
Provided for non-commercial research and educational use only.
Not for reproduction or distribution or commercial use

This article was originally published in the Encyclopedia of Language & Linguistics,
Second Edition, published by Elsevier, and the attached copy is provided by Elsevier

for the author's benefit and for the benefit of the author's institution, for non-
commercial research and educational use including without limitation use in

instruction at your institution, sending it to specific colleagues who you know, and
providing a copy to your institution’s administrator.

All other uses, reproduction and distribution, including without limitation commercial
reprints, selling or licensing copies or access, or posting on open internet sites, your

personal or institution’s website or repository, are prohibited. For exceptions,
permission may be sought for such use through Elsevier's permissions site at:

http://www.elsevier.com/locate/permissionusematerial

Cunninghamand H and Bontcheva K (2006), Computational Language Systems:
Architectures. In: Keith Brown, (Editor-in-Chief) Encyclopedia of Language &

Linguistics, Second Edition, volume 2, pp. 733-752. Oxford: Elsevier.

Computational Language Systems: Architectures 733
Computational Language System
s: Architectures
e

Auth
or'

s P

H Cunningham and K Bontcheva, University of

Sheffield, Sheffield, UK

� 2006 Elsevier Ltd. All rights reserved.

Software Architecture

Every building, and every computer program, has
an ‘architecture’: structural and organizational prin-
ciples that underpin its design and construction. The
garden shed once built by one of the authors had an
ad hoc architecture, extracted (somewhat painfully)
from the imagination during a slow and nondeter-
ministic process that, luckily, resulted in a structure
that keeps the rain on the outside and the mower on
the inside (at least for the time being). As well as being
ad hoc (i.e., not informed by analysis of similar prac-
tice or relevant science or engineering) this architec-
ture is implicit: no explicit design was made, and no
records or documentation were kept of the construc-
tion process. The pyramid in the courtyard of the
Louvre, by contrast, was constructed in a process
involving explicit design performed by qualified engi-
neers with a wealth of theoretical and practical
knowledge of the properties of materials, the rela-
tive merits and strengths of different construction
techniques, and the like.

So it is with software: sometimes it is thrown to-
gether by enthusiastic amateurs, and sometimes it is
architected, built to last, and intended to be ‘not
something you finish, but something you start’ (to
paraphrase Brand, 1994).

Several researchers argued in the early and middle
1990s that the field of computational infrastructure
or architecture for human language computation
merited increased attention. The reasoning was that
the increasingly large-scale and technologically sig-
nificant nature of language processing science was
placing increasing burdens of an engineering nature
on research and development (R&D) workers seeking
robust and practical methods (as was the increasingly
collaborative nature of research in this field, which
puts a large premium on software integration and
interoperation). Since then, several significant sys-
tems and practices have been developed in what
may be called software architecture for language
engineering (SALE).

Language engineering (LE) may be defined as the
production of software systems that involve proces-
sing human language with quantifiable accuracy and
predictable development resources (Cunningham,
1999). LE is related to but distinct from the fields of
computational linguistics, natural language process-
ing, and artificial intelligence, with its own priorities

Encyclopedia of Language & Lin

rso
na

l C
op

y

and concerns. Chief among these are (1) dealing with
large-scale tasks of practical utility, (2) measuring
progress quantitatively relative to performance on
examples of such tasks, (3) a growing realization of
the importance of software engineering in general,
and (4) reusability, robustness, efficiency, and produc-
tivity, in particular. Software architectures can con-
tribute significantly toward achieving these goals
(Maynard et al., 2002; Cunningham and Scott, 2004).

This article gives a critical review of the various
approaches that have been taken to the problem of
software architecture for language engineering
(SALE). The prime criterion for inclusion in this arti-
cle is that the approaches are infrastructural – work
that is intended to support language engineering
(LE) R&D in some way that extends beyond the
boundaries of a single time-limited project.

This article presents categories of work that range
over a wide area. To provide an organizing principle
for the discussion, we extrapolate a set of architectur-
al issues that represent the union of those addressed
by the various researchers cited. This approach has
the advantage of making it easier to see how certain
problems have been addressed and the disadvantage
that multipurpose infrastructures appear in several
categories.

The following section discusses infrastructures
aimed at algorithmic resources including the issues
of component integration and execution. The article
then analyzes data resources infrastructure, including
the issues of access and the representation of infor-
mation about text and speech. If concludes with a
discussion on future directions for work on SALE.
Software Architectures for Language
Engineering

The problem addressed by the systems reviewed here
is the construction of software infrastructure for lan-
guage processing: software that is intended to apply
to whole families of problems within this field and
to be like a craftsman’s toolbox in the service of
construction and experimentation. We consider
three types of infrastructural systems: frameworks,
architectures, and development environments.

A ‘framework’ typically means an object-oriented
class library that has been designed with a certain
domain in mind and that can be tailored and extend-
ed to solve problems in that domain. A framework
may also be known as a platform or a component
system.

All software systems have an architecture. Some-
times, the architecture is explicit, perhaps conforming
guistics (2006), vol. 2, pp. 733–752

734 Computational Language Systems: Architectures
Auth
or'

s P
e

to certain standards or patterns, and sometimes it is
implicit. Where an architecture is explicit and tar-
geted on more than one system, it is known as a
‘reference architecture’ or a ‘domain-specific archi-
tecture.’ The former is ‘‘a software architecture for
a family of application systems’’ (Tracz and Mar,
1995). The term ‘domain-specific software architec-
ture (DSSA),’ the subject of an eponymous ARPA
research program, ‘‘applies to architectures designed
to address the known architectural abstractions spe-
cific to given problem domains’’ (Clements and
Northron, 1996).

An implementation of an architecture that includes
some graphical tools for building and testing systems
is a ‘development environment’. One of the benefits
of an explicit and repeatable architecture is that it
can give rise to a symbiotic relationship with a
dedicated development environment. In this rela-
tionship, the development environment can help
designers conform to architectural principles and
visualize the effect of various design choices and can
provide code libraries tailored to the architecture.

The most significant issues addressed by SALE
systems include the following.

. enabling a clean separation of low-level tasks, such
as data storage, data visualization, location and
loading of components, and execution of processes
from the data structures and algorithms that actu-
ally process human language

. reducing integration overheads by providing stan-
dard mechanisms for components to communicate
data about language and using open standards,
such as Java and XML, as the underlying platform

. providing a baseline set of language processing
components that can be extended and/or replaced
by users as required

. providing a development environment or at least a
set of tools to support users in modifying and
implementing language processing components
and applications

. automating measurement of performance of lan-
guage-processing components.

This article focuses on the first two sets of issues,
because they are issues that arise in every single NLP
system or application and are prime areas where
SALE can make a contribution. For a discussion of
other requirements, see Cunningham (2000).

Categories of Work on SALE

As with other software, LE programs comprise
data and algorithms. The current trend in software
development is to model both data and algorithms
together, as ‘objects.’ (Older development methods,
Encyclopedia of Language & Ling

rso
na

l C
op

y

such as structured analysis kept them largely sepa-
rate; Yourdon, 1989.) Systems that adopt the
new approach are referred to as ‘object-oriented’
(OO), and there are good reasons to believe that
OO software is easier to build and maintain (see
Booch, 1994).

In the domain of human language processing
R&D, however, the choice is not quite so clear cut.
Language data, in various forms, are of such signifi-
cance in the field that they are frequently worked on
independently of the algorithms that process them.
Such data have even come to have their own term:
‘language resources’ (LRs; LREC-1, 1998), covering
many data sources, from lexicons to corpora.

In recognition of this distinction, this article uses
the following terminology.

. Language resource (LR) refers to data-only
resources, such as lexicons, corpora, thesauri, or
ontologies. Some LRs come with software (e.g.,
Wordnet has both a user query interface and
C and Prolog APIs), but resources in which soft-
ware is only a means of accessing the underlying
data are still defined as LRs.

. Processing resource (PR) refers to resources that are
principally programmatic or algorithmic, such as
lemmatizers, generators, translators, parsers, or
speech recognizers. For example a part-of-speech
(POS) tagger is best characterized by reference
to the process it performs on text. PRs typically
include LRs (e.g., a tagger often has a lexicon).

PRs can be viewed as algorithms that map between
different types of LR and that typically use LRs in
the mapping process. An MT (Machine Translation)
engine, for example, maps a monolingual corpus
into a multilingual aligned corpus using lexicons,
grammars, and the like.

