve associated with
following the correct syntactic structures and/or terminology in order to use
the Controlled Language properly. Adhering to a controlled language can be,
for some naive users, time consuming and annoying. Where the CLOnE system
uses natural language analysis to unambiguously parse CLOnE in order to create
and populate an ontology. The reverse of this process, (NLG) Natural Language
Generation, involves the generation of the CLOnE language from an existing
ontology.

The text generator and CLOnE authoring processes combine to form a
RoundTrip Ontology Authoring(ROA) environment: a user can start with an ex-
isting imported ontology or one originally produced using CLOnE, (re)produce
the Controlled Language using the text generator, modify or edit the text as re-
quired and subsequently parse the text back into the ontology using the CLOnE
environment. The process can be repeated as necessary until the required result
is obtained. Building on previous methodology [1] we undertook a repeated-
measures, task-based evaluation, comparing the Round Trip Ontology Author-
ing process with (Protégé); Where previous work required a reference guide in
order to use the controlled language, the substitution of NLG can reduce this
learning curve for users, while simultaneously improving upon existing results
for basic Ontology editing tasks. The remainder of this paper is organized as
follows: Section 2 discusses related work Section 3 discusses the design and im-
plementation of the ROA pipeline focusing on the NLG component - the ROA
text generator. Section 4 presents our evaluation and discusses our quantitative
findings. Finally, Section 5 and Section 6 offer conclusions and future work.

2 Related work

“Controlled Natural Languages (CL)s are subsets of natural language whose
grammars and dictionaries have been restricted in order to reduce or eliminate
both ambiguity and complexity.”[3] CLs were later developed specifically for
computational treatment. CLs have subsequently evolved into many variations
and flavours such as Smart’s Plain English Program (PEP) [4], White’s Inter-
national Language for Serving and Maintenance (ILSAM) [4] and Simplified
English.5 They have also found favour in large multi-national corporations, usu-
ally within the context of machine translation and machine-aided translation of
user documentation. [3, 4]
5 http://www.simplifiedenglish-aecma.org/Simplified English.htm

The application of CLs for ontology authoring and instance population is
an active research area. Attempto Controlled English6 (ACE) [5], is a popu-
lar CL for ontology authoring. It is a subset of standard English designed for
knowledge representation and technical specifications, and constrained to be un-
ambiguously machine-readable into discourse representation structures, a form
of first-order logic. (It can also be re-targeted to other formal languages.). [6] The
Attempto Parsing Engine (APE) consists principally of a definite clause gram-
mar, augmented with features and inheritance and written in Prolog. [7] ACE
OWL, a sublanguage of ACE, proposes a means of writing formal, simultane-
ously human- and machine-readable summaries of scientific papers. [8, 9] Similar
to RoundTrip Ontology Authoring, ACE OWL also aims to provide reversibility
(translating OWL DL into ACE) The application NLG, for the purposes editing
existing ACE text, is mentioned in [10]. The paper discusses the implementation
of the shallow NLG system, or OWL Verbalizer, focusing primarily on the OWL
to ACE rewrite rules, however no evaluation is provided, nor any quantitative
results in attempt to quantify the impact of NLG in the authoring process. Fur-
thermore OWL’s allValuesFrom must be translated into a construction which
can be rather difficult for humans to read. A partial implementation is available
for public testing7.

Another well-known implementation which employs the use of NLG to aid the
Knowledge creation process is WYSIWYM (What you see is what you meant).
It involves direct knowledge editing with natural language directed feedback. A
domain expert can edit a knowledge based reliably by interacting with natural
language menu choices and subsequently generated feedback which can then be
extended or re-edited using the menu options. WYSIWYM was used initially
in the context of the DRAFTER project and the multilingual NLG system in-
cluded in DRAFTER was re-engineered for DRAFTER II. [11] DRAFTER II
and WYSIWYM will most likely be deployed in CLEF8 project. The work is
conceptually similar to RoundTrip Ontology Engineering however the natural
language generation occurs as a feedback to guide the user during the editing
process as opposed to providing an initial summary in Controlled Language for
editing. A usability evaluation is provided in [12] in the context of knowledge
creation, some of which is based on IBM heuristic evaluations9 whereby a sub-
stantial amount of user feedback is collected, yet no specific quantitative data
that we are aware of, is presented. However a significant amount of empirical
evaluation was undertaken as part of evaluation for the MILE (Maritime In-
formation and Legal Explanation) application which used WYSIWYM in the
context of query formulation for the CLIME10 project of with the outcome was
favourable. [12]

