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Abstract. Ontology generation and population is a crucial part of knowl-
edge base construction and maintenance that enables us to relate text to
ontologies, providing a rich and customised ontology related to the data
and domain with which we are concerned. SPRAT combines aspects
from traditional named entity recognition, ontology-based information
extraction and relation extraction, in order to identify patterns for the
extraction of a variety of entity types and relations between them, and to
re-engineer them into concepts and instances in an ontology. When aug-
mented with richer knowledge such as WordNet semantic categories and
terminological information, the results are greatly improved. SPRAT can
either modify an existing ontology or create a new ontology from scratch,
which is specific to the corpus of texts processed. Preliminary results are
very promising, although more refinement of the patterns is still neces-
sary.

1 Introduction

Ontology generation and population is a crucial part of knowledge base con-
struction and maintenance that enables us to relate text to ontologies, providing
on the one hand a customised ontology related to the data and domain with
which we are concerned, and on the other hand a richer ontology which can be
used for a variety of semantic web-related tasks such as knowledge management,
information retrieval, question answering, semantic desktop applications, and so
on.

Ontology population is generally performed by means of some kind of ontology-
based information extraction (OBIE) [1]. This consists of identifying the key
terms in the text (such as named entities and technical terms) and then relating
them to concepts in the ontology. Typically, the core information extraction is
carried out by linguistic pre-processing (tokenisation, POS tagging etc.), followed
by a named entity recognition component, such as a gazetteer and rule-based
grammar or machine learning techniques.

The work described here combines aspects from traditional named entity
recognition, ontology-based information extraction and relation extraction, in
order to identify patterns for the extraction of a variety of entity types and
relations between them, and to re-engineer them into concepts and instances via
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ontology creation and population. The application is developed in GATE, an
architecture for language engineering [2]. In this paper, we first investigate some
linguistic patterns for relation finding, and then discuss their implementation
in the SPRAT tool, by means of the NEBOnE plugin that we have created in
order to perform the ontology editing part. Finally we discuss some evaluation
and further work.

2 Patterns for NE recognition

Traditional rule-based Named Entity (NE) recognition and OBIE applications in
GATE are based on a set of linguistic patterns which aim to identify the relevant
entities in text. These rely largely on gazetteer lists which provide all or part of
the entity, or clues to its existence, in combination with linguistic patterns. For
example, a typical rule to identify a person’s name consists of matching the first
name of the person via a gazetteer entry (e.g. John), followed by an unknown
proper noun (e.g. Smith, which is POS-tagged as a proper noun).

However, identifying ontological concepts and/or relations requires a slightly
different strategy. While we can still make use of known terms (either via a
gazetteer or by accessing the class, instance and property labels in an existing
ontology), this is often not sufficient for a variety of reasons:

– the concept may not be in the ontology already;
– the concept may exist in the ontology only as a synonym or linguistic vari-

ation (singular instead of plural, for example);
– the concept may be ambiguous;
– only a superclass of the concept may exist in the ontology.

We therefore need to make more use of linguistic patterns and also contextual
clues, rather than relying on gazetteer lists. We have identified three sets of
patterns which can help us identify concepts, instances and properties to extend
the ontology: the well-known Hearst patterns (Section 2.1), the Lexico-Syntactic
Patterns developed in the NeOn project1 corresponding to Ontology Design
Patterns (Section 2.2), and some new contextual patterns defined by us (Section
2.3).

2.1 Hearst patterns

The Hearst patterns are a set of lexico-syntactic patterns that indicate hy-
ponymic relations [3], and have been widely used by other researchers. Typically
they achieve a very high level of precision, but quite low recall: in other words,
they are very accurate but only cover a small subset of the possible patterns
for finding hyponyms and hypernyms. The patterns can be described by the
following rules, where NP stands for a Noun Phrase and the regular expression
symbols have their usual meanings2:
1 http://www.neon-project.org
2 () for grouping; | for disjunction; *, +, and ? for iteration.
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– such NP as (NP,)* (or|and) NP
Example: . . . works by such authors as Herrick, Goldsmith, and Shakespeare.

– NP (,NP)* (,)? (or|and) (other|another) NP
Example: Bruises, wounds, or other injuries. . .

– NP (,)? (including|especially) (NP,)* (or|and) NP
Example: All common-law countries, including Canada and England . . .

