A Natural Language Query Interface to
Structured Information

Valentin Tablan, Danica Damljanovic, and Kalina Bontcheva

Department of Computer Science
University of Sheffield
Regent Court, 211 Portobello Street
S1 4DP, Sheffield, UK
{v.tablan,d.damljanovic,k.bontcheva}@dcs.shef.ac.uk

Abstract. Accessing structured data such as that encoded in ontologies
and knowledge bases can be done using either syntactically complex for-
mal query languages like SPARQL or complicated form interfaces that
require expensive customisation to each particular application domain.
This paper presents the QuestIO system — a natural language interface
for accessing structured information, that is domain independent and
easy to use without training. It aims to bring the simplicity of Google’s
search interface to conceptual retrieval by automatically converting short
conceptual queries into formal ones, which can then be executed against
any semantic repository.

QuestIO was developed specifically to be robust with regard to language
ambiguities, incomplete or syntactically ill-formed queries, by harness-
ing the structure of ontologies, fuzzy string matching, and ontology-
motivated similarity metrics.

Key words: Searching, Querying, User Interfaces, Conceptual Search

1 Introduction

Structured information in various guises is becoming ubiquitous on today’s com-
puters. This may include a user’s contacts list, their calendar of events, other
structured files such as spreadsheets or databases. In addition to this, unstruc-
tured textual content may refer or add information to entities from a user’s
structured information space. For example a project meeting mentioned in the
calendar relates to textual files such as the agenda for the meeting, the various
documents relevant to the particular project, the contact information of the peo-
ple who will be attending the meeting, etc. All this information can be modelled
as, or mapped onto, an ontology in order bring the benefits of all the technologies
developed for the semantic web to the user’s desktop.

We believe that text interfaces have a role to play because they are famil-
iar to end users, benefit from very good support both on the desktop and in
web interfaces, and are easily available on all types of devices. In previous work
[1,2] we have presented the CLOnE system (originally named CLIE) that pro-
vides a textual interface for editing a knowledge base (KB) through the use

2 V. Tablan, D. Damljanovic, K. Bontcheva

of an open-vocabulary, general purpose controlled language. That was designed
as an interface for manual intervention in the process of generating ontologi-
cal data from either structured information, through direct mapping, or from
unstructured text, through semantic annotation. Continuing the same line of
development, the work discussed in this paper focuses on providing access to the
information stored in a KB by means of natural language queries.

Most knowledge stores provide facilities for querying through the use of some
formal language such as SPARQL or SeRQL. However, these have a fairly com-
plex syntax, require a good understanding of the data schema and are error
prone due to the need to type long and complicated URIs. These languages are
homologous to the use of SQL for interrogating traditional relational databases
and should not be seen as an end user tool.

Different methods for user-friendly knowledge access have been developed
previously. Some provide a graphical interface where users can browse ontology,
others offer a forms-based interface for performing semantic search based on
underlying ontology whilst hiding the complexity of formal languages. The most
sophisticated ones provide a simple text box for a query which takes Natural
Language (NL) queries as input.

The evaluation conducted in [3] contains a usability test with 48 end-users
of Semantic Web technologies, including four types of query language interfaces.
They concluded that NL interfaces were the most acceptable, being significantly
preferred to menu-guided, and graphical query language interfaces. Despite being
preferred by users, Natural Language Interface (NLI) system are not very fre-
quent due to the high costs associated with their development and customisation
to new domains, which involves both domain experts and language engineers.

We present QuestIO (Question-based Interface to Ontologies), a NLI system
for accessing structured information from a knowledge base. The main impetus
for this work is the desire to create a user-friendly way of accessing the informa-
tion contained in knowledge stores, which should be easy to use, requiring little
or no training.

The QuestIO application is open-domain (or customisable to new domains
with very little cost), with the vocabulary not being pre-defined but rather auto-
matically derived from the data existing in the knowledge base.The system works
by converting NL queries into formal queries in SeRQL (though other query lan-
guages could be used). It was developed specifically to be robust with regard to
language ambiguities, incomplete or syntactically ill-formed queries, by harness-
ing the structure of ontologies, fuzzy string matching, and ontology-motivated
similarity metrics.

The following section presents some background information regarding user
interfaces for knowledge access, putting this work into context. Next the design
and implementation of the QuestIO system are presented, followed by an evalua-
tion of its coverage, portability and scalability. Finally, we conclude and present
some plans for future development.