6 http://www.ifi.unizh.ch/attempto/
7 http://attempto.ifi.uzh.ch/site/tools/
8 http://www.clinical-escience.org/
9 http://www-03.ibm.com/able/resources/uebeforeyoubegin.html

10 CLIME, Cooperative Legal Information Management and Explanation, Esprit
Project EP25414

Similar to WYSIWYM is GINO (Guided Input Natural Language Ontol-
ogy Editor) provides a guided, controlled NLI (natural language interface) for
domain-independent ontology editing for the Semantic Web. GINO incremen-
tally parses the input not only to warn the user as soon as possible about errors
but also to offer the user (through the GUI) suggested completions of words
and sentences—similarly to the“code assist” feature of Eclipse11 and other de-
velopment environments. GINO translates the completed sentence into triples
(for altering the ontology) or SPARQL12 queries and passes them to the Jena
Semantic Web framework. Although the guided interface facilitates input, the
sentences are quite verbose and do not allow for aggregation. Static grammar
rules exist for the controlled language but in addition, dynamic grammar rules
are generated from the Ontology itself, however this does not constitute surface
realization in the context of natural language generation, but the amendment
of additional parsing rules to GINO’s grammar to guide the user. This permits
the system to handle a domain shift, however this is heavily dependent on any
linguistic data or RDF label data encoded the ontology. A full textual descrip-
tion of the Ontology is not realized as is the case of the CLOnE text generator.
[13] Furthermore, similar, to our evaluation, a small usability evaluation was
conducted using SUS [14], however the sample set of six was too small to infer
any statistically significant results [15]. In addition, GINO was not compared
to any existing Ontology editor during the evaluation. Finally, [16] present an
Ontology based Controlled Natural Language Editor, similar to GINO, which
uses CFG (Context-free grammar) and lexical dependencies - CFG-DL to gener-
ate RDF triples. To our knowledge the system ports only to RDF and does not
cater for other Ontology languages. Furthermore no quantitative user evaluation
is provided.

Other related work involves the application of Controlled Languages for On-
tology/Knowledge base querying, which represent a different task than that
of knowledge creation and editing but are worth mentioning for completeness
sake. Most notably AquaLog13 is an ontology-driven,portable question-answering
(QA) system designed to provide a natural language query interface to semantic
mark-up stored in knowledge base. PowerAqua [17] extends AquaLog, allow-
ing for an open domain question-answering for the semantic web. The system
dynamically locates and combines information from multiple domains.

3 Design and Implementation

In this section, we describe the overall architecture of the Round Trip Ontology
Authoring (ROA) Pipeline which is implemented in GATE [2]. We discuss briefly
extensions to existing CLOnE components of ROA, but focus the attention of
this section towards describing the CLOnE text generator, the algorithm used

11 http://www.eclipse.org/
12 http://www.w3.org/TR/rdf-sparql-query/
13 http://kmi.open.ac.uk/technologies/aqualog/

and the XML containing templates needed to configure the controlled language
output of the generator.

3.1 RoundTrip Ontology Authoring (ROA) and CLOnE

ROA builds on and extends the existing advantages of the CLOnE software and
input language.

1. ROA requires only one interpreter or runtime environment, the Java 1.6
JRE.

2. ROA like CLOnE uses a sub-language of English.
3. As far as possible, CLOnE is grammatically lax; in particular it does not

matter whether the input is singular or plural (or even in grammatical agree-
ment).