Hearst actually defined five different patterns, but we have condensed some
of them into a single rule. Also, where Hearst defines the relations as hyponym-
hypernym, we need to be more specific when translating this to an ontology, as
they could represent either instance-class or subclass-superclass relations. To
make this distinction, we tested various methods. In principle, POS-tagging
should be sufficient, since proper nouns generally indicate instances, but our
tagger mistags capitalised common nouns (at the beginning of sentences) as
proper nouns frequently enough that we cannot rely on it for this purpose.
We also looked at the presence or absence of a determiner preceding the noun
(since proper nouns in English rarely have determiners) and whether the noun
is singular or plural, but this still left the problem of the sentence-initial nouns.
Finally, we decided to pre-process the text with the named entity recognition
application ANNIE, and only consider certain types of named entities (Person,
Location, Organization, and potentially some unknown entity types) as candi-
dates for instances; all other NPs are considered to be classes. This gave much
better results, occasionally missing an instance but almost never overgenerating.

2.2 Lexico-Syntactic Patterns

The second type of patterns investigated was the set of Lexico-Syntactic Patterns
(LSPs) corresponding to Ontology Design Patterns (ODPs) [4]. We implemented
a number of these patterns in our application. Some of the more complex rela-
tion types we did not include because the functionality does not currently exist
either in the GATE ontology API or in NEBONE. For each relation, there are
several possible patterns: mostly these are all combined into a single rule in our
grammars, but we separate them here for ease of comprehension. The grammars
are written in JAPE [5]: further details are discussed in Section 3.1.

In the following rules, <sub> and <super> are like variable names for the
subclasses and superclasses to be generated; CN means class of, group of, etc.;
CATV is a classification verb3; PUNCT is punctuation; NPlist is a conjoined list
of NPs (“X, Y and Z”).

1. Subclass rules
– NP<sub> be NP<super>
– NPlist<sub> be CN NP<super>
– NPlist<sub> (group (in|into|as) | (fall into) | (belong to))

[CN] NP<super>

3 E.g., classify in/into, comprise, contain, compose (of), group in/into, divide in/into,
fall in/into, belong (to).
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– NP<super> CATV CV? CN? PUNCT? NPlist<sub>
Example: Frogs and toads are kinds of amphibian.

2. Equivalence rules
– NP<class> be (the same as|equivalent to|equal to|like) NP<class>
– NP<class> (call | denominate | (designate by|as) | name) NP<class>

(where the verb is passive)
– NP<class> have (the same|equal) (characteristic | feature | attribute

| quality | property) as NP<class>
Example: Poison dart frogs are also called poison arrow frogs.

3. Properties
– NP<class> have NP<property>
– NP<instance> have NP <property>

Example: Birds have feathers.

While these patterns are quite productive (for example X is a Y), most of them
are potentially ambiguous and susceptible to overgeneration. For example, in the
following sentence:

Mistakenly, some artists and writers have penguins based at the North
Pole.

the patterns produced the inference that writers have penguins, recognising pen-
guin as a property of writer. Clearly it is ludicrous that every expression of the
form X has Y should result in the relation Y is a property of X. The difficulty
is deciding where to draw the line between acceptable patterns and those that
just overgenerate. To start with, we took the simple patterns which generated
new basic instances, subclasses and properties. After an initial evaluation, how-
ever, we found that these overgenerated quite considerably, so we refined them
by adding some restrictions using semantic categories from WordNet. This is
discussed in more detail in Section 6.

2.3 Contextual patterns

We also defined a set of rules designed to make use of contextual information in
the text about known entities already existing in the ontology (unlike the ODP
lexico-syntactic patterns which assume no previous ontological information is
present). These rules are used in conjunction with the OntoRootGazetteer plugin
in GATE, which enables any morphological variant of any class, instance or label
in the ontology to be matched with (any morphological variant of) any word or
words in the text. Which elements from the ontology are to be considered (e.g.,
whether to include properties, and if so which ones) is determined in advance
by the user when setting up the application. Initially we use the following rules
to find new classes and instances:

1. Add a new subclass: (Adj|N) NP<class> → NP<subclass>.
This matches a class name aready in the ontology preceded by an adjective or
noun, such as adjective preceding a known type of fish, which we assume is a
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more specific type. For example, when we encounter the phrase . . . Japanese
flounder. . . in a text and flounder is already in the ontology, we add Japanese
flounder as a subclass of flounder.