Adopting the PR/LR distinction is a matter of con-
forming to established domain practice and termi-
nology. It does not imply that one cannot model the
domain (or build software to support it) in an object-
oriented manner. This distinction is used to categorize
work on SALE. The next section surveys infrastruc-
tural work on processing resources, and the following
section reviews the much more substantial body of
work on language resources.
Processing Resources

Often, a language processing system follows several
discrete steps. For example, a translation applica-
tion must first analyze the source text to arrive at
some representation of meaning before it can begin
deciding upon target language structures that parallel
that meaning. A typical language analysis process
uistics (2006), vol. 2, pp. 733–752

e

Computational Language Systems: Architectures 735
Auth
or'

s P

follows such stages as text structure analysis, tokeni-
zation, morphological analysis, syntactic parsing, and
semantic analysis. The exact breakdown varies wide-
ly and is to some extent dependent on method; some
statistical work early in the second wave of the appli-
cation of these types of method completely ignored
the conventional language analysis steps in favor of a
technique based on a memory of parallel texts (Brown
et al., 1990). Later work has tended to accept the
advantages of some of these stages, however, though
they may be moved into an off-line corpus annotation
process, such as the Penn Treebank (Marcus et al.,
1993).

Each of these stages is represented by components
that perform processes on text and use components
containing data about language, such as lexicons and
grammars. In other words, the analysis steps are rea-
lized as a set of processing resources (PRs). Several
architectural questions arise in this context:

1. Is the execution of the PRs best done serially or in
parallel?

2. How should PRs be represented such that
their discovery on a network and loading into an
executive process are transparent to the developer
of their linguistic functions?

3. How should distribution across different machines
be handled?

4. What information should be stored about
components, and how should it be represented?

5. How can commonalities among component sets
be exploited?

6. How should the components communicate infor-
mation between each other? (This question can
also be stated as, ‘How should information about
text and speech be represented?’)

This section reviews work that addresses questions
1–5. The issue of representing information about
language is addressed in the following section.

Locating and Loading

There are several reasons why PR components
should be separate from the controlling application
that executes them:

. There will often be a many-to-one relation between
applications and PRs. Any application using
language analysis technology needs a tokenizer
component, for example.

. A PR may have been developed for one computing
platform, such as UNIX, but the application wish-
ing to use it may operate on another (e.g.,
Windows).

. The processing regime of the application may re-
quire linear or asynchronous execution; this choice

Encyclopedia of Language & Lin

rso
na

l C
op

y

should be isolated from the component structures
as far as possible to promote generality and encour-
age reuse.

. PR developers should not be forced to deal with
application-level software engineering issues, such
as how to manage installation, distribution over
networks, exception handling, and so on.

. Explicit modeling of components allows exploita-
tion of modern component infrastructures, such as
Java Beans or Active X.

Accordingly, many papers on infrastructural
software for LE separate components from the con-
trol executive (e.g., Boitet and Seligman, 1994;
Edmondson and Iles, 1994; Koning et al., 1995;
Wolinski et al., 1998; Poirier, 1999; Zajac, 1998b;
Lavelli et al., 2002; Cunningham et al., 2002a). The
term ‘executive’ is used here in the sense of a software
entity that executes, or runs, other entities. The ques-
tions then are how do components become known
to control processes or applications and how are
they loaded and initialized. A related question is
what data should be stored with components to facil-
itate their use by an executive; see the discussion on
metadata below. Much work ignores component-
related issues the rest of this section covers those
SALE systems for which the data are available.

The TIPSTER architecture (Grishman, 1997)
recognized the existence of the locating and loading
problems, but did not provide a full solution to the
problem. The architecture document includes a place-
holder for such a solution – in the form of a ‘register
annotator’ Application Programmers’ Interface (API)
call, which an implementation could use to provide
component loading – but the semantics of the call
were never specified.

The TalLab architecture ‘‘is embedded in the
operating system,’’ which allows them to ‘‘reuse di-
rectly a huge, efficient and reliable amount of code’’
(Wolinski et al., 1998). The precise practicalities of
this choice are unclear, but it seems that components
are stored in particular types of directory structure,
which are presumably known to the application at
startup time.

The Intarc Communication Environment (ICE) is
an ‘‘environment for the development of distributed
AI systems’’ (Amtrup, 1995) and part of the Verb-
mobil real-time speech-to-speech translation project
(Kay et al., 1994). ICE provides distribution based
around Parallel Virtual Machine (PVM) and a com-
munication layer based on channels. ICE is not spe-
cific to LE because the communication channels do
not use data structures specific to NLP needs and
because document handling issues are left to the indi-
vidual modules. ICE’s answer to the locating and
guistics (2006), vol. 2, pp. 733–752

736 Computational Language Systems: Architectures
Auth
or'

s P
e

loading problem is the Intarc License Server, which is
a kind of naming service or registry that stores
addressing information for components. Components
must themselves register with the server by making an
API call (Ice_Attach). The components must therefore
link to the ICE libraries and know the location of the
license server as must applications using ICE services.

Following from the ICE work, Herzog et al. (2004)
presented the latest in three generations of architec-
ture to arise from the Verbmobil and Smartkom pro-
jects, in the shape of the Multiplatform system. This
architecture supports multiple distributed compo-
nents from diverse platforms and implementation lan-
guages running asynchonously and communicating
via a message-passing substrate.

Corelli (Zajac, 1997) and its successor, Calypso,
(Zajac, 1998b) are also distributed systems that
cater for asynchronous execution. The initial Corelli
system implemented much of the CORBA standard
(Object Management Group, 1992), and component
discovery used a naming and directory service. All
communication and distribution were mediated by
an object request broker (ORB). Components ran as
servers and implemented a small API to allow their
use by an executive or application process. In the later
Calypso incarnation, CORBA was replaced by sim-
pler mechanisms because efficiency problems (for a
usage example, see Amtrup, 1999). In Calypso, com-
ponents are stored in a centralized repository, which
sidesteps the discovery problem. Loading is handled
by requiring components to implement a common
interface.

Another distributed architecture based on CORBA
is SiSSA (Lavelli et al., 2002). The architecture
comprises processors (PRs in our terms), servers for
their execution, data containers (LRs), and a manager
component called SiSSA Manager, which establishes
and removes connections between the processors,
according to a user-designed data flow. SiSSA uses
a processor repository to keep information about
processors registered with the architecture.

Carreras and Padró (2002) reported a distributed
architecture specifically for language analyzers.

GATE version 1 (Cunningham et al., 1997) was a
single-process, serial execution system. Components
had to reside in the same file system as the executive;
location was performed by searching a path stored in
an environment variable. Loading was performed in
three ways, depending on the type of component and
which of the GATE APIs it used.

GATE version 2 (Cunningham et al., 2002a,b) sup-
ports remote components; location is performed by
providing one or more component repositories called
Collection of REusable Objects for Language Engi-
neering (CREOLE) repositories, which contain XML

Encyclopedia of Language & Ling

op
y

definitions of each resource and the types of its para-
meters (e.g., whether it works with documents or
corpora). The user can then instantiate a component
by selecting it from the list of available components
and choosing its load-time parameters. GATE makes
a distinction between load-time and run-time para-
meters; the former are essential for the working of the
module (e.g., a grammar) and need to be provided at
load time, whereas the latter can change from one
execution to the next (e.g., a document to be ana-
lyzed). Components can also be re-initialized, which
enables users to edit their load-time data (e.g., gram-
mars) within the graphical environment and then
reload the component to reflect the changes. GATE
also supports editing of remote language resources
and execution of remote components using remote
method invocation (RMI); that is, it provides facilities
for building client-server applications.
rso
na

l CExecution

It seems unlikely that people process language by
means of a set of linear steps involving morphology,
syntax, and so on. More likely, we deploy our cogni-
tive faculties in a parallel fashion; hence, the term
‘parallel distributed processing’ in neural modeling
work (McClelland and Rumelhart, 1986). These
kinds of ideas have motivated work on nonlinear
component execution in NLP; von Hahn (1994)
gave an overview of a number of approaches, and a
significant early contribution was the Hearsay speech
understanding system (Erman et al., 1980).