4. ROA can be compact; the user can create any number of classes or instances
in one sentence.

5. ROA is more flexible and easier to learn by using simple examples of how
to edit the controlled language generated by the text generator in order to
modify the Ontology. It reduces the need to learn the Controlled Language
by following examples, guiding rules or CLOnE syntactic rules. Instead, a
user can create or modify various classes and instances in one (generated)
sentence or (using simple copy and paste) create new properties between
new or existing classes and instances.

6. The CLOnE grammar with ROA has been extended to handle simple verbs
and phrasal verbs.

7. Like CLOnE any valid sentence of ROA can be unambiguously parsed.
8. The advantage of the GATE Ontology API allows users to import existing

Ontologies for generation, subsequent editing in ROA and export to different
Ontology formats.

9. SimpleNLG14 has been added into the ROA text generator to lexicalize un-
seen properties.

Procedurally, CLOnE’s analysis consists of the ROA pipeline of processing
resources (PRs) shown in Figure 1 (left dotted box). This pipeline starts with a
series of fairly standard GATE NLP tools which add linguistic annotations and
annotation features to the document. These are followed by three PRs developed
particularly for CLOnE: the gazetteer of keywords and phrases fixed in the
controlled language and two JAPE15 transducers which identify quoted and
unquoted chunks. (Names enclosed in pairs of single or double quotation marks
can include reserved words, punctuation, prepositions and determiners, which
are excluded from unquoted chunks in order to keep the syntax unambiguous.)
The last stage of analysis, the CLOnE JAPE transducer, refers to the existing
14 http://www.csd.abdn.ac.uk/∼ereiter/simplenlg/
15 GATE provides the JAPE (Java Annotation Pattern Engine) language for match-

ing regular expressions over annotations, adding additional annotations to matched
spans, and manipulating the match patterns with Java code.

ontology in several ways in order to interpret the input sentences. The following
table provides an excerpt the grammar rules of the CLOnE language. We refer
the reader to [1, 18] for additional rules and examples.

Fig. 1. The ROA RoundTrip Ontology Authoring pipeline

Sentence Pattern Example Usage

Forget everything. Forget everything. Clear the whole ontology
corpus to start with the
new ontology.

(Forget that) There is/are
<classes>.

There are researchers,

universities and

conferences.

Create or delete (new)
classes.

(Forget that) <in-
stances> is a/are
<class>.

Ahmad Ali Iqbal and

Brian Davis are ’Ph.D.

Scholar’.

Create (or delete) in-
stances of the class.

(Forget that) <sub-
classes> is/are a
type/types of <super-
class>.

’Ph.D. Scholar’ is a

type of Student.

Make subclass(es) of an
existing super-class. ’For-
get that’ only unlinks the
the subclass-superclass
relationship.

(Forget that) <classes/
instances> <verb
property> <classes/
instances>.

Professor supervises

student.

Create the property of the
form Domain verb Range
either between two classes
or instances.

3.2 Text generation of CLOnE

The text generation component in Figure 1 (right dotted box) displayed in the
ROA pipeline is essentially an Ontology Verbalizer. Unlike some NLG systems,
the communicative goal of the text generator is not to construct tailored reports
for specific content with the Knowledge base or to respond user specific queries.
Hence no specific content selection subtask or ”choice” is performed since our

goal is to describe and present the Ontology in textual form as unambiguous
subset of English - the CLOnE language for reading, editing and amendment.
We select the following content from the Ontology: top level classes, subclasses,
instances, class properties and their respective domain and ranges, and instance
properties. The text generator is configured using an XML file, whereby text
templates are instantiated and filled by the values from the Ontology. This file is
decoupled from the text generator PR. Two templates which are used to generate
top level classes and class properties are displayed in Figure 2.

Stage 1 carried out by the text generator converts the input ontology into an
internal GATE ontological resource and flattens it into RDF style triples. This is
done breadth-first—so lists are created where super-classes always precede their
corresponding subclasses—in the following order: top-level classes, subclasses,
instances, class properties, and instance properties.