A Natural Language Query Interface to Structured Information 3

2 Context

Tools for accessing data contained in ontologies and knowledge bases are not
new, several have been implemented before using different design approaches
which reach various levels of expressivity and user-friendliness.

A popular idea is adding search and browsing support to ontology editing
environments. For instance Protégé [4] provides the Query Interface, where one
can specify the query by selecting some options from a given list of concepts
and relations. Alternatively, for an even more expressive search, users can type
a query using a formal language such as SPARQL and get the results. This
type of facilities give the maximum level of control to the user and are useful
for experienced users who are familiar with both the Protégé environment and
formal query languages.

While typing queries in formal languages provides the greatest level of expres-
sivity and control for the user, it is also the least user-friendly access interface.
Query languages have complex syntax, require a good understanding of the rep-
resentation schema, including knowledge of details like namespaces, class and
property names. All these contribute to making formal query languages difficult
to use and error prone. The obvious solution to these problems is to create some
additional abstraction level that provides a user friendly way of generating for-
mal queries, in a manner similar to the many applications that provide access
to data stored in standard relational databases.

One step toward user-friendliness is creating a forms-bases graphical interface
where the information request can be expressed by putting together a set of
restrictions. Typically these restrictions are provided as ready-made building
blocks that the user can add to create a complex query. This type of systems
can either be customised for a particular application domain or general purpose.
A good example of forms-based interface that offers both generic and domain
specific options is provided by the KIM knowledge management platform [5].
Their interface enables querying knowledge bases by either instantiating a query
from a set of given templates, or by constructing a generic SeRQL query using
a forms-based interface.

This type of interfaces are very well suited for domain specific uses; when
customised to a particular application, they provide the most efficient access
path to the information. They can take advantage of good support for forms in
graphical interfaces and benefit from a long tradition of forms-based interface
design. Their downside, however, becomes apparent when moving to a general
purpose search interface. In this case they can be either too restrictive, not
allowing enough expressivity or too complex with either too many input fields
or too many alternative options.

Probably due to the extraordinary popularity of search engines such as
Google, people have come to prefer search interfaces which offer a single text
input field where they describe their information need and the system does the
required work to find relevant results. While employing this kind of interface
is straightforward for full text search systems, using it for conceptual search
requires an extra step that converts the user’s query into semantic restrictions

4 V. Tablan, D. Damljanovic, K. Bontcheva

like those expressed in formal search languages. A few examples of such query
interfaces are discussed next.

SemSearch [6] is a concept-based system which aims to have a Google-like
Query Interface. It requires a list of concepts (classes or instances) as an input
query separated by colon (e.g. ‘news:PhD Students’ is a query that results in
all instances of class News that are in relation with PhD Students). This is an
interesting approach, allowing the use of a simple text field as input but it has
the disadvantage that it still requires good knowledge of the domain ontology
and that it provides no ways of specifying the desired relation between search
terms. This can lead to low precision when there are several ontology properties
applicable the classes of the terms that occur in the query.

Another notable example, and one of the most mature from this family of
systems, is AquaLog [7]. It uses a controlled language for querying ontologies
with the addition of a learning mechanism, so that its performance improves
over time in response to the vocabulary used by the end users. The system
works by converting the natural language query into a set of ontology-compatible
triples that are then used to extract information from a knowledge store. It
utilises heavily shallow parsing and WordNet which imposes some restrictions
by requiring syntactically correct input. In addition, it seems geared mainly
towards queries containing up to two triples and expressed as questions (e.g.,
who, what).

Orakel [8] is a natural language interface (NLI) to knowledge bases. It imple-
ments functionality not only for knowledge represented in OWL but also provides
means for accessing F-Logic. The key advantage of this system is support for
compositional semantic construction which makes it able to handle questions in-
volving quantification, conjunction and negation. These advanced features come
at a cost, however, as the system requires a mandatory customisation when-
ever it is ported to a new application domain. This includes creating a domain-
specific lexicon that maps subcategorisation frames to relations as specified in
the domain ontology. Subcategorisation frames are essentially linguistic argu-
ment structures, e.g. verbs with their arguments, nouns with their arguments,
etc. Due to the expertise required for performing the customisation, this is a
fairly expensive process.