2. Add a new class (a more generic version of the Hearst patterns). Here we
postulate that an unknown entity amidst a list of known entities is likely to
be also an entity of the same type. For example, if we have a list of classes
of fish, and there is an unknown noun phrase in amongst the list, we can
presume that this is also a class of fish. To decide where to add this new
class in the ontology, we can look for the Most Specific Common Abstraction
(MSCA) of all the other items in the list (i.e. the lowest common superclass
of all the classes in the list) and add the new entity as a subclass of this class.
However, this has not currently been implemented due to the complexities
of implementation in NEBOnE, but is planned for the future. Currently
therefore, we just add it as a new subclass of Thing (top level) and leave it
to the user to move it to a more appropriate place.
Example: Hornsharks, leopard sharks and catsharks can survive in aquar-
ium conditions for up to a year or more.
where hornshark and leopard shark are classes in the ontology and catshark
is unknown, so we can recognise catshark as a subclass with the same parent
as that of hornshark and leopard shark, in this case shark.

3. Add an alternative name as a synonym: a name followed by an alter-
native name in brackets is a very common pattern in some kinds of text.
For example in texts about flora and fauna we often get the common name
followed by the Latin name in brackets, as in the following sentence:
Example: Mummichogs (Fundulus heteroclitus) were the most common sin-
gle prey item.
If we know that one of the two NPs is a class or instance in the ontology, we
can predict fairly accurately that the other NP is a synonym.

3 SPRAT application

SPRAT (Semantic Pattern Recognition and Annotation Tool) is composed of a
number of GATE components: some linguistic pre-processing followed by a set
of gazetteer lists and the JAPE grammars described above. The components are
as follows:

– Tokeniser: divides the text into tokens
– Sentence Splitter: divides the text into sentences
– POS-Tagger: adds part-of-speech information to tokens
– Morphological Analyser: adds morphological information (root, lemma etc.)

to tokens
– NP chunker: divides the text into noun phrase chunks
– Gazetteers: looks up various items in lists
– OntoRootGazetteer (optional): looks up items from the ontology and matches

them with the text, based on root forms
– JAPE transducers: annotates text and adds new items to the ontology
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The application can either create an ontology from scratch, or modify an
existing ontology. The ontology must be loaded with the application (in the
former case, a blank ontology is loaded; in the latter, the ontology to be modified)
and referenced by the grammar via the runtime parameter. The ontology used
is the same one for the whole corpus: this means that if a number of documents
are to be processed, the same ontology will be modified. If this is not the desired
behaviour, then there are two options:

1. A separate corpus is created for each document or group of documents corre-
sponding to a single output ontology. The application must be run separately
for each corpus.

2. A processing resource can be added to the application that clears the on-
tology before re-running on the next document. This of course requires that
the ontology is saved at the end of the application, after processing each
document.

3.1 Implementation of patterns

The patterns are implemented in GATE as JAPE rules. On the left hand side
(LHS) of the rule is the pattern to be annotated. This consists of a number of
pre-existing annotations which have been created as a result of pre-processing
components (such as POS tagging, gazetteer lookup and so on) and earlier JAPE
rules. The right hand side (RHS) of the rule invokes NEBOnE and creates the
new items in the ontology, as well as adding annotations to the document itself.
This part of the rule first gets the relevant information from the annotations
(using the labels assignFigureed on the LHS of the rule), then adds the new
information to the ontology and finally adds annotations to the entities in the
document. NEBOnE is responsible also for ensuring that the resulting changes
to the ontology are wellformed: this is described in more detail in Section 3.2.
Figure 1 shows a screenshot from GATE of an ontology created from a document
about sharks.

3.2 NEBOnE

The SPRAT application uses the specially developed NEBOnE plugin for GATE
in order to generate the changes to the ontology. NEBOnE (Named Entity Based
ONtology Editing) is an implementation for processing natural language text and
manipulating an ontology. It is derived from the CLOnE plugin [6] for GATE.