Examples of asynchronous infrastructural systems
include Kasuga (Boitet and Seligman, 1994), Pantome
(Edmondson and Iles, 1994), Talisman (Koning
et al., 1995), Verbmobil (Görz et al., 1996), TalLab
(Wolinski et al., 1998), Xelda (Poirier, 1999), Corelli
(Zajac, 1997), Calypso (Zajac, 1998b), SiSSA (Lavelli
et al., 2002), Distributed Inquery (Cahoon and
McKinley, 1996), and the Galaxy Communicator
Software Infrastructure (GCSI-MITRE, 2002). Moti-
vations include the desire for nonlinear execution
and for feedback loops in ambiguity resolution (see
Koning et al., 1995).

In the Inquery and Verbmobil systems, an addi-
tional motivation is efficiency. ICE, the Verbmobil
infrastructure, addressed two problems: distributed
processing and incremental interpretation. Distribu-
tion is intended to contribute to processing speed in
what is a very computer-intensive application area
(speech-to-speech translation). Incremental interpre-
tation is designed both for speed and to facilitate
feedback of results from downstream modules to
upstream ones (e.g., to inform the selection of
word interpretations from phone lattices using POS
uistics (2006), vol. 2, pp. 733–752

e

Computational Language Systems: Architectures 737
Auth
or'

s P

information). ICE’s PVM-based architecture provides
for distributed asynchronous execution.

GCSI is an open source architecture for construct-
ing dialogue systems. This infrastructure concentrates
on distributed processing, hooking together sets of
servers and clients that collaborate to hold dialogues
with human interlocutors. Data get passed between
these components as attribute/value sets or ‘frames,’
the structuring and semantics of which must be
agreed upon on a case-by-case basis. Communication
between modules is achieved using a hub. This archi-
tectural style tends to treat components as black
boxes that are developed using other tool sets. To
solve this problem, other support environments can
be used to produce GCSI server components, using
GCSI as a communication substrate to integrate with
other components.

The model currently adopted in GATE is that each
PR may run in its own thread if asynchronous proces-
sing is required (by default, PRs will be executed
serially in a single thread). The set of LRs being
manipulated by a group of multithreaded PRs must
be synchronized (i.e., all their methods must have
locks associated with whichever thread is calling
them at a particular point). Synchronization of LRs
is performed in a manner similar to the Java collec-
tions framework. This arrangement allows the PRs to
share data safely. Responsibility for the semantics of
the interleaving of data access (who has to write what
in what sequence for the system to succeed) is a
matter for the user, however.

Metadata

A distinction may be made between the data that
language processing components use (or language
resources) and data that are associated with compo-
nents for descriptive and other reasons. The latter are
sometimes referred to as ‘metadata’ to differentiate
them from the former. In a similar fashion web con-
tent is largely expressed in HTML; data that describe
web resources, such as ‘this HTML page is a library
catalogue,’ are also called metadata. Relevant stan-
dards in this area include the Resource Description
Framework RDF; (Lassila and Swick, 1999; Berners-
Lee et al., 1999).

There are several reasons why metadata should be
part of a component infrastructure, including the
following:

. to facilitate the interfacing and configuration of
components

. to encode version, author, and availability data

. to encode purpose data and allow browsing of
large component sets.

Encyclopedia of Language & Lin

rso
na

l C
op

y

When components are reused across more than
one application or research project, often their
input/output (I/O) characteristics have not been
designed alongside the other components forming
the language-processing capability of the application.
For example, one POS tagger may require tokens as
input in a one-per-line encoding. Another may require
the Standard Generalized Markup Language (SGML)
input (Goldfarb, 1990). To reuse the tagger with a
tokenizer that produces some different flavor of out-
put, that output must be transformed to suit the
tagger’s expectations. In cases where there is an iso-
morphism between the available output and the re-
quired input, a straightforward syntactic mapping of
representations is possible. In cases where there is a
semantic mismatch, additional processing is necessary.

Busemann (1999) addressed component interfac-
ing and described a method for using feature structure
matrices to encode structural transformations on
component I/O data structures. These transforma-
tions essentially reorder the data structures around
pre-existing unit boundaries; therefore, the tech-
nique assumes isomorphism among the representa-
tions concerned. The technique also allows for type
checking of the output data during restructuring.

TIPSTER (Grishman, 1997), GATE (Cunningham,
2002), and Calypso (Zajac, 1998b) deal with inter-
facing in two ways. First, component interfaces share
a common data structure (e.g., corpora of annotated
documents), thus ensuring that the syntactic proper-
ties of the interface are compatible. Component
wrappers are used to interface to other representa-
tions as necessary; for example, a Brill tagger (Brill,
1992) wrapper writes out token annotations in the
required one-per-line format, then reads in the tags,
and writes them back to the document as annota-
tions. Second, where there is semantic incompatibility
between the output of one component and the input
of another, a dedicated transduction component can
be written to act as an intermediary between the two.

In Verbmobil a component interface language is
used, which constrains the I/O profiles of the various
modules (Bos et al., 1998). This language is a Prolog
term that encodes logical semantic information in a
flat list structure. The principle is similar to that used
in TIPSTER-based systems, but the applicability is
somewhat restricted by the specific nature of the
data structure.

Provision of descriptive metadata has been
addressed by the Natural Language Software Registry
(NLSR; DFKI, 1999) and by the EUDICO distributed
corpora project (Brugman et al., 1998a,b). In each
case, web-compatible data (HTML and XML, respec-
tively) are associated with components. The NLSR is
guistics (2006), vol. 2, pp. 733–752

738 Computational Language Systems: Architectures
Auth
or'

s P
e

purely a browsable description; the EUDICO work
links the metadata with the resources themselves,
allowing the launching of appropriate tools to ex-
amine them. Note that EUDICO has only dealt
with language resource components to date. GATE
2 (Cunningham et al., 2002b) uses XML for describ-
ing the metadata associated with processing resources
in its CREOLE repositories. This metadata are used
for component loading and also for launching the
corresponding visualization and editing tools.

In addition to the issue of I/O transformation,
in certain cases it may be desirable to be able to
identify automatically which components are plug-
compatible with which other ones, so as to identify
possible execution paths through the component set.

GATE 1 (Cunningham et al., 1997) addresses auto-
matic identification of execution paths by associating
a configuration file with each processing component
that details the input (preconditions) and output
(post-conditions) in terms of TIPSTER annotation
and attribute types (see the section on reference
attribution). This information is then used to auto-
generate an execution graph for the component set.

Commonalities

To conclude this survey of infrastructural work
related to processing, this section looks at the exploi-
tation of commonalities between components. For
example, both parsers and taggers have the character-
istics of language analyzers. One of the key motivat-
ing factors for SALE is to break the ‘software waste
cycle’ (Veronis and Ide, 1996) and promote reuse of
components. Various researchers have approached
this issue by identifying typical component sets for
particular tasks (Hobbs, 1993; TIPSTER, 1995;
Reiter and Dale, 2000). Work is continuing on
providing implementations of common components
(Ibrahim and Cummins, 1989; Cheong et al., 1994).
The rest of this section describes these approaches.

Reiter and Dale have reviewed and categorized
Natural Language Generation (NLG) components
and systems in some detail. Reiter (1994) argued
that a consensus component breakdown has emerged
in NLG (and that there is some psychological plausi-
bility for this architecture); the classification was ex-
tended in Reiter and Dale (2000). They also discussed
common data structures in NLG (as does the RAGS
project; see below) and appropriate methods for the
design and development of NLG systems. Reiter
(1999) argued that the usefulness of this kind of
architectural description is to ‘make it easier to de-
scribe functionalities and data structures’ and thus
facilitate research by creating a common vocabulary

Encyclopedia of Language & Ling

rso
na

l C
op

y

among researchers. He stated that this is a more
limited but more realistic goal than supporting the
integration of diverse NLG components in an actual
software system. The term he used for this kind of
descriptive work is a ‘reference architecture,’ which is
also the subject of the workshop at which the paper
was presented (Mellish and Scott, 1999).

The TIPSTER research program developed descrip-
tive or reference architectures for information extrac-
tion and for information retrieval. Hobbs (1993)
described a typical module set for an IE system. The
architecture comprises 10 components, dealing with
such tasks as pre-processing, parsing, semantic inter-
pretation, and lexical disambiguation; for a descrip-
tion of the full set, see Gaizauskas and Wilks, 1998).
For IR, TIPSTER (1995) describes two functions,
search and routing, each with a typical component
set (some of which are PRs and some LRs.)