ONLI (Ontology Natural Language Interaction) [9] is a natural language
question answering system used as front-end to the RACER reasoner and to
nRQL, RACER’s query language. ONLI assumes that the user is familiar with
the ontology domain but is not required to know how to write queries using the
nRQL language. The system will transform the user natural language queries
into nRQL query formats. It major difference to other similar systems is that
of supporting queries with quantifiers and number restrictions. No details are
provided regarding the effort required for re-purposing the system.

Querix [10] is another ontology-based question answering system that trans-
lates generic natural language queries into SPARQL. In case of ambiguities,
Querix relies on clarification dialogues with users.

A Natural Language Query Interface to Structured Information 5

To summarise, existing language-based query interfaces either support keyword-
like search or require full-blown , correctly phrased questions. In this paper, we
argue that it is technologically possible and advantageous to marry both kinds
of approaches into one robust system, which supports both interaction styles.

3 The QuestlO System

Like many of the systems discussed in the previous section, QuestIO works by
converting natural language input into a formal semantic query. Because we use
Sesame! as a knowledge store, the system is configured to generate SeRQL as a
query language. The same architecture and large majority of the implementation
can be used to generate queries in other formal languages.

The driving principles behind the design for the QuestIO system were that:

— it should be easy to use, requiring as little user training as possible, ideally
none;

— it should be open domain, with no need for customisation, or with customi-
sation being done automatically or through other inexpensive means;

— it should be robust, able to deal with all kinds of input, including ungram-
matical text, sentence fragments, short queries, etc.

In order to be robust, the system needs to attempt to make sense of whatever
input it gets; it cannot rely on syntax, grammatically correct queries or enough
context to perform disambiguation through linguistic analysis. Unlike other sim-
ilar systems, our approach puts more weight on leveraging the information en-
coded in the ontology, and only uses very lightweight linguistic processing of the
query text. This ensures that any textual input can be ingested successfully while
the bulk of the question analysis work is based on the contents of the ontology,
which is a larger resource and more likely to have been well engineered.

When a query is received, some of the contained words will match ontology
concepts, while the textual segments that remain unmatched can be used to
predict property names and for disambiguation. The sequence of concepts and
property names is then converted into a formal query that is executed against
the knowledge store. Throughout the process, a series of metrics are used to score
the possible query interpretations, allowing the filtering of low scoring options,
thus reducing ambiguity and limiting the search space.

3.1 Initialisation of the System

When the system is initialised, it processes the domain ontology. Of great impor-
tance to the functioning of this system is the ability to recognise textual refer-
ences to resources from the ontology or the knowledge base. This is done by au-
tomatically creating a gazetteer when initialising the system with a given knowl-
edge base. In traditional natural language processing applications, a gazetteer is

! Sesame is an open-source RDF repository. More details are available on its homepage
at http://www.openrdf.org/.

http://www.openrdf.org/

6 V. Tablan, D. Damljanovic, K. Bontcheva

a large list of known words or phrases that need to be recognised in text. These
typically include various types of names, such as locations, organisations, or peo-
ple, and a variety of domain dependent terms. In our case we build a gazetteer
by automatically extracting lexicalisations from the knowledge base.

A lexicalisation is a textual form used to refer to a particular concept or en-
tity. Our approach is based on the observation that most ontologies and knowl-
edge bases contain a large amount of textual data that can be used to extract a
domain vocabulary. The textual elements that we use include:

The local part of URIs.

The values of rdfs:label properties.

— The values of a custom list of properties, which can be specified as a cus-
tomisation option.

The values of datatype properties that can be converted to a string. This was
introduced as as a catch-all case that is intended to capture custom-named
properties use to encode entity names — for example properties like ‘has
alias’. This is also useful because it links characteristics of entities (encoded
as property values) to the entity itself, which is sometimes necessary to
identify ontology instances that have no names or labels, e.g. identifying an
instance of a ‘Deadline’ class based on its date value. Identifying all datatype
property values in the query can lead to noise but that is mitigated by giving
this kind of match a lower score than the previous, more direct, matches.

Because the strings used in an ontology sometimes use different orthography
conventions, we attempt to normalise them by:

— recognising and splitting words that use underscores as a form of spacing;

— recognising and splitting CamelCase words;

— finding the morphological root (i.e. noninflected form) for all constituent
words;

— for complex noun phrases, we derive lexicalisations based on their con-
stituents, e.g. from ”ANNIE JAPE Transducer” we derive "JAPE trans-
ducer” and ”transducer” as additional ways of referring to the same concept.