In CLOnE, input sentences are analysed deterministically and composition-
ally with respect to a given ontology, which the software consults in order to
interpret the input semantics. CLOnE allows users to design, create, and man-
age information without knowledge of complicated standards (such as XML,
RDF and OWL) or ontology engineering tools. It is implemented as a simpli-
fied natural language processor that allows the specification of logical data for
semantic knowledge technology purposes in normal language, but with high ac-
curacy and reliability. The components are based on GATE’s existing tools for
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Fig. 1. Generated ontology in GATE

information extraction and NLP natural language processing [7, 8]. Because the
parsing process is deterministic, accuracy is not an issue: as long as the user
specifies their input in correct controlled language, the system always produces
correct output.

Because CLOnE was designed to be used with Controlled Language textual
input, it is quite restricted in the patterns it can process and in how it generates
the ontological data from them. We therefore developed NEBOnE in order to
deal specifically with free text input. As its name suggests, it is based on named
entity recognition rather than a restricted set of keywords and noun phrases. For
example, in CLOnE, the only way to derive a new subclass is by using a specific
pattern containing the restricted keywords type of followed by the name of the
class, e.g., “a dog is a type of animal”. In free text, however, there are many ways
in which a subclass could be stated, e.g., “animals such as dogs” or “dogs are
animals”, and so on (as described in Section 2); the use of a controlled language
avoids ambiguity between syntactic structures. CLOnE also imposes strict rules
on the order of input sentences and the creation of resources in the ontology.
For example, the function to create a subclass required the superclass to exist
already, and the function to create an instance made the same stipulation about
the new instance’s class. We cannot avoid this problem in NEBOnE: this is the
sacrifice made for the gain in flexibility of input, which is essential with real
world texts.

NEBOnE is based on the same underlying principles as CLOnE and is realised
as another GATE plugin. The idea behind NEBOnE is that once a text has been
annotated using Named Entity recognition techniques, these annotations can be
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used to generate new concepts, instances and properties in the ontology. CLOnE
uses so-called chunks from the input sentences as candidates for inclusion in the
ontology as classes, instances and properties: these are noun phrases previously
created by a chunker in GATE. In NEBOnE, however, a chunk can be any
annotation previously created, and does not need to correspond to a noun phrase,
thereby ensuring a great deal more flexibility. When the NEBOnE plugin is
installed, actions concerning the ontology are implemented on the RHS of JAPE
rules, such as adding or deleting new classes, instances, subclasses, properties
and so on.

If an item is selected for addition to the ontology as a new class, NEBOnE
first checks to see whether the item in question already exists in the ontology:
if it already exists in the place where it is scheduled to be added, NEBOnE will
do nothing. If the item exists as a class elsewhere in the ontology, NEBOnE will
add the new class (because it supports multiple inheritance). If the requested
parent class and subclass both exist and are class names, NEBOnE will make
the second a subclass of the first and print a message. If either is already an
instance, or the parent class does not exist yet, NEBOnE will print a warning
message.

Similarly for an instance, if it exists elsewhere as an instance, NEBOnE will
add the new instance but generate a notification message. If the item already
exists as a class, and an instance of the same name is to be added, or vice
versa, then NEBOnE will not generate the new instance/class and will produce
a warning message. Thus NEBOnE ensures consistency in the ontology, avoiding
the need to run a checker after the ontology has been modified. A user can of
course choose to ignore any potential inconsistencies, by checking the generated
messages and then manually adding any offending items or making other changes
to the ontology.

3.3 Implementation of NEBOnE

Once the text has been pre-processed, a JAPE transducer processes each sen-
tence in the input text and manipulates the ontology appropriately. This PR
refers to the contents of the ontology in order to analyse the input sentences
and check for errors; some syntactically identical sentences may have different
results if they refer to existing classes, existing instances, or non-existent names,
for example.

The canonical feature—from which the name of a new class or instance is
derived—is the concatenation of the string values of the tokens and underscores
for the space-tokens (which can represent literal spaces, tabs or newlines), or the
token lemmas.

The Java code that tests chunks in the input text against existing classes and
instances in the ontology returns a match if any of the three features of the chunk
(canonical, root or string) is case-insensitively equal to any of those features of an
existing class or instance; for example, the chunks ’multiword expressions’
and Multiword expressions match each other, although the class name in the
ontology varies according to which one is first used to create the class.
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Unlike CLOnE, NEBOnE’s functions will create classes and superclasses as
required in order to accommodate instances and subclasses, respectively; it does
not require every class to be be explicitly before it is used. The NEBOnE library
does, however, reject function calls that would otherwise try to create an instance
with the same name as an existing class, or the other way round.