An architecture for spoken dialogue systems, which
divides the task into dialogue management, context
tracking, and pragmatic adaptation, is presented in
LuperFoy et al. (1998). This in turn leads to an archi-
tecture in which various components (realized as
agents) collaborate in the dialogue. Some example
components are speech recognition, language inter-
pretation, language generation, and speech synthesis.
In addition a dialogue manager component provides
high-level control and routing of information among
components.

The preceding discussion illustrates that there is
considerable overlap among component sets devel-
oped for various purposes. A SALE that facilitated
multipurpose components would cut down on the
waste involved in the continual reimplementation of
similar components in different contexts. The compo-
nent model given in Cunningham (2000) is made
available in the GATE framework (Cunningham
et al., 2002b). This model is based on inheritance:
A parser is a type of language analyzer that is a type of
processing resource. Language engineers can choose,
therefore, between implementing a more specific in-
terface and adhering to the choices made by the
GATE developers for that type, or implementing a
more general interface and making their own choices
about the specifics of their particular resource.

In several cases, work on identifying component
commonalities has led to the development of toolkits
that aim to implement common tasks in a reusable
manner. For example, TARO (Ibrahim and Cummins,
1989) is an OO syntactic analyzer toolkit based on
a specification language. A toolkit for building IE
systems and exemplified in the MFE IE system is
presented in Cheong et al. (1994).
uistics (2006), vol. 2, pp. 733–752

e

Computational Language Systems: Architectures 739
Auth
or'

s P

Language Resources

As described above, language resources are data com-
ponents, such as lexicons, corpora, and language
models. They are the raw materials of language engi-
neering. This section covers five issues relating to
infrastructure for LRs:

1. computational access (local and nonlocal)
2. managing document formats and document collec-

tions (corpora), including multilingual resources
3. representing information about corpora (language

data or performance modeling)
4. representing information about language (data

about language or competence modeling)
5. indexing and retrieval of language-related infor-

mation.

Note also that the advantages of a component-based
model presented (in relation to PRs) in the section on
locating and loading PRs also apply to LRs.

Programmatic Access

LRs are of worth only inasmuch as they contribute to
the development and operation of PRs and the lan-
guage processing research prototypes, experiments,
and applications that are built from them. A key
issue in the use of LRs for language processing pur-
poses is that of computational access. Suppose that a
developer is writing a program to generate descrip-
tions of museum catalogue items this program may
have a requirement for synonyms, for example, in
order to lessen repetition. Several sources for syno-
nyms are available, such as WordNet (Miller, 1990)
or Roget’s Thesaurus. To reuse these sources, the
developer needs to access the data in these LRs from
their program.

Although the reuse of LRs has exceeded that of
PRs (Cunningham et al., 1994), in general, there are
still two barriers to LR access and hence LR reuse:
(1) each resource has its own representation syntax
and corresponding programmatic access mode (e.g.,
SQL for Celex, C or Prolog for WordNet); and
(2) resources must generally be installed locally to be
usable, and how this is done depends on what
operating systems are available, what support software
is required, and the like, which vary from site to site.

A consequence of the first barrier is that, although
resources of the same type usually have some struc-
ture in common (for example, at one of the most
general levels of description, lexicons are organized
around words), this commonality cannot be exploited
when it comes to using a new resource. In each case,
the user has to adapt to a new data structure; this
adaptation is a significant overhead. Work that seeks
to investigate or exploit commonalities among

Encyclopedia of Language & Lin

rso
na

l C
op

y

resources has first to build a layer of access routines
on top of each resource. So, for example, if one
wished to do task-based evaluation of lexicons by
measuring the relative performance of an IE system
with different instantiations of lexical resource, one
would typically have to write code to translate several
different resources into SQL or some other common
format. Similarly, work, such as Jing and McKeown
(1998) on merging large-scale lexical resources (in-
cluding WordNet and Comlex) for NLG, must deal
with this problem.

There have been two principal responses to this
problem: standardization and abstraction. The stan-
dardization solution seeks to impose uniformity by
specifying formats and structures for LRs. So, for
example, the EAGLES working groups have defined
standards for lexicons, corpora, and so on (EAGLES,
1999). More recently, Ide and Romary (2004)
reported the creation of a framework for linguistic
annotations as part of the work of ISO standardi-
zation Technical Committee 37, Sub-Committee 4,
whose objective

is to prepare various standards by specifying principles
and methods for creating, coding, processing and man-
aging language resources, such as written corpora, lexi-
cal corpora, speech corpora, dictionary compiling and
classification schemes. These standards will also cover
the information produced by natural language proces-
sing components in these various domains.

The work reported here is from Working Group 1
of the committee, which has developed a linguistic
annotation framework based on the XML (eXtensible
Markup Language), RDF(S) (Resource Discovery
Framework (Schema)), and OWL (Ontology Web
Language).

Although standardization would undoubtedly
solve the representation problem, there remains the
question of existing LRs (and of competing stan-
dards). Peters et al. (1998) and Cunningham et al.
(1998) described experiments with an abstraction
approach based on a common object-oriented model
for LRs that encapsulates the union of the linguistic
information contained in a range of resources and
encompasses as many object hierarchies as there are
resources. At the top of the resource hierarchies
are very general abstractions; at the leaves are data
items specific to individual resources. Programmatic
access is available at all levels, allowing the developer
to select an appropriate level of commonality for each
application. Generalizations are made over different
object types in the resources, and the object hierar-
chies are linked at whatever levels of description are
appropriate. No single view of the data is imposed on
the user, who may choose to stay with the ‘original’
guistics (2006), vol. 2, pp. 733–752

740 Computational Language Systems: Architectures
Auth
or'

s P
e

representation of a particular resource or to access a
model of the commonalities among several resources,
or a combination of both.

A consequence of the requirement for local instal-
lation – the second barrier to LR access – is that users
may have to adjust their compute environments to
suit resources tailored to particular platforms. In ad-
dition, there is no way to ‘try before you buy,’ no way
to examine an LR for its suitability for one’s needs
before licensing it in toto. Correspondingly, there is
no way for a resource provider to give limited access
to their products for advertising purposes or to gain
revenue through piecemeal supply of sections of a
resource.

This problem of non local access has also attracted
two types of responses, which can be broadly categor-
ized as: web browsing and distributed databases.

Several sites now provide querying facilities
from HTML pages, including the Linguistic Data
Consortium and the British National Corpus server.
So, for example, all occurrences of a particular word
in a particular corpus may be found via a web brows-
er. This is a convenient way to access LRs for man-
ual investigative purposes, but is not suited to
(or intended for) use by programs for their access
purposes.

Moving beyond browsing, several papers report
work on programmatic access using distributed data-
bases. Fikes and Farquhar (1999) showed how ontol-
ogies may be distributed, Brugman et al. (1998a,b)
described the EUDICO distributed corpus access sys-
tem, and Peters et al. (1998) and Cunningham et al.
(1998) proposed a system similar to EUDICO,
generalized to other types of LR. Some new directions
in sharing language resources are discussed in the
section on trends.

Other issues in the area of access to LRs include
that of efficient indexing and search of corpora (see
the section, ‘Indexing and Retrieval’), and that of
annotation of corpora (see the section on annotation).
The issue of how to access SGML documents in an
efficient manner is discussed in Olson and Lee (1997),
who investigated the use of object-oriented databases
for storing and retrieving SGML documents. Their
conclusions were essentially negative due to the
slowness of the databases used. Hendler and Stoffel
(1999) discussed how ontologies may be stored and
processed efficiently using relational databases, and
here the results were more positive.

Documents, Formats, and Corpora

Documents play a central role in LE. They are the
subject of analysis for such technologies as IE, and
Encyclopedia of Language & Ling

rso
na

l C
op

y

they are both analyzed and generated in technologies
such as MT. In addition, a large amount of work uses
annotated documents as training data for machine
learning of numerical models. Previous work on LE
infrastructure has developed models for documents
and corpora, provided abstraction layers for docu-
ment formats, and investigated efficient storage of
documents in particular formats.

Documents may contain text, audio, video or a
mixture of these formats; documents with a mixture
of formats are referred to as multimedia documents.
The underlying data are frequently accompanied by
formatting information (delineating titles, para-
graphs, areas of bold text, etc.) and, in the LE context,
by annotation (storing linguistic data, such as gesture
tags, POS tags, or syntax trees). Both formatting and
annotation come in a wide variety of formats, includ-
ing proprietary binary data, such as MS Word’s.doc or
Excel’s .xls; semi-open, semi-readable formats, such
as Rich Text Format (Word’s exchange format); and
nonproprietary standardized formats, such as HTML,
XML, or GIF (Graphics Interchange Format).