For instance, if there is an ontology instance with a local name of “AN-
NIEJapeTransducer”, and with assigned property rdfs:label with value “Jape
Transducer”, and with assigned property rdfs:comment with value “A module
for executing Jape grammars”, the gazetteer will contain following the strings:

— “ANNIEJapeTransducer” — the value of the local name;

— “ANNIE Jape Transducer” — local name after camel case splitting;

— “Jape Transducer” — the value of rdfs:label;

— “A module for execute Jape grammar” — the value of comment, after mor-
phological normalisation. Note that morphological normalisation is also ap-
plied to the words in the input query, thus matching is possible regardless
of inflection.

All the lexicalisations thus extracted are stored in a gazetteer that is able to
identify mentions of classes, properties, instances, and property values associated
with instances.

A Natural Language Query Interface to Structured Information 7

3.2 Run-time Operation
When a query is received, the system performs the following steps:

. linguistic analysis;

. ontological gazetteer lookup;

. iterative transformation until a SeRQL query is obtained;

. execute the query against the knowledge base and display the results.

=W N

The linguistic analysis stage performs morphological analysis of the text by
running a tokeniser, part-of-speech tagger and a morphological analyser. All
these types of linguistic analysis are very lightweight and robust as they do not
depend on grammatical structure such as syntax. Because of this, they will com-
plete successfully on any kind of input, be it fully formed sentences or simple
fragments. We use a morphological analyser to apply the same kind of normal-
isation as that used for the lexicalisations from the ontology.This allows us to
later match query terms with concepts in the ontology, regardless of the way
they are inflected.

The second processing phase consists of running the ontological gazetteer
built at initialisation time over the morphologically normalised query text. This
creates annotations for all mentions of ontological resources that the gazetteer
can identify — classes, properties, instances, and values of datatype properties.

Thirdly an iterative transformation process is started for converting the in-
put free text into a formal query. It goes through several steps, each of which
starts with a list of candidate interpretations and converts those into more com-
plex ones. The information flow through the system is depicted in Figure 1. At
the beginning of the process, the list of candidate interpretations is initialised
with a simple interpretation containing the input text and the annotations cre-
ated in the previous steps. In each iteration, the interpretations currently in
the candidate list are transformed into more detailed ones. In cases of ambigu-
ity, it is possible that the number of candidate interpretations grows during a
transformation step (see the step numbered (1) in the diagram). All candidate
interpretations are scored according to a set of metrics that will be detailed later
and, in order to keep the number of alternatives under control, candidates that
score too low can be eliminated as shown in the step (1’) in the figure.

Interpretation:

|:> : |:> . b |:> : Interpretation List:
O || © [e% ® |

Fig. 1. Information Flow through the System

Expressed in pseudo-code, the top level algorithm is the following:

8 V. Tablan, D. Damljanovic, K. Bontcheva

annotate input text with morphological data;

annotate input text with mentions of ontology resources;

create an interpretation containing the input text and annotations;

initialise the candidates list with the interpretation;

do
apply all possible transformations to the current candidates;
eliminate candidates that score too low;

until(no more transformation possible)

generate SeRQL using top scoring interpretation(s)

© 00N O WN -

Following are some details about each of the steps, referred to using line numbers.

Step 1 includes breaking the input text into separate tokens, determining the
part of speech for each token and annotating it with its morphological root.

Step 2 deals with identifying in the input text mentions of resources from the
ontology. The matching is done using a normalised form that takes care of
multi-word names and morphological variation.

Cycle 5 — 8 performs repeated transformations of the candidate interpreta-
tions until no more are possible.

Step 9 uses the highest-scoring interpretation to generate a SeRQL query.

In order to create a modular implementation, two abstractions are used: In-
terpretation and Transformer. Interpretations are used as a container for infor-
mation — the contents of different interpretation types can be quite different. To
begin with, a single Interpretation is created which holds the input text, together
with all the annotations resulted from the morphological pre-processing. As the
process progresses ever more complex interpretations are generated. Similarly, a
Transformer represents an algorithm for converting a type of interpretation into
another. The implementation of the top level work-flow is quite independent of
the types on interpretations known or the kinds of transformers available; the
cycle at lines 5-8 simply applies all known types of transformers to the current
list of interpretations.