Stage 2 matches generation templates from the configuration file (See Fig-
ure 2) with the triples list derived from the Ontology in Stage 1. A generation
template has three components: (1) an in element containing a list of triple
specifications, (2)an out element containing phrases that are generated when a
successful match has occurred and an (3) optional ignoreiIf element for addi-
tional triple specifications that cause a match specified in the in element to be
ignored if the conditions are satisfied. The triple specifications contained within
the in portion of the template can have a subject, property, object XML ele-
ments. The triple specifications act as restrictions or conditions, such that an
input triple generated from the Ontology must match this template. If more than
one triple is included in the in element they are considered as a conjunction of
restrictions, hence the template will only match if one or more actual triples for
all triple specifications within the in element are found. One triple can refer-
ence another, i.e., a specification can constrain a second triple to have the same
object as the subject of the first triple. Only backward referencing is permitted
since the triples are matched in a top down fashion according to their textual
ordering. An example of referencing can be seen in line 188 of the out element
of the template shown in Figure 2 for generating class properties.

The out section of the template describes how text is generated (Stage 3)
from a successful match. It contains phrase templates that have text elements
and references to values matched within the in elements. Phrases are divided into
singular and plural forms. Plural variants are executed when several triples are
grouped together to generate a single sentence (Sentence Aggregation) based
on a list of Ontology objects (i.e., There are Conferences, Students and
Universities). Text elements within a template are simply copied into the
output while reference values are replaced with actual values based matching
triple specifications. We also added a small degree of lexicalization into the Text
Generator PR, whereby an unseen property, which is treated as a verb is in-
flected correctly for output study and studies. This involves a small of amount
of dictionary look-up using the SimpleNLG Library to obtain the third person
singular inflection studies from study to produce Brian Davis studies at
NUIG. The out elements of the generation template also provide several phrase

templates for the singular and plural sections. These are applied in rotation to
prevent tedious and repetitious output.

Stage 2 also groups matches together into sets that can be expressed together
in a plural form. For this to proceed, the required condition is that the only
difference between the matches in set, occurs in only one of the references used
in the phrase templates, i.e., if singular variants would only differ by one value.
A specialized generation template with no in restrictions is also included in the
configuration file. This allows the production of text where there are no specific
input triple dependencies.

Fig. 2. Example of generation template

4 Evaluation

4.1 Methodology

Our methodology is deliberately based on the criteria previously used to evaluate
CLOnE [1, 18], so that we can fairly compare the earlier results using the CLOnE
software with the newer Round Trip Ontology Authoring(ROA) process. The
methodology involves a repeated-measures, task-based evaluation: each subject
carries out a similar list of tasks on both tools being compared. Unlike our
previous experiment, the CLOnE reference guide list and examples are withheld
from the test users, so that we can measure the benefits of substituting the

text generator for the reference guide and determine its impact on the learning
process and usability of CLOnE. Furthermore, we used a larger sample size and
more controls for bias. All evaluation material and data are available online
for inspection, including the CLOnE evaluation results for comparison16. The
evaluation contained the following.

– A pre-test questionnaire asking each subject to test their degree of knowl-
edge with respect to ontologies, the Semantic Web, Protégé and controlled
languages. It was scored by assigning each answer a value from 0 to 2 and
scaling the total to obtain a score of 0–100.

– A short document introducing ontologies, the same ‘quick start’ Protégé
instructions as used in [18] (partly inspired by Protégé’s Ontology 101 doc-
umentation [19]), and an example of editing CLOnE text derived from the
text generator. The CLOnE reference guide and detailed grammar examples
used in for the previous experiment [18] were withheld. Subjects were al-
lowed to refer to an example of how to edit generated Controlled Language
but did not have access to CLOnE reference guide.

– A post-test questionnaire for each tool is the System Usability Scale (SUS),
which also produces a score of 0–100 to compare with previous results. [14]

– A comparative questionnaire similar to the one used in [18] was applied to
measure each user’s preference for one of the two tools. It is scored similarly
to SUS so that 0 would indicate a total preference for Protégé, 100 would
indicate a total preference for RoundTrip, and 50 would result from marking
all the questions neutral. Subjects were also given the opportunity to make
comments and suggestions.