The Text Encoding Initiative (TEI; (Sperberg-
McQueen and Burnard, 1994, 2002), the Corpus
Encoding Standard (CES; Ide, 1998), and XCES (Ide
et al., 2000) are models of documents and corpora
that aim to standardize the representation of structur-
al and linguistic data for textual documents. The
general approach is to represent all information
about document structure, formatting, and linguistic
annotation using SGML/XML.

The issue of document formats has been addressed
by several TIPSTER-based systems, including GATE
and Calypso, and by the HTK speech recognition
toolkit (Young et al., 1999). In the HTK toolkit, the
approach is to provide API calls that deal with docu-
ments in various known formats (e.g. Windows
audioformat, MPEG) independent of those formats.
For example, a speech recognizer can access the
raw audio from these documents without knowing
anything about the representation format.

The TIPSTER systems deal with formats by means
of input filters that contain knowledge about the
format encoding and use that knowledge to unpack
format information into annotations. TIPSTER also
supplies a model of corpora and data associated with
both corpus and documents (Grishman, 1997). Note
that the two approaches are not mutually exclusive:
Ogden (1999) has defined a mapping between TEI/
CES and TIPSTER annotations.

Another important issue that needs to be dealt with
in infrastructures supporting LRs in multiple lan-
guages is the problem of editing and displaying
multilingual information. It is often thought that the
uistics (2006), vol. 2, pp. 733–752

e

Computational Language Systems: Architectures 741
Auth
or'

s P

character sets problem has been solved by use of
the Unicode standard. This standard is an important
advance, but in practice the ability to process text in a
large number of the world’s languages is still limited
by (1) incomplete support for Unicode in operating
systems and applications software, (2) languages
missing from the standard, and (3) difficulties in con-
verting non-Unicode character encodings to Unicode.
To deal with all these issues, including displaying
and editing of Unicode documents, GATE provides
a Unicode Kit and a specialized editor (Tablan et al.,
2002). In addition, all processing resources and
visualization components are Unicode-compliant.

Annotation

One of the key issues for much of the work done in this
area is how to represent information about text and
speech. This kind of information is sometimes called
‘language data,’ distinguishing it from ‘data about
language’ in the form of lexicons, grammars, etc.

Two broad approaches to annotation have been
taken: to use markup (e.g., SGML/XML) or to use
annotation data structures with references or pointers
to the original (e.g., TIPSTER, ATLAS). Interestingly,
the differences between the two kinds of approaches
have become less pronounced in recent work. SGML
used to involve embedding markup in the text;
TIPSTER (and related systems) use a referential
scheme where the text remains unchanged and anno-
tation refers to it by character offsets. The embedding
approach has several problems, including the difficul-
ty of extending the model to cope with multimedia
data (Nelson, 1997, Cunningham et al., 1997; Bird
and Liberman, 1999a). Partly in response to these
difficulties and as part of the rebirth of SGML as
XML (Goldfarb and Prescod, 1998), the ‘ML’ com-
munity has adopted a referential scheme itself, which
is now known as ‘stand-off markup.’ The data models
of the various systems are now much closer than they
were before XML existed, and the potential for inter-
operation between referential systems, such as GATE
and XML-based architectures, is greater as a result.
GATE exploits this potential by providing input from
and output to XML in most parts of the data model
(Cunningham et al., 2002a,b).

Markup-Based Architectures Language data can
be represented by embedding annotation in the docu-
ment itself, at least in the case of text documents; users
of embedding typically transcribe speech documents
before markup or use ‘stand-off markup.’ The prin-
cipal examples of embedded markup for lan-
guage data use the Standard Generalized Markup
Language (SGML; Goldfarb, 1990). SGML is a

Encyclopedia of Language & Lin

rso
na

l C
op

y

‘meta-language,’ a language used to create other lan-
guages. The syntax of SGML is therefore abstract,
with each document filling in this syntax to obtain a
concrete syntax and a particular markup language
for that document. In practice, certain conventions
are so widespread as to be de facto characteristics
of SGML itself. For example, annotation is gener-
ally delimited by <TAG> and </TAG> pairs, often
with some attributes associated, such as <TAG
ATTRIBUTE¼ value>. The legitimate tags (or ‘ele-
ments’) and their attributes and values must be defined
for each class of document, using a Document-Type
Definition (DTD). It does not specify what the markup
means; the DTD is the grammar that defines how the
elements may be legally combined and in what order
in a particular class of text; see Goldfarb (1990).
A good example of SGML used for corpus annotation
is the British National Corpus (BNC; Burnard, 1995).

The HyperText Markup Language (HTML) is an
application of SGML and is specified by its own
DTD. A difference from ordinary SGML is that the
DTD is often cached with software, such as web
browsers, rather than being a separate file associated
with the documents that instantiate it. In practice,
web browsers have been lenient in enforcing confor-
mance to the HTML DTD, which has led to diversity
among web pages; this means that HTML DTDs now
represent an idealized specification of the language
that often differs from its usage in reality.

Partly in response to this problem, the eXtensible
Markup Language (XML; Goldfarb and Prescod,
1998) was developed. SGML is a complex language:
DTDs are difficult to write, and full SGML is difficult
to parse. XML made the DTD optional and disallowed
certain features of SGML, such as markup minimiza-
tion. For example, the American National Corpus
(ANC; Macleod et al., 2002) uses XML and XCES
(Ide et al., 2000) to encode linguistic annotations.

One of the problems in the SGML/XML world is
that of computational access to and manipulation of
markup information. Addressing this problem, the
Language Technology group at the University of
Edinburgh developed an architecture and framework
based on SGML called the LT Normalized SGML
Library (LT NSL; McKelvie et al., 1998). This in
turn led to the development of LT XML (Brew
et al., 1999), following the introduction of the XML
standard.

Tools in an LT NSL system communicate via inter-
faces specified as SGML DTDs (essentially tag set
descriptions), using character streams on pipes: a
pipe-and-filter arrangement modeled after UNIX-
style shell programming. To avoid the need to deal
with certain difficult types of SGML (e.g., minimized
guistics (2006), vol. 2, pp. 733–752

742 Computational Language Systems: Architectures
s P
e

markup), texts are converted to a normal form before
processing. A tool selects what information it requires
from an input SGML stream and adds information
as new SGML markup. LT XML is an extension of
LT NSL to XML; it makes the normalization step
unnecessary.

Other similar work in this area includes the XDOC
workbench (Rösner and Kunze, 2002), stand-off
markup for NLP tools (Artola et al., 2002), and
the multilevel annotation of speech (Cassidy and
Harrington, 2001).

Reference Annotation I: TIPSTER The ARPA-
sponsored TIPSTER program in the United States,
which was completed in 1998, produced a data-driven
architecture for NLP systems (Grishman, 1997) sever-
al sites implemented the architecture, such as GATE
version 1 (Cunningham et al., 1999) and ELLOGON
(Petasis et al., 2002); the initial prototype was written
by Ted Dunning at the Computing Research Lab of
New Mexico State University. In contrast to the
embedding approach, in TIPSTER, the text remains
unchanged while information about it is stored in a
separate database. The database refers to the text by
means of offsets. The data are stored by reference.

Information is stored in the database in the form of
annotations, which associate arbitrary information
(attributes) with portions of documents (identified
by sets of start/end character offsets or spans). Attri-
butes are often the result of linguistic analysis (e.g.,
POS tags). In this way, information about texts is kept
separate from the texts themselves. In place of an
SGML DTD (or XML XSchema), an ‘annotation
type declaration’ defines the information present in

Auth
or'

Figure 1 Example of a TIPSTER annotation.

Encyclopedia of Language & Ling

rso
na

l C
op

y

annotation sets (though few implementations instan-
tiated this part of the architecture). Figure 1 gives an
example of TIPSTER annotation; it ‘‘shows a single
sentence and the result of three annotation proce-
dures: tokenization with part-of-speech assignment,
name recognition, and sentence boundary recogni-
tion. Each token has a single attribute, its part of
speech (POS); . . .; each name also has a single attri-
bute, indicating the type of name: person, company,
etc.’’ (Grishman, 1997).