Creating a particular implementation of the system requires defining a set
of interpretations and transformers (as Java classes that implement particular
interfaces). In our current implementation, an interpretation is defined by the
following elements:

— A list of interpretation elements which hold the actual data. The actual
type of data held varies, becoming more and more detailed as the iterative
process continues. We are currently using ten types of different interpretation
elements of various complexity.

— A list of text tokens representing the original query text. Fach interpretation
element is aligned with a sequence of one or more input tokens. This is used
to keep track of how each text segment was interpreted.

— A back-link to the interpretation that was used to derive the current one.
This can be used to back-track through the interpretation steps and justify
the reasoning that led to the final result.

— A score value — a dynamically calculated numeric value used to sort the
interpretations list based on confidence.

A Natural Language Query Interface to Structured Information 9

The current implementation has seven types of transformers, which are used
during the iteration steps for converting interpretations. They perform various
operations to do with associating input text segments to ontology resources.

3.3 Identifying Implicit Relations

One of the main functions performed by the transformers is to identify relations
which are not explicitly stated in the input query. After the ontological gazetteer
is used to locate explicit references to ontology entities, the remaining text seg-
ments between those references are used to infer relations. Relations between
query terms are essentially homologous with object properties in OWL, so our
system attempts to match snippets from the input query to properties in the
ontology. The process starts by identifying a list of possible candidates based
on the definitions in the ontology: from two consecutive ontological references,
we identify the ontology classes they belong to. References to classes are used
directly; in the case of instance references we identify the class of the instance;
for property values we first find the associated instance and then its class. If
the reference is to a property name, we consider that to be an explicit relation
mention and this process does not take place. Once we have the two classes,
we build a list of properties that could conceivably apply given the range and
domain restrictions in the ontology.

The list applicable properties is then used to generate candidate interpreta-
tions that are scored using the following metrics described below.

String Similarity Score This score is based on the assumption that the words
used for denoting a relation in the query might be quite similar to some of the
lexicalisations of the candidate properties. The actual numeric value is calculated
using the Levenshtein distance metrics which represents the distance between
two strings as the minimum number of operations needed to transform one string
into the other, where an operation is an insertion, deletion, or substitution of a
single character. Resulting scores are normalised to range from 0 to 1.

Specificity score This score is based on the sub-property relation in the on-
tology definition. The assumption behind using this is that more specific prop-
erties are preferable to more general ones. Specificity score is determined by
the distance of a property from its farthermost super-property that has no de-
fined super-properties. This makes more specific properties, i.e. that are placed
at deeper levels in the property hierarchy, score higher. Its value is normalised
by dividing it with the maximum distance calculated for the properties on the
ontology level.

Distance score This metric was developed to compensate for the fact that
in many ontologies the property hierarchy is rather flat. It is trying to infer
an implicit specificity of a property based on the level of the classes that are

10 V. Tablan, D. Damljanovic, K. Bontcheva

used as its domain and range. Consider the following example: a top level class
named “Entity” with a subclass “GeographicalLocation” and the properties
“part0f” (with range and domain “Entity) and “subregion0f” (with range
and domain “GeographicalLocation”). Although not expressed explicitly us-
ing sub-property relations, the property “subregion0f” can be seen as more
specific than “part0f”. Assuming that the system is trying to find the most ap-
propriate relation between two instances of types “City” and “Country” (both
subclasses of “Geographicallocation”) then, all other things being equal, the
“subregion0f” property should be preferred.

Fig. 2. Distance Score

The general case is illustrated in Figure 2, where classes are represented as
circles, inheritance relations are shown as vertical arrows and ontological object
properties are presented as horizontal arrows. Given two classes, one considered
to be domain, the other range, the distance score for a candidate property rep-
resents the length of the path travelled from the domain class to the range class
when choosing the property. These distances are represented by the thick dot-
ted lines in the figure. Once calculated, the distances are normalised, through
division by double the maximum depth of the ontology and inverted — as the
shortest path represents the most specific property and should yield the highest
score.

These similarity metrics are ontology-motivated and are largely compara-
ble to those used in the Aqualog system. The final score associated with the
candidate properties is a weighted sum of the three different atomic measures.

3.4 Creating queries

After the implicit relations have been identified, the final interpretation of the
input query is presented as a list of explicit references to ontology resources in-
terspersed with references to properties. Starting from this list of interpretation

A Natural Language Query Interface to Structured Information 11

elements, a formal SeRQL query is dynamically created. In order to do this,
references to instances are kept as they are, i.e. the instance URI is used di-
rectly in the query. References to classes are converted to query variables, with
associated restrictions encoding the class membership. References to properties,
either explicit or inferred, are used to create restrictions with regard to relations
between the various query elements, either instance URIs or variables.