– Two equivalent lists of ontology-editing tasks, each consisting of the following
subtasks:
• creating two subclasses of existing classes,
• creating two instances of different classes, and
• either (A) creating a property between two classes and defining a prop-

erty between two instances, or (B) extending properties between two
pairs of instances.

For both task lists, an initial ontology was created using CLOnE. The same
ontology was loaded into Protégé for both tasks and the text generator was
executed to provide a textual representation of the ontology for editing pur-
poses(see Figure 3), again for both tasks.

For example, Task List A is as follows.

– Create a subclass Institute of University.
– Create a subclass Workshop of Conference.
– Create an instance International Semantic Web Conference of class Confer-

ence.
– Create an instance DERI of class Institute.
– Create a property that Senior Researchers supervise Student.
– Define a property that Siegfried Handschuh supervises Brian Davis.

16 http://smile.deri.ie/drupal/node/98

Fig. 3. Text Generated by ROA

4.2 Sample quality

We recruited 20 volunteers from the Digital Enterprise Research Institute, Gal-
way17. The sample size (n = 20) satisfies the requirements for reliable SUS
evaluations. [15] We recruited subjects with an industrial background (I) and
participants with a research background (R) See (in Table 5) for details. In
addition we attempted to control bias by selecting volunteers who were either:

– Research Assistants/Programmers/Post-Doctoral Researchers with an in-
dustrial background either returning (or new) to Academic Research respec-
tively(I);

– Postgraduate Students who were new to the Semantic Web and unfamiliar
with Ontology Engineering(R);

– Researchers from the E-learning and Sensor Networks lab but not from the
Semantic Web Cluster(R);

– Researchers with no background in Natural Language Processing or Ontol-
ogy Engineering(R); or

– Industrial Collaborators (I).

In all cases, we tried to ensure that participants had limited or no knowledge
of GATE or Protégé. First, subjects were asked to complete the pre-test ques-
tionnaire, then they were permitted time to read the Protégé manual and Text
Generator examples, and lastly they were asked to carry out each of the two task
lists with one of the two tools. (Half the users carried out task list A with ROA
and then task list B with Protégé; the others carried out A with Protégé and
then B with ROA.) Each user’s time for each task list was recorded. After each
task list the user completed the SUS questionnaire for the specific tool used,
and finally the comparative questionnaire. Comments and feedback were also
recorded on the questionnaire forms.

17 http:www.deri.ie

4.3 Quantitative findings

Table 2 summarizes the main measures obtained from our evaluation. We used
SPSS18 to generate all our statistical results. In particular the mean ROA SUS
score are above the baseline of 65–70% while the mean SUS score for Protégé is
well below the baseline. [20]. In the ROA/Protégé Preference (R/P Preference)
scores, based on the comparative questionnaires, we note that the scores also
favour on average ROA over Protégé. Confidence intervals are displayed in Table
3.19

Table 2. Summary of the questionnaire scores

Measure min mean median max

Pre-test scores 17 42 42 75
ROA SUS rating 48 74 70 100
Protégé SUS rating 10 41 41 85
R/P Preference 40 72 79 95

Table 3. Confidence intervals (95%) for the SUS scores

Tool Confidence intervals
Task list A Task list B Combined

Protégé 28–55 29–51 32–49
ROA 63–77 69–84 68–79

We also generated Pearson’s and Spearman’s correlations coefficients.[21, 22]
Table 4 displays the coefficients. In particular, we note the following results.