Documents are grouped into collections (or
corpora), each with an associated database storing
annotations and such document attributes as identi-
fiers, headlines, etc. The definition of documents and
annotations in TIPSTER forms part of an object-
oriented model that can deal with inter-as well as
intratextual information by means of reference
objects that can point at annotations, documents,
and collections. The model also describes elements
of IE and IR systems relating to their use, providing
classes representing queries and information needs.

TIPSTER-style models have several advantages
and disadvantages. Texts may appear to be one-
dimensional, consisting of a sequence of characters,
but this view is incompatible with such structures as
tables, which are inherently two-dimensional. Their
representation and manipulation are easier in a refer-
ential model like TIPSTER than in an embedding one
like SGML, in which markup is stored in a one-
dimensional text string. In TIPSTER, a column of a
table can be represented as a single object with multi-
ple references to parts of the text (an annotation with
multiple spans, or a document attribute with multiple
references to annotations). Marking columns in
SGML requires a tag for each row of the column,
and manipulation of the structure as a whole necessi-
tates traversal of all the tags and construction of some
other, non-SGML data structure.

Distributed control has a relatively straightforward
implementation path in a database-centered system
like TIPSTER: the database can act as a blackboard,
and implementations can take advantage of well-
understood access control technology.

In TIPSTER, in contrast to the hyperlinking used in
LT XML, there is no need to break up a document
into smaller chunks, as the database management
system (DBMS) in the document manager can deal
efficiently with large data sets and visualization tools
can give intelligible views into this data. To cross-
refer between annotations is a matter of citing ID
numbers, which are themselves indexes into database
records and can be used for efficient data access. It
is also possible to have implicit links: Simple API
calls find all the token annotations subsumed by a
uistics (2006), vol. 2, pp. 733–752

e

Computational Language Systems: Architectures 743
Auth
or'

s P

sentence annotation, for example, via their respective
byte ranges without any need for additional cross-
referencing information.

Another advantage of embedded markup in TIP-
STER is that an SGML structure like <w id¼ p4.
w1> has to be parsed in order to extract the fact
that there is a ‘w’ tag whose ‘id’ attribute is ‘p4.w1’.
A TIPSTER annotation is effectively a database re-
cord with separate fields for type (e.g., ‘w’), ID, and
other attributes, all of which may be indexed and
none of which ever requires parsing.

There are three principal disadvantages of the
TIPSTER approach.

1. Editing of texts requires offset recalculation.
2. TIPSTER specifies no interchange format, and

TIPSTER data are weakly typed. There is no effec-
tive DTD mechanism, though this may also to an
extent be an advantage, as a complex typing
scheme can inhibit unskilled users.

3. The reference classes can introduce brittleness in
the face of changing data: Unless an application
chases all references and updates them as the
objects they point to change, the data can become
inconsistent. This problem also applies to hyper-
linking in embedded markup.

Reference Annotation II: Linguistic Data Consortium
The Linguistic Data Consortium (LDC) has proposed
the use of Directed Acyclic Graphs (DAGs) or just
Annotation Graphs (AGs) as a unified data structure
for text and speech annotation (Bird et al., 2000b).
Bird and Liberman (1999b) provided an example of
using these graphs to mark up discourse-level objects.
This section compares the structure of TIPSTER
annotations with the graph format.

As discussed above, TIPSTER annotations are asso-
ciated with documents and have four elements:

1. a type, which is a string
2. an ID, which is a string unique among annotations

on the document
3. a set of spans that point into the text of the docu-

ment
4. a set of attributes.

TIPSTER attributes, which are associated with
annotations and with documents and collections of
documents, have a name, which is a string, and a
value, which may be one of several data types includ-
ing a string; a reference to an annotation, document,
or collection; or a set of strings or references. Some
implementors of the architecture, including GATE
and Corelli, have relaxed the type requirements
on attribute values, allowing any object as a value.

Encyclopedia of Language & Lin

rso
na

l C
op

y

This has the advantage of flexibility and the disad-
vantage that it makes viewing, editing, and storage of
annotations more complex.

TIPSTER explicitly models references between
annotations with special reference classes. These clas-
ses rely on annotations, documents, and collections of
documents having unique identifiers.

LDC annotations are arcs in a graph, the nodes of
which are time points or, by extension, character off-
sets in a text. Each annotation has a type and a value,
which are both atomic. A document may have several
different graphs, and graphs can be associated with
more than one document; this is not specified in
the model.

There are no explicit references. Rather, references
are handled implicitly by equivalence classes: if two
annotations share the same type and value, they are
considered co-referential. To refer to particular docu-
ments or other objects, an application or annotator
must choose some convention for representing those
references as strings and use those as annotation
values. This seems problematic: an annotation of
type Co-reference Chain and value Chain23 should
be equivalent to another of the same type and value,
but this is not true for an annotation of type PartOf-
Speech and value Noun. Because LDC annotation
values are atomic, any representation of complex
data structures must define its own reference struc-
ture to point into some other representation system.

TIPSTER has a richer formalism, both because of
the complexity of the annotation/attribute part of the
model and because documents and collections of
documents are an explicit part of the model, as are
references among all these objects.

The inherent problems with developing a model of
a task to be solved in software in isolation from the
development of instances of that software are evident
in the work of Cassidy and Bird (2000), who dis-
cussed the properties of the LDC AG model when
stored and indexed in a relational database. At that
point the authors added identifier fields to annota-
tions to allow referencing without the equivalent
class notion.
Reference Annotation III: GATE GATE version
2 has a reference annotation model that was designed
to combine the advantages of the TIPSTER and LDC
models:

. Annotation sets are more explicitly graph-based.
This feature allows increased efficiency of traversal
and simpler editing because offsets are moved from
the annotations into a separate node object. In
addition, the offsets can be both character and
guistics (2006), vol. 2, pp. 733–752

744 Computational Language Systems: Architectures
Auth
or'

s P
e

time offsets, thus enabling annotation of
multimodal data.

. Multiple annotation sets are allowed on docu-
ments. Consider the situation when two people
are adding annotations to the same document and
later wish to compare and merge their results. TIP-
STER would handle this by having an ‘annotator’
attribute on all the annotations. It is much simpler
to have disjoint sets.

. Documents and collections are an essential part of
the model, and information can be associated with
them in similar fashion to that on annotations.

. All annotations have unique identifiers to allow for
referencing.

. An annotation only has two nodes which means
that the multiple-span annotations of TIPSTER are
no longer supported; the workaround is to store
noncontiguous data structures as features of the
document and point from there to the multiple
annotations that make up the structures.

. The annotation values are extensible (i.e., any clas-
ses of object can be added to the model and be
associated with annotations).

In addition, both LDC and TIPSTER need an
annotation meta-language to describe – for purposes
of validation or configuration of viewing and edit-
ing tools – the structure and permissible value set
of annotations. GATE uses the XML schema lan-
guage supported by W3C as an annotation meta-
language (Cunningham et al., 2002b). These
annotation schemas define which attributes and
optionally which values are permissible for each
type of annotation (e.g., POS, named entity). For
instance, a chosen tag set can be specified as per-
missible values for all POS annotations. This meta-
information enables the annotation tools to control
the correctness of the user input, thus making it easier
to enforce annotation standards.

Data about Language

The preceding sections described language data, in-
formation related directly to examples of the human
performance of language. This section considers
work on data about language or the description of
human language competence. Much work in this area
has concentrated on formalisms for the representa-
tion of the data and has advocated declarative, con-
straint-based representations (using feature-structure
matrices manipulated under unification) as an appro-
priate vehicle with which ‘‘many technical problems
in language description and computer manipula-
tion of language can be solved’’ (Shieber, 1992).
One example of an infrastructure project based on

Encyclopedia of Language & Ling

rso
na

l C
op

y

Attribute-Value Matrices (AVMs) is ALEP, the Ad-
vanced Language Engineering Platform. ALEP aims
to provide ‘‘the NLP research and engineering com-
munity in Europe with an open, versatile, and gener-
al-purpose development environment’’ (Simkins,
1992). ALEP, although open in principle, is primarily
an advanced system for developing and manipulating
feature structure knowledge bases under unification.
It also has several parsing algorithms – algorithms for
transfer, synthesis, and generation (Schütz, 1994). As
such, it is a system for developing particular types
of LRs (e.g., grammars, lexicons) and for doing a
particular set of tasks in LE in a particular way.