For example, we ran the system with the PROTON Ontology? populated
with instances from the default knowledge base of the KIM system [11]. A textual
query of “Countries in Asia” generated the following SeRQL formal query:

select c0O, p1, i2
from
{c0} rdf:type {<http://proton.semanticweb.org/2005/04/protonu#Country>},
{c0} p1 {i2},
{i2} rdf:type {<http://proton.semanticweb.org/2005/04/protonu#Continent>}
where
pl=<http://proton.semanticweb.org/2005/04/protont#locatedIn> and
i2=<http://www.ontotext.com/kim/2005/04/wkb#Continent_T.2>

The URI of “http://www.ontotext.com/kim/2005/04/wkb#Continent T.2” is
that of Asia.

For the provided query, the words “Country” and “Asia” were recognised as
lexicalisations of objects in the ontology (a class and an instance respectively).
In the context of the PROTON ontology, given the class “Country” as a do-
main and the class “Continent” (to which the instance “Asia” belongs) as a
range, the list of candidate properties includes “part0f”, “subRegion0f”, and
“locatedIn”. The “part0f” property is defined at the very high level of the
class “Entity”, and so is very generic. The other two candidates have the same
specificity, “locatedIn” being preferred in this case because of its closer textual
similarity with the query due to the word “in” appearing the original input.

4 Evaluation — Coverage, Portability, Scalability

The first use case of QuestIO is in supporting developers working on open-
source projects to find information from source code and user manuals, more
efficiently via ontologies. More specifically, in the context of the TAO? project, we
experimented first with learning semi-automatically a domain ontology [12] from
the GATE source code and XML configuration files. It encodes the component
model of GATE, the various plug-ins included in the default distribution, the
types of modules included in each of the plug-ins, the parameters for for the
different modules, their Java types, the associated comments, etc. The resulting
ontology contains 42 classes, 23 object properties and 594 instances.

2 The PROTON Ontology is a Base Upper-level Ontology developed within the Sekt
project. More details about it can be found at its home page at http://proton.
semanticweb.org/

3 http://www.tao-project.eu

http://proton.semanticweb.org/
http://proton.semanticweb.org/

12 V. Tablan, D. Damljanovic, K. Bontcheva

In order to evaluate QuestIO’s ability to answer queries against a given on-
tology (i.e., its coverage and correctness), we started off by manually collecting
a subset of 36 questions posted by GATE users to the project’s mailing list
in the past year, where they enquire about GATE plug-ins, modules and their
parameters. Some example questions are: “Which PRs* take ontologies as a pa-
rameter?”, “Which plugin is the VP Chunker in?”, and “What is a processing
resource?”

We divided these 36 randomly chosen postings into two groups: answer-
able, i.e., the GATE ontology contains the answer for this question; and non-
answerable, i.e., the required information is missing in the ontology. We ran
QuestIO on the subset of 22 answerable questions with the results as follows:

— The system interpreted correctly 12 questions and generated the appropriate
SPARQL queries to get the required answer.

— Partially-correct answers were given to another 6 questions, where the system
produced a query, but missed out one of the required constraints, so the
answer was less focused. Partially correct answers are scored as 50% correct
and 50% wrong.

— Lastly, the system failed to interpret 4 questions, so there was either no
query generated or the generated query was not correct.

Overall, this means that 68% of the time QuestIO was able to interpret
the question and generate the correct SPARQL queries. This result compares
favourably to other ontology question-answering systems, e.g., in a similar ex-
periment AquaLog was able to interpret around 50% of the questions posed.

In another experiment, the scalability and portability of QuestIO were eval-
uated by using a completely different ontology with a larger knowledge base.
The ontology used was one created to represent the travel guides domain, en-
coding geographical information for descriptions of locations as well as typical
information from the tourism domain to do with hotels, room amenities, touris-
tic attractions, etc. The ontology was created as an extension of the PROTON
ontology, by adding 52 domain specific classes and 17 object properties to the ex-
isting 266 classes and 69 properties. The resulting ontology was then populated
with 2790 instances. A comparison between the sizes of the knowledge bases in
the two experiments can be seen in Table 1. The last rows show the time spent
during system initialisation in each case. It can be noted that, even for a sizeable
knowledge base, this stays within reasonable limits, which is important even if
it only occurs once in the system life-cycle.