4 Evaluation

We evaluated the accuracy of the lexical patterns using a corpus of 25 randomly
selected wikipedia articles about animals. We ran SPRAT and examined the
results in some detail. In total, SPRAT generated 201 classes, 21 instances, and
98 synonyms, and 107 other properties. Table 1 shows the results for each type.
Note that, unlike in traditional named entity recognition evaluation, we use a
strict method of scoring where a partially correct response, i.e. one where the
span of the extracted entity is too short or too long, is considered as incorrect.
This is because for ontology population, having an incorrect span is generally a
more serious error than in named entity recognition.

Relation Total Extracted Correct Precision

Subclass 163 79 48.5%
Instance 21 10 47.6%
Synonym 98 47 48.0%
Property 107 24 22.4%

Table 1. Results of relation extraction on 25 wikipedia documents

4.1 Subclass Relations

In total, 163 subclass relations were generated, of which 79 were correct (48%).
However, 15 of these were not really useful classifications: e.g., turtle as subclass
of local creature makes sense only in a very specific context. Of the subclass
relations, 69 were found by the Hearst patterns, of which 58 were correct (84%).
Of the incorrect relations generated, most contained at least one correct subclass
out of a list. For example, in the phrase “by disturbing the natural state of
pasture, sheep and other livestock. . . ” both natural state of pasture and sheep
were recognised as subclasses of livestock, of which the former is incorrect but
the latter is correct. Some refinement of the rules (for example, avoiding NPs
containing of ) could help improve the results. The remaining patterns accounted
for 94 of the subclass relations, of which 21 were correct (22%).

We experimented also with restricting possible classes and subclasses to terms
found by TermRaider, a term selection algorithm based on linguistic filtering
and tf-idf scoring. If we narrow the results to match only subclasses which are
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also terms, this improves the precision but lower the recall a little. Adjusting
TermRaider’s parameters to be a little more flexible with patterns should im-
prove the recall, however. For subclass relations which are also terms, we find
50 occurrences, of which 31 are correct (62%). Of these, the Hearst patterns are
almost entirely correct, though lacking a little in recall (95% correct, but only 20
are found in total), while the patterns found by the other rules are 40% correct,
which is double the previous score, although only 30 are found in total.

4.2 Instances

The recognition of instances, on the other hand, was quite low in recall though
with the same precision as that of subclasses. In total, 21 instances were found,
of which 10 were correct. Many of the incorrect results were either as a result
of erroneous named entity recognition (e.g. Harmonia axyridis Pupal stage eggs
Coccinellidae was wrongly extracted as a named entity) or due to instances which
are somewhat irrelevant (e.g. San Francisco Bay was extracted as an instance
of principal area in the phrase “some of the principal areas are San Francisco
Bay, Richardson Bay, Tomales Bay and Humboldt”, which is factually correct
but not useful to extract). The main reason for missing instances is that they
were wrongly extracted either as subclasses or synonyms.

4.3 Synonyms

98 synonyms were found, of which 47 were correct (again 48%). Of the incorrect
responses, some of the so-called synonyms were actually instances. Many of the
incorrect synonyms were due to the relationship between the two items only
holding in a very particular context. For example, in the sentence “A modified
slit called a spiracle is located just behind the eye”, the system identifies modified
slit as a synonym of spiracle. Clearly not all modified slits are spiracles: in fact,
spiracle should be extracted as a subclass of modified slit. Since there are many
of these examples, we need to look more closely at the rules governing these.

4.4 Properties

Aside from synonyms, the system found 107 class and instance properties. Of
these, we analysed the first 50, of which 17 were correct, 13 were incorrect, 5
correct but irrelevant, and 15 were correct but had the wrong span of either the
domain or range.

5 Discussion

We can see that the patterns implemented are far from foolproof, since unlike
with a controlled language such as CLOnE, we cannot rely on a one-to-one
correspondence between a simple syntactic structure and its semantics. First we
have the problem of overgeneration. Already, we have discarded some potential
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patterns (such as some of the LSPs) that we consider to generate too many
errors. Further refinement is still necessary here, either to remove other patterns
or to reimplement them in a different way.