– The pre-test score has a weak negative correlations the with ROA task time.
– There are no correlations with pre-test score and the ROA SUS score.
– The pre-test score has a weak negative correlation with the Protégé SUS

score.
– There are no correlations with pre-test score and the Protégé time.
– In previous results in comparing CLOnE and Protégé, the task times for

both tools were more positively correlated with each other while in the case
of ROA and Protégé, there correlation has being weakened by a significant

18 SPSS 2.0, http://www.spss.com
19 A data sample’s 95% confidence interval is a range 95% likely to contain the mean

of the whole population that the sample represents. [21]

Table 4. Correlation coefficients

Measure Measure Pearson’s Spearman’s Correlation

Pre-test ROA time -0.41 -0.21 weak −
Pre-test Protégé time -0.28 -0.35 none
Pre-test ROA SUS -0.02 -0.00 none
Pre-test Protégé SUS -0.32 -0.29 weak −
ROA time Protégé time 0.53 0.58 +
ROA time ROA SUS -0.65 -0.52 −
Protégé time Protégé SUS 0.53 0.56 +
ROA time Protégé SUS -0.14 -0.10 none
Protégé time ROA SUS -0.02 -0.09 none

ROA SUS Protégé SUS 0.04 -0.01 none
ROA SUS R/P Preference 0.58 0.56 +
Protégé SUS R/P Preference -0.01 0.10 none

32% of its original value (of 78%) reported for CLOnE[1], indicating that
the users tended not spend the equivalent time completing both ROA and
Protégé tasks.

– There is a moderate correlation with Protégé task time and Protégé SUS
scores.

– There strong negative correlation of -0.65 between the ROA task time and
the ROA SUS scores. Our previous work reported no correlation between
the CLOnE task time and CLOnE SUS time. A strong negative or inverse
correlation implies that users who spent less time completing a task using
ROA tended to produce high usability scores - favouring ROA. More im-
portantly we noted associated probability reported by SPSS, was less then
the typical 5% cut-off point used in social sciences. This implies there is a
5% chance that the true population coefficient is very unlikely to be 0 (no
relationship). Conversely, one can infer statistically that for 19 out of 20
(95%)users with little or no experience in either NLP or Protégé who favour
RoundTrip Ontology Authoring over Protégé also tend to spend less time
completing Ontology editing tasks.

– The R/P Preference score correlates moderately with ROA SUS score similar
to previous results but has no longer has a significant inverse correlation with
Protégé SUS scores. The reader should note the R/P Preference scores favour
ROA over Protégé.

We also varied the tool order evenly among our sample. As noted previously
in [1], once again the SUS scores have differed slightly according to tool order (as
indicated in Table 3). Previous SUS scores for Protégé tended to be slightly lower
for B than for A, which we believe may have resulted from the subjects’ decrease
in interest as the evaluation progressed, While in previous results there was a
decrease in SUS scores for CLOnE (yet still well above the SUS baseline), the
SUS scores however, increase for ROA task B by Table 3 implying that if waning

interest was a factor in decreased SUS scores for CLOnE, it does not appear to be
the case for ROA. What is of additional interest is that group I, subjects with
industrial background scored on average 10% higher for both ROA SUS and
ROA/Protégé which implies that Industrial collaborators or professionals with
an Industrial background favoured a natural language interface over a standard
Ontology Editor even more than Researchers.

Table 5. Groups of subjects by source and tool order

Source Tool order Total
PR RP

R Researcher 5 7 12
I Industry 5 3 8

Total 10 10 20

Table 6. Comparison of the two sources of subjects

Measure Group min mean median max

Pre-test R 17 38 38 58
I 17 47 50 75

ROA SUS R 48 69 70 82
I 65 80 80 100

Protégé SUS R 10 30 28 52
I 12 48 49 85

R/P Preference R 40 68 72 88
I 65 78 78 95

4.4 User Feedback

The test users also provided several suggestions/comments about ROA.

– ”RoundTrip Ontology Authoring becomes much easier, once the rules are
learnt”. (This is very interesting considering that no syntax rules, extended
examples or restricted vocabulary list were provided).

– Use of inverted commas should be used only once and afterwards, if same
class /instance is reused, the system should automatically recognise it as the
previous word.

– Many users suggested displaying the ontology pane on the right hand side
of the text pane, where test users edit the text instead of moving between
two separate panes.