Table 2 details the execution times for converting queries of varying degrees
of complexity using the two knowledge bases. The complexity of the queries is
measured in terms of the number of relations that are implied in the query —
a query that mentions two concepts implies a relation between them, a query
with three concepts implies two relations, etc. The queries shown in the last
column are actual queries, as used during the experiments: note that they are
mainly short fragment queries, with incomplete grammatical structure and with

4 PRs are a kind of GATE module for processing language

A Natural Language Query Interface to Structured Information 13

Table 1. Knowledge Base Sizes

GATE Knowledge Base Travel Knowledge Base
Classes 42 Classes 318
Object Properties 23 Object Properties 86
Instances 594 Instances 2790
Total size (C + P + 1) 659 Total size (C + P + 1) 3194
Initialisation time 19 seconds Initialisation time 109 seconds

incorrect capitalisation. The last query used for the travel knowledge base makes
use of the “GlobalRegion” class of PROTON, which is used to represent geo-
graphical areas smaller than a continent, e.g. “North Asia”. This is somewhat
unnatural but we used it in order to create an artificially longer query (the
question having already been answered as a result of the previous query).

Table 2. Query Execution Times

Query size Execution Number Actual query
(number of time of results
properties) (seconds)

GATE Knowledge Base

1 0.148 15 “processing resources in ANNIE?”
0.234 37 “parameters for processing resources in AN-
NIE?”
3 0.298 37 “Java Class for parameters for processing re-

sources in ANNIE?”

Travel Knowledge Base

1 1.013 52 “countries in asia”
2.030 52 “capitals of countries in asia”
3 3.307 52 “capitals of countries in global regions in asia”

The two experiments show that the QuestlO system is capable of working
without requiring any customisation on two knowledge bases that are quite dif-
ferent both semantically and in terms of size. As it can be seen from the figures
in Table 2, the system scales well — the query conversion times remain within
the range of a few seconds even for the more complex queries against the larger
knowledge base.

Both knowledge bases used in the evaluation experiment were pre-existing
ones and were in no way modified or customised for use with QuestIO. In a real
application setting were the system is deployed, the results can be improved by
ensuring a better lexicalisation of the ontology and knowledge base. This can
be achieved by adding more labels or comments to the ontological resources
which should help get better coverage of the domain vocabulary. Another option
is to use a specialised domain dictionary that can provide synonyms for the
domain terms. The use of general purpose dictionaries, such as WordNet [13,14],
might not be advisable as, depending on the actual domain, they may have poor

14 V. Tablan, D. Damljanovic, K. Bontcheva

coverage or might actually introduce errors, in domains where the vocabulary is
very precise.

The main purpose for developing the QuestIO system was to provide a user-
friendly interface for interrogating knowledge bases. A qualitative indication of
the success for this enterprise can be ascertained from comparing the textual
query “capitals of countries in global regions in asia” with the equivalent formal
query expressed in SeRQL:
select cO, pl, c2, p3, c4, p5, i6
from

{c0} rdf:type {<http://proton.semanticweb.org/2005/04/protonu#Capital>},

{c2} p1 {cO0},

{c2} rdf:type {<http://proton.../04/protonu#Country>},

{c2} p3 {c4},

{c4} rdf:type {<http://proton.../04/protonu#GlobalRegion>},

{c4} p5 {i6},

{i6} rdf:type {<http://proton.../04/protonu#Continent>}
where

pl=<http://proton.semanticweb. ..04/protonu#hasCapital> and

p3=<http://proton.semanticweb. ..04/protont#subRegion0f> and

p5=<http://proton.semanticweb.../04/protont#subRegion0f> and

i6=<http://www.ontotext.com/kim/2005/04/wkb#Continent _T.2>

5 Conclusion and Future Work

In this paper we presented the QuestIO system which converts a wide range of
text queries into formal ones that can then be executed against a knowledge store.
It works by leveraging the lexical information already present in the existing
ontologies in the form of labels, comment and property values. By employing
robust language processing techniques, string normalisation, and ontology-based
disambiguation methods, the system is able to accept syntactically ill-formed
queries or short fragments, which is what non-expert users have come to expect
following their experience with popular search engines.