The system, despite claiming to use a theory-
neutral formalism (in fact an HPSG (Head-driven
Phrase Structure Grammar)-like formalism), is still
committed to a particular approach to linguistic
analysis and representation. It is clearly of utility to
those in the LE community who use that class of
theories and to whom those formalisms are relevant,
but it excludes or at least does not support actively
those who are not, including an increasing number of
researchers committed to statistical and corpus-based
approaches.

Other systems that use AVMs include a framework
for defining NLP systems based on AVMs (Zajac,
1992); the Eurotra architecture, an ‘open and modu-
lar’ architecture for MT promoting resource reuse
(Schütz et al., 1991); the DATR morphological lexi-
con formalism (Evans and Gazdar, 1996); the Shiraz
MT Architecture, a chart and unification-based
architecture for MT and (Amtrup, 1999), a unified
(Finite State Transducer) FST/AVM formalism for
morphological lexicons Zajac (1998a); and the
RAGS architecture.

A related issue is that of grammar development in
an LE context (see Netter and Pianesi, 1997; Estival
et al., 1997). Fischer et al. (1996) presented an ab-
stract model of thesauri and terminology mainte-
nance in an OO framework. ARIES is a formalism
and development tool for Spanish morphological
lexicons (Goni et al. 1997).

The Reference Architecture for Generation Systems
(RAGS) project (Cahill et al., 1999a,b) has concen-
trated on describing structures that may be shared
among NLG component interfaces. This choice is
motivated by the fact that the input to a generator is
not a document, but a meaning representation. RAGS
describes component I/O using a nested feature ma-
trix representation, but does not describe the types of
LR that an NLG system may use or the way in which
components may be represented, loaded, and so on.
More recently, Mellish et al. (2004) presented the
RAGS conceptual framework and Mellish and
uistics (2006), vol. 2, pp. 733–752

e

p

Computational Language Systems: Architectures 745
Auth
or'

s P

Evans (2004) discussed the implementation of this
framework in several experimental systems and how
these systems illustrate a wider range of issues for the
construction of SALE for generation.

Indexing and Retrieval

Modern corpora, and annotations upon them, fre-
quently run to many millions of tokens. To enable
efficient access to this data, the tokens and annotation
structures must be indexed. In the case of
raw corpora, this problem equates to information
retrieval (IR; also known as document detection), a
field with a relatively well-understood set of techni-
ques based on treating documents as bags of stemmed
words and retrieving based on relative frequency of
these terms in documents and corpora (see van
Rijsbergen, 1979). Although these processes are well
understood and relatively static, IR is an active re-
search field, partly because existing methods are im-
perfect and partly because that imperfection becomes
more and more troubling in the face of the explosion
of web content. There have been several attempts to
provide SALE systems in this context.

As noted above, the TIPSTER (1995) program de-
veloped a reference model of typical IR component
sets. More concretely, this program also developed a
communication protocol based on Z39.50 for the
detection of interactions between the querying appli-
cation and search engine (Buckley, 1998). The anno-
tation and attribute data structures described earlier
were also applied for IR purposes, although the prac-
tical applications of the architecture were found in
general to be too slow for the large data sets involved.

GATE (Cunningham et al., 2002a,b) uses an ex-
tendable, open-source IR engine, Lucene, to index
documents and corpora for full-text retrieval. Lucene
also allows indexing and retrieval by custom-
provided fields like annotations. The model used to
wrap Lucene in GATE is designed for extensibility
to other IR systems when required.

Whereas the problem of indexing and retrieving
documents is well understood, the problem of index-
ing complex structures in annotations is more of an
open question. The Corpus Query System (Christ,
1994, 1995) is the most-cited source in this area,
providing indexing and search of corpora and later
of WordNet. Similar ideas have been implemented in
CUE (Mason, 1998) for indexing and search of anno-
tated corpora and at the W3-Corpora site (University
of Essex, 1999) for searchable on-line annotated
corpora. Some work on indexing in the LT XML
system was reported in McKelvie and Mikheev
(1998). Bird et al. (2000a) proposed a query language
for the LDC annotation graph model, called AGQL.

Encyclopedia of Language & Lin

y

Cassidy (2002) discussed the use of XQuery as
an annotation query language and concluded that
it is good for dealing with hierarchical data models
like XML, but needs extending with better support
for sequential data models, such as annotation
graphs.

GATE indexes and retrieves annotations by storing
them in a relational database, indexed by type, attri-
butes, and their values. In this way, it is possible to
retrieve all documents that contain a given attribute
and/or value or to retrieve all annotations of a given
type in a corpus, without having to traverse
each document separately (Bontcheva et al., 2002;
Cunningham et al., 2002b). The query language
used is SQL.
rso
na

l C
oRecent Trends and Future Directions

As has become evident from the work reviewed here,
there are many tools and architectures, and many of
these are focused on subareas of NLP (e.g., dialog
speech) or specific formalisms (e.g., HPSG). Each of
these infrastructures offers specialized solutions, so it
is not likely that there will ever be only one universal
architecture or infrastructure. Instead, the focus in
recent work has been on ‘inter-operability’, allowing
infrastructures to work together, and reusability, en-
abling users to reuse and adapt tools with a minimum
effort. We review some of these new trends here to see
how they are likely to influence the next period of
research on SALE.

Toward Multipurpose Repositories

To support the reusability of resources, several re-
positories have been established; some describe NLP
tools (e.g., ACL Natural Language Software Regis-
try), and others distribute language resources, such as
corpora and lexicons (e.g., ELRA and LDC). To date,
these repositories have remained largely independent
of each other, with the exception of such repositories
as TRACTOR (Martin, 2001), which contain both
corpora in a number of languages and specialized
tools for corpus analysis.

As argued in Declerck (2001), there is a need to link
the two kinds of repositories to allow corpus
researchers to find the tools they need to process
corpora and vice versa. The idea is to create a multi-
purpose infrastructure for the storage and access of
both language data and the corresponding processing
resources. One of the cornerstones of such an infra-
structure are metadata, associated with each resource
and pointing at other relevant resources (e.g., tools
pointing at the language data that they need and
guistics (2006), vol. 2, pp. 733–752

746 Computational Language Systems: Architectures
Auth
or'

s P
e

can process). The following section discusses recent
research on metadata descriptions for tools and lan-
guage resources, including handling of multimodal
and multilingual data.

Resource Metadata and Annotation Standards

As discussed earlier, there are several reasons why
metadata should be part of a component infrastruc-
ture (i.e., why it is useful beyond the more narrow
scope of providing descriptions of resources in a
repository). One dimension that affects the kinds of
metadata needed to describe resources is their type:
whether they are documents in a corpus, a lexicon, or
a tool working on language data. For example, the
ISLE Computational Lexicon working group has
developed a modular architecture, called MILE,
designed to factor out linguistically independent
primitive units of lexical information; deal with
monolingual, bilingual, and multilingual lexicons;
and avoid theoretical bias (Calzolari et al., 2001).
Some of these desiderata are relevant also to the
problem of resource distribution, as discussed in the
section on programmatic access and in Cunningham
et al. (2000). Multimedia/multimodal language re-
sources (MMLR) pose a different set of problems,
and existing standards for tagging textual docu-
ments (e.g., XCES; Ide et al., 2000) are not suffi-
cient. Broeder and Wittenburg (2001) provided a
metadata vocabulary for MMLR, which encodes
information related to the media files (e.g., format
and size) and the annotation units used (e.g., POS),
as well as the basic information on creator, content,
and so on.

Another aspect of improving resource reusability
and interoperability is the development of standards
for encoding annotation data. Ide and Romary (2002)
described a framework for linguistic annotations
based on XML and the XML-based RDF and
DAMLþOIL standards for defining the semantics of
the annotations. It provides a link with recent work
on formal ontologies and the semantic web and
enables the use of the related knowledge management
tools to support linguistic annotation. For example,
Collier et al. (2002) used the popular Protégé ontol-
ogy editor as a basis for an annotation tool capable of
producing RDF(S) annotations of language data in
multiple languages.