One of the main causes of overgeneration is caused by the span of the noun
phrase describing the concept to be added to the ontology. We have experimented
with different possibilities. A larger span provides finer distinctions and thus
better classes, but overgenerates considerably, while a smaller span produces
more general classes but better accuracy (does not overgenerate so much). For
example, in the following sentence:

The individuals communicate using a variety of clicks, whistles and other
vocalizations.

variety of click is recognised as a subclass of vocalization. While this is technically
correct, a better interpretation would be simply the subclass click.

On the other hand, if we reduce the span of the noun phrase, we risk losing
some important information. For example, in the sentence:

Mygalomorph and Mesothelae spiders have two pairs of book lungs filled
with haemolymph

if we do not identify the full noun phrase two pairs of book lungs, we can end
up with a rather uninformative property value. A closer analysis of the spans
is needed, which may help identify which patterns require longer spans than
others, for example.

Second, lexical patterns tend to be quite ambiguous as to which relations
they indicate. For example, NP have NP could indicate an object property or a
datatype property relationship. Often, further context is also crucial. For exam-
ple, in the sentence “Both African males and females have external tusks”, it is
not very useful to extract the concept females with the property have external
tusks unless you know that females actually refers to female African elephants.
To extract this information would require also coreference matching.

6 Pattern refinement

In this section, we describe some of the refinements we have made to the pat-
terns as a result of our preliminary evaluation. First, we have experimented with
the incorporation of deeper semantic relations using semantic classes from Verb-
Net[9] and WordNet[10] in order to look for verbal patterns connecting terms in
a sentence, and to restrict the kinds of noun phrase extracted. We make use of
the ANNIC plugin in GATE [11] to search for frequently occurring annotation
patterns. We aim not only to reduce the number of errors, but also to eliminate
the kind of general relations which while not incorrect, are not very useful. For
example, knowing that a turtle is a local creature is not of much interest unless
more contextual information is provided (i.e. in which region it is local).

We are also investigating the use of TermRaider for restricting the number
of candidates for extraction. Finally, we plan to incorporate combinations of
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Hearst patterns and statistically derived collocational information, because its
combination with lexico-syntactic patterns has proven to improve precision and
recall [12]. Integration of a full parser has also been investigated, but discarded
on the grounds of speed (full parsing is extremely computationally expensive in
this situation). In particular, we found that the sentences in Wikipedia articles,
which we have used for training and testing, are quite hard to parse well, because
they frequently exhibit a long and complex sentence structure which is highly
ambiguous to a parser. This causes not only speed but also accuracy problems.

We took inspiration also from some currently unpublished research carried
out at DFKI in the Musing project4, which looks at deriving T-Box Relations
from unstructured texts in German. In this work, attention is focused primar-
ily on deriving relations between parts of German compound nouns, but we
can make use of similar restrictions. For example, in their work they might de-
rive from the compound noun ”bank manager” that there is a property ”has
manager” belonging to ”bank”, and that a ”bank manager” is a subclass of
”manager”.

6.1 Restrictions on Noun Phrases

We prevent certain stop words occurring as part of a noun phrase recognised in
the patterns. These stop words are a combination of some words given the wrong
grammatical category by the part of speech tagger, and some very common
words which we do not want to recognise as adjectives. This list of stop words
was determined heuristically and can be augmented as necessary with further
iterations of testing.

6.2 Restrictions on Subclass Patterns

We modified the subclass rule (Adj|N) NP<class> → NP<subclass> from the
set of contextual patterns, such that either the superclass must already exist
in the ontology as a recognised class, or such that certain semantic restrictions
apply. For example, one restriction states that both the proposed subclass and
superclass must have the semantic category ”animal”. For example, this enables
us to recognise ”carrot weevil” as a subclass of ”weevil”. This rule in particular
has very high accuracy (98%) and only seems to cause errors as a result of
incorrect semantic categories from WordNet.

6.3 Restrictions on Properties

One of the most error-prone rules was the Property rule X has Y from the
Lexico-Syntactic Patterns set, which was clearly far too general. We restricted
this to again use semantic categories of WordNet. For example, for animals we
can state that X must be an animal and Y must be a body part. This gave much
better results (75% accuracy, although low recall). Another restriction is the type
4 http://www.musing.eu
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of thing that can be considered a property. We experimented with restricting the
range of the property to the following semantic categories from WordNet: plant,
shape, food, substance, object, body, animal, possession, phenomenon, artifact,
and found much improved results.