– Some users suggested dynamic ontology generation, once a user finishes typ-
ing a sentence, in order to display the changes.

– Similar suggestions to the previous evaluation were provided for user auto-
completion, syntax highlighting, options about available classes, instances
or property names and keywords should be displayed, a similar concept to
modern Word Processor or programming IDEs such as eclipse.

– Some test users with an industrial background demonstrated concern regard-
ing scalability and ROA using with a larger business related ontology and
suggest capabilities for verbalizing a portion of the ontology tree within the
Ontology viewer, using text generation for subsequent editing.

– Some test users appreciated the singular/plural forms and sentence handling
of ROA (e.g., study, studies).

5 Conclusion

Our user evaluation consistently indicated that our subjects found ROA(and
continue to find CLOnE) significantly more usable and preferable than Protégé
for simple Ontology editing tasks. In addition this evaluation differs, in that we
implemented more tighter restrictions during our selection process, to ensure that
users had no background in NLP or Ontology engineering. Furthermore, 40% of
our subjects with an industrial background, tended to score ROA 10% higher
then Researchers indicating that a Natural Language Interface to a Ontology
Editor might be a preferred option for Ontology development within industry.
The main research goal of this paper was to assess the effect of introducing NLG
into the CLOnE Ontology authoring process to facilitate RoundTrip Ontology
Authoring.

This evaluation differs from previous work [1] by two important factors: we
excluded the CLOnE reference manual from the training material provided in the
previous evaluation; and we introduced a Text Generator, verbalizing CLOnE
text from a given populated Ontology and asked users to edit the Ontology, using
the generated CLOnE text based on an example provided. We observed two
new significant improvements in our results: the previous evaluation indicated
a strong correlation between CLOnE task times and Protégé task times, this
correlation has significantly weaken by 32% between ROA and Protégé task
times. Hence, where users previously required the equivalent time to implement
tasks both in CLOnE and Protégé, this is no longer the case with ROA (the
difference being the text generator); and our previous evaluation indicated no
correlation between either CLOnE/Protégé task times and their respective SUS
scores. However, with ROA, we can now infer that 95% of the total population
of naive users, who would favour RoundTrip Ontology Authoring over Protégé
would also tend to spend less time completing Ontology editing tasks. We suspect
that this is due to the reduced learning curve caused by the text generator.
Furthermore, ROA tended to retain user interest, which CLOnE did not. We
suspect that the absence of the need to refer to the CL reference guide was
a factor in this. While Protégé is intended for more sophisticated knowledge

engineering work, this is not the case for ROA. Scalability was also an issue
raised by our test subjects. It is possible that, authoring memory frequently
used in translation memory systems or text generation from selective portions
of the Ontology (using a Visual Resource) could help resolve this.

6 Continuing and future work

Several interesting and useful suggestions for improvements to ROA were made,
many of which were already under development within the Nepomuk20 (The So-
cial Semantic Desktop) project. ROA has been ported to a Nepomuk-KDE 21 ap-
plication, Semn22 for Semantic Notetaking and will be targeted towards the task
of semi-automatic semantic annotation. The ROA text generator was recently
used in KnowledgeWeb23 for the verbalization suggestions for semi-automatic
ontology integration. Finally, ROA is being applied within the EPSRC-funded
Easy project to create a controlled natural language interface for editing IT au-
thorization policies (access to network resources such as directories and printers)
stored as ontologies.

Acknowledgements

This research has been partially supported by the following grants: Knowl-
edgeWeb (EU Network of Excellence IST-2004-507482), TAO (EU FP6 project
IST-2004-026460), SEKT (EU FP6 project IST-IP-2003-506826, Ĺıon (Science
Foundation Ireland project SFI/02/CE1/1131) and NEPOMUK (EU project
FP6-027705).