Work on QuestlO is continuing, and some of our plans for the future include
moving from to the current single-shot query approach towards a session-based
interaction, as also experimented with by AquaLog. This would make the inter-
action more user friendly in cases when the system can find no results for a query
or the user is unhappy with the results. By making use of the session history
combined with the information about the contents of the ontology, the system
could guide the user toward the desired results, e.g. by suggesting relations that
were missed due to the user choosing a different lexicalisation.

The current implementation already has the facility to track the process
of transforming a textual query into a formal one, which was introduced to
support better user interaction in the future. One example of using this would
be to present, on request, a justification of how the current results are related
to the query. The users who dislike black-box systems may use this to better
understand how the query transformation works which, in turn, could improve
the efficiency of them using the system.

A Natural Language Query Interface to Structured Information 15

We are also planning to perform a user satisfaction evaluation comparing our

system with a forms-based interface, such that of KIM.

Acknowledgements. This research was partially supported by the EU Sixth
Framework Program project TAO (FP6-026460).

References

1.

10.

11.

12.

13.

14.

Tablan, V., Polajnar, T., Cunningham, H., Bontcheva, K.: User-friendly ontology
authoring using a controlled language. In: 5th Language Resources and Evaluation
Conference (LREC), Genoa, Italy (May 2006)

Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Davis, B., Handschuh,
S.: Clone: Controlled language for ontology editing. In: Proceedings of the 6th
International Semantic Web Conference (ISWC 2007), Busan, Korea (November
2007

Kauf)mann, E., Bernstein, A.: How useful are natural language interfaces to the
semantic web for casual end-users? In: Proceedings of the Forth European Semantic
Web Conference (ESWC 2007), Innsbruck, Austria (June 2007)

Noy, N.; Sintek, M., Decker, S., Crubzy, M., Fergerson, R., Musen, M.: Creating
Semantic Web Contents with Protégé-2000. IEEE Intelligent Systems 16(2) (2001)
60-71

Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., Kirilov, A., Goranov, M.:
Towards Semantic Web Information Extraction. In: Human Language Technolo-
gies Workshop at the 2nd International Semantic Web Conference (ISWC2003),
Florida, USA (2003)

. Lei, Y., Uren, V., Motta, E.: Semsearch: a search engine for the semantic web. In:

Managing Knowledge in a World of Networks, Springer Berlin / Heidelberg (2006)
238-245

Lopez, V., Motta, E.: Ontology driven question answering in AqualLog. In: NLDB
2004 (9th International Conference on Applications of Natural Language to Infor-
mation Systems), Manchester, UK (2004)

Cimiano, P., Haase, P., Heizmann, J.: Porting natural language interfaces between
domains: an experimental user study with the orakel system. In: IUI ’07: Proceed-
ings of the 12th international conference on Intelligent user interfaces, New York,
NY, USA, ACM (2007) 180-189

Shamima Mithun, Leila Kosseim, V.H.: Resolving quantier and number restriction
to question owl ontologies. In: Proceedings of The First International Workshop
on Question Answering (QA2007), Xian, China (October 2007)

Kaufmann, E., Bernstein, A., Zumstein, R.: Querix: A natural language interface
to query ontologies based on clarification dialogs. In: 5th International Semantic
Web Conference (ISWC 2006), Springer (November 2006) 980-981

Popov, B., Kiryakov, A., Kirilov, A., Manov, D., Ognyanoff, D., Goranov, M.: KIM
— Semantic Annotation Platform. Natural Language Engineering (2004)
Bontcheva, K., Sabou, M.: Learning Ontologies from Software Artifacts: Explor-
ing and Combining Multiple Sources. In: Workshop on Semantic Web Enabled
Software Engineering (SWESE), Athens, G.A., USA (November 2006)

G.A., M., Beckwith, R., Fellbaum, C., Gross, D., Miller., K.: Introduction to
WordNet: On-line. Distributed with the WordNet Software. (1993)

Fellbaum, C., ed.: WordNet - An Electronic Lexical Database. MIT Press (1998)

	A Natural Language Query Interface to Structured Information
	Valentin Tablan, Danica Damljanovic and Kalina Bontcheva
	Introduction
	Context
	The QuestIO System
	Initialisation of the System
	Run-time Operation
	Identifying Implicit Relations
	String Similarity Score
	Specificity score
	Distance score

	Creating queries

	Evaluation -- Coverage, Portability, Scalability
	Conclusion and Future Work