7 Related work

Lexico-syntactic pattern-based ontology population has proven to be reasonably
successful for a variety of tasks [13]. The idea of acquiring semantic infomration
from texts dates back to the early 1960s with Harris’ distributional hypothesis [14]
and Hirschman and Sager’s work in the 1970s [15], which focused on determining
sets of sublanguage-specific word classes using syntactic patterns from domain-
specific corpora. A detailed description and comparison of lexical and syntactic
pattern matching can be found in [16], In particular, research in this area has
been used in specific domains such as medicine, where a relatively small number
of syntactic structures is often found, for example in patient reports. Here the
structures are also quite simple, with short and relatively unambiguous sentences
typically found: this makes syntactic pattern matching much easier.

Text2Onto [17] performs synonym extraction on the basis of patterns. It
combines machine learning approaches with basic linguistic processing such as
tokenisation or lemmatisation and shallow parsing. Since like SPRAT it is based
on the GATE framework, it offers flexibility in the choice of algorithms to be
applied. Compared with SPRAT, it has a smaller number of lexico-syntactic pat-
terns. On the other hand, it applies additional statistical clustering and parsing
for relation extraction All in all, this leads to more data, but not necessarily to
an improvement of the resulting ontology in terms of precision.

Within the range of activities required for ontology learning, SPRAT covers
a number of intermediate stages in the process of ontology acquisition, namely
term recognition and relation extraction. In the initial acquisition stage, it will
recognise terms from the corpus only if they participate in any of the patterns.
This guarantees termhood only up to a certain extent. Further term filtering re-
sults in improved precision. For relation extraction, SPRAT does not make use
of a parser. There are many applications that make use of syntactic dependen-
cies e.g. [18, 19]. Our approach differs from this in that our patterns are defined
at low levels of syntactic constituency, such as noun phrases, and by means of
finite state transducers. Identifying and engineering on the basis of the linguistic
building blocks that our relevant for each ontology editing task eliminates the
need for a parser. Patterns are encoded locally, i.e. not embedded into a syn-
tactc structure., but bottom-up created by combinations of finite-state patterns.
Pattern variations can therefore be easily encoded. This bottom-up approach
is much faster and less error-prone than a parser, because it robustly identifies
syntactic building blocks rather than complete syntactic parses. Our approach
is more in line with the ontology bootstrapping approach advocated in [20].
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8 Conclusions and Further Work

Because the innovative character of the paper lies in engineering rather than in
research, we need to emphasise that, in this phase, the strength of the approach
lies in its fundamental approach to linguistically motivated ontology engineer-
ing. An increasing number of atomic ontology editing operations are associated
with lexico-syntactic patterns, according to the ontological information these
patterns and the participating entities contribute. The flexibility of this asso-
ciation enables us to approach the transformation of linguistic structures into
lightweight ontological knowledge in an incremental fashion. Also, the opportu-
nity to incorporate any kind of additional knowledge into the system allows us
to experiment with different settings, and use SPRAT as a research platform
rather than a black box product. This sets it apart from partial approaches such
as Hearst, because it offers a platform to dynamically include new algorithms.

In summary, the SPRAT tool assists the user in the generation and/or pop-
ulation of ontologies from text, using linguistic patterns. We have developed a
number of new GATE plugins, including NEBOnE for editing the ontology, and
TermRaider for finding new terms. In the first pass, we found that the rules gave
good recall, but precision is a little low. After our modifications, we achieved very
good precision, but much lower recall. Future work lies therefore in finding some
kind of balance between these two.

Acknowledgements

The research is conducted as part of the EU-funded projects NeOn (IST-2005-
027595) and Service-Finder (FP7-215876).

References

1. Maynard, D., Li, Y., Peters, W.: NLP Techniques for Term Extraction and On-
tology Population. In Buitelaar, P., Cimiano, P., eds.: Bridging the Gap between
Text and Knowledge - Selected Contributions to Ontology Learning and Popula-
tion from Text. IOS Press (2008)

2. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications.
In: Proceedings of the 40th Anniversary Meeting of the Association for Computa-
tional Linguistics (ACL’02). (2002)

3. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Con-
ference on Computational Linguistics (COLING’92), Nantes, France, Association
for Computational Linguistics (1992)
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