References

1. Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Davis, B., Handschuh, S.:
Clone: Controlled language for ontology editing. In: ISWC/ASWC. (2007) 142–155

2. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications.
In: Proceedings of the 40th Anniversary Meeting of the Association for Computa-
tional Linguistics (ACL’02). (2002)

3. Schwitter, R.: Controlled natural languages. Technical report, Centre for Language
Technology, Macquarie University (June 2007)

4. Adriaens, G., Schreurs, D.: From COGRAM to ALCOGRAM: Toward a con-
trolled English grammar checker. In: Conference on Computational Linguistics
(COLING’92), Nantes, France 595–601

20 http://nepomuk.semanticdesktop.org/xwiki/
21 http://nepomuk-kde.semanticdesktop.org/xwiki/bin/view/Main/WebHome
22 http://smile.deri.ie/projects/semn/
23 http://knowledgeweb.semanticweb.org/

5. Fuchs, N., Schwitter, R.: Attempto Controlled English (ACE). In: CLAW96: Pro-
ceedings of the First International Workshop on Controlled Language Applications,
Leuven, Belgium (1996)

6. Fuchs, N.E., Kaljurand, K., Kuhn, T., Schneider, G., Royer, L., Schröder, M.:
Attempto Controlled English and the semantic web. Deliverable I2D7, REWERSE
Project (April 2006)

7. Hoefler, S.: The syntax of Attempto Controlled English: An abstract grammar for
ACE 4.0. Technical Report ifi-2004.03, Department of Informatics, University of
Zurich (2004)

8. Kaljurand, K., Fuchs, N.E.: Bidirectional mapping between OWL DL and At-
tempto Controlled English. In: Fourth Workshop on Principles and Practice of
Semantic Web Reasoning, Budva, Montenegro (June 2006)

9. Kuhn, T.: Attempto Controlled English as ontology language. In Bry, F., Schwertel,
U., eds.: REWERSE Annual Meeting 2006. (March 2006)

10. Kaljurand, K., Fuchs, N.: Verbalizing OWL in Attempto Controlled English. In:
Proceedings of OWL: Experiences and Directions (OWLED 2007). (2007)

11. Power, R., Scott, D., Evans, R.: What you see is what you meant: direct knowl-
edge editings with natural language feedback. In Prade, H., ed.: 13th European
Conference on Artificial Intelligence (ECAI’98). John Wiley and Sons, Chichester,
England (1998) 677–681

12. Piwek, P.: Requirements definition, validation, verification and evaluation of
the clime interface and language processing technology. Technical report, ITRI-
University of Brighton (2002)

13. Bernstein, A., Kaufmann, E.: GINO—a guided input natural language ontology
editor. In: 5th International Semantic Web Conference (ISWC2006). (2006)

14. Brooke, J.: SUS: a “quick and dirty” usability scale. In Jordan, P., Thomas, B.,
Weerdmeester, B., McClelland, A., eds.: Usability Evaluation in Industry. Taylor
and Francis, London (1996)

15. Tullis, T.S., Stetson, J.N.: A comparison of questionnaires for assessing website
usability. In: Usability Professionals’ Association Conference, Minneapolis, Min-
nesota (June 2004)

16. Namgoong, H., Kim, H.: Ontology-based controlled natural language editor using
cfg with lexical dependency. In: ISWC/ASWC. (2007) 353–366

17. Lopez, V., Motta, E., Uren, V.: Poweraqua: Fishing the semantic web. In: ESWC.
(2006) 393–410

18. Funk, A., Davis, B., Tablan, V., Bontcheva, K., Cunningham, H.: Controlled
language IE components version 2. Deliverable D2.2.2, SEKT (2006)

19. Noy, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating
your first ontology. Technical Report KSL-01-05, Stanford Knowledge Systems
Laboratory (March 2001)

20. Bailey, B.: Getting the complete picture with usability testing. Usability updates
newsletter, U.S. Department of Health and Human Services (March 2006)

21. John L. Phillips, J.: How to Think about Statistics. W. H. Freeman and Company,
New York (1996)

22. Connolly, T.G., Sluckin, W.: An Introduction to Statistics for the Social Sciences.
Third edn. Macmillan (1971)