Open Archives

One of the new research directions is toward ‘open
archives,’ archives aiming to make resources easily
discoverable, accessible, and identifiable. This work
not only includes language resources, such as corpora
and lexicons, but also software tools (i.e., processing

Encyclopedia of Language & Ling

rso
na

l C
op

y

resources and development environments). Resource
discovery is made possible by metadata associated
with each resource and made available in a cen-
tralized repository. The recently established Open
Language Archives Community (OLAC; Bird and
Simons, 2001; Bird et al., 2002) aims to create a
worldwide virtual library of language resources
through the development of inter-operating reposi-
tories and tools for their maintenance and access.
OLAC also aims to establish and promote best
practices in archiving for language resources. The
OLAC infrastructure is based on two initiatives
from digital library research: the Open Archieves Ini-
tiative and the Dublin Core initiative for resource
metadata. Currently, OLAC comprises 12 archives
with a cross-archive searching facility.

As argued in Wynne (2002), the current trends
toward multilinguality and multimodality suggest
that the language resources of the future will span
across languages and modalities, will be distributed
over many repositories, and will form virtual corpora,
supported by a diverse set of linguistic analysis and
searching tools. As already discussed, metadata
and annotation standards play a very important
role here. The other major challenge lies in making
existing processing resources accessible over the web
and enhancing their reusability and portability.

Component Reusability, Distributed Access,
and Execution

To enable virtual corpora and collaborative annota-
tion efforts spanning country boundaries, software
infrastructures and tools need to control user access
to different documents, types of annotations, and
metadata. Ma et al. (2002) discussed how this access
can be achieved by using a shared relational database
as a storage medium, combined with a number of
annotation tools based on the annotation graph for-
malism discussed in the section on the Linguistic Data
Consortium. The same approach has been taken in
GATE (Cunningham et al., 2002b), in which all LRs
and their associated annotations can be stored in
Oracle or PostgreSQL. This feature enables users to
access remote LRs, index LRs by their annotations,
and construct search queries retrieving LRs given
annotations or metadata constraints (e.g., find all
documents that contain person entities called Bush).
User access is controlled at the individual and group
level, with read/write access rights specified at LR
creation time by their owner (the user who has first
stored the LR in the database). Because the storage
mechanisms in GATE are separate from the API used
for accessing LRs and annotations, the visualization
tools and processing resources work on both local
uistics (2006), vol. 2, pp. 733–752

e

C

Computational Language Systems: Architectures 747
's
P

and remote data in the same way. Ma et al. (2002)
discussed a special version of AGTK TableTrans tool
created to work with the database annotations. In
addition, GATE’s database storage model supports
other LRs, such as lexicons and ontologies.

The recent development of web services enables
integration of different information repositories
and services across the Internet and offers a new
way of sharing language resources across the Internet.
Dalli (2002) discussed an architecture for web-based
inter-operable LRs based on SOAP and web services.
Work in progress extends this approach to processing
resource execution in the context of on-line adaptive
information extraction (see Tablan et al., 2003). Both
make extensive use of XML for metadata description.
However, the benefits of the relational database stor-
age mechanism can still be maintained by providing a
conversion layer, which transforms the stored LRs
and annotations into the desired XML format when
needed. Similarly, Todirascu et al. (2002) described
an architecture that uses SOAP to provide distributed
processing resources as services on the web, both as a
protocol for message passing and a mechanism for
executing remote modules from the client. Bontcheva
et al. (2004) reported recent work in upgrading
GATE to meet challenges posed by research in seman-
tic web, large-scale digital libraries, and machine
learning for language analysis.

Popov et al. (2004) presented an application that
combines several SALE systems, including GATE and
Sesame, to create a platform for semantic annotation
called KIM (Knowledge and Information Manage-
ment). Their paper covered several issues relating
to building scaleable ontology-based information
extraction.

r

Auth
oMeasurement

A persistent theme in SALE work has been measure-
ment, quantitative evaluation, and the relationship
between engineering practice and scientific theory.
To quote Lord Kelvin in a lecture to the Institution
of Civil Engineers, in London in 1883.

When you can measure what you are speaking about,
and express it in numbers, you know something about it;
but when you cannot measure it, when you cannot ex-
press it in numbers, your knowledge is of a meager and
unsatisfactory kind: it may be the beginning of knowl-
edge, but you have scarcely in your thoughts advanced to
the stage of science.

On the other hand, Einstein tells us,

Not everything that counts can be counted, and not
everything that can be counted counts (from a sign
hanging in Einstein’s office at Princeton University).
Encyclopedia of Language & Lin

op
y

Researchers have taken similarly varied
approaches to measurement, both of component sys-
tems developed using SALE systems and of the suc-
cess of those systems themselves. The presentation of
IBM’s TEXTRACT architecture by Neff et al. (2004)
included an illustration of how the same mechanism
can be used for producing both quantitative metrics
and for visual feedback to users of the results of
automated processing.

Ferrucci and Lally (2004) reported a successor
to TEXTRACT called UIMA (Unstructured Informa-
tion Management Architecture), which is in active
development to support the work of several hundred
R&D staff working in areas as diverse as question
answering and machine translation. The significant
commitment of IBM to SALE development indi-
cates the success of the TEXTRACT concept and
of architectural support for language processing
research.
rso
na

l Prognosis

The principal defining characteristic of NLE work is
its objective: to engineer products that deal with natural
language and that satisfy the constraints in which
they have to operate. This definition may seem tautolo-
gous or a statement of the obvious to an engineer
practicing in another, well established area (e.g., me-
chanical or civil engineering), but is still a useful remind-
er to practitioners of software engineering, and it
becomes near-revolutionary when applied to natural
language processing. This is partly because of what, in
our opinion, has been the ethos of most Computational
Linguistics research. Such research has concentrated
on studying natural languages, just as traditional lin-
guistics does, but using computers as a tool to model
(and, sometimes, verify or falsify) fragments of linguistic
theories deemed of particular interest. This is of course
a perfectly respectable and useful scientific endeavor,
but does not necessarily (or even often) lead to work-
ing systems for the general public (Boguraev et al.,
1995).

Working systems for public consumption require
qualities of robustness that are unlikely to be achieved
at zero cost as part of the normal development of
experimental systems in language computation re-
search (Maynard et al., 2002). Investing the time
and energy necessary to create robust reusable soft-
ware is not always the right thing to do, of course;
sometimes what is needed is a quick hack to explore
some simple idea with as little overhead as possible.
To conclude that this is always the case is a rather
frequent error, however, and is of particular con-
cern at a time when web-scale challenges to language
processing are common.
guistics (2006), vol. 2, pp. 733–752

748 Computational Language Systems: Architectures
Also problematic for SALE is the fact that it is not
always easy to justify the costs of engineered systems
when developers of more informal and short-term
solutions have been known to make claims for their
power and generality that are, shall we say, somewhat
optimistic. The fact that the majority of the language
processing field continues to use a SALE system of
one type or another indicates that this has been a
fruitful pursuit.

Acknowledgments

The authors were partly supported by EPSRC grant
GR/N15764/01 (AKT) and by EU grants SEKT,
PrestoSpeace, and Knowledge Web.
See also: Human Language Technology; Language Pro-

cessing: Statistical Methods; Natural Language Proces-

sing: System Evaluation; Text Retrieval Conference and

Message Understanding Conference.
Auth
or'

s P
e

Bibliography

All websites have been confirmed as live before publication,
but may change post-publication.

Amtrup J (1995). ICE – INTARC Communication Envi-
ronment user guide and reference manual version 1.4.
University of Hamburg.

Amtrup J (1999). ‘Architecture of the Shiraz Machine Trans-
lation System.’ http://crl.nmsu.edu/shiraz/archi.html.

Artola X, de Ilarraza A D, Ezeiza N, Gojenola K,
Hernández G & Soroa A (2002). ‘A class library for
the integration of NLP tools: definition and imple-
mentation of an abstract data type collection for the
manipulation of SGML documents in a context of
stand-off linguistic annotation.’ In Proceedings of
LREC 2002 Third International Conference on Lan-
guage Resources and Evaluation. Gran Canaria, Spain.
1650–1657.

Berners–Lee T, Connolly D & Swick R (1999). ‘Web
architecture: describing and exchanging data. Tech.
rep., W3C Consortium.’ http://www.w3.org/1999/04/
WebData.

Bird S & Liberman M (1999a). A formal framework
for linguistic annotation. Technical report MS-CIS-99-
01. (Philadelphia: University of Pennsylvania. http://
xxx.lanl.gov/abs/cs.CL/9903003.

Bird S & Liberman M (1999b). ‘Annotation graphs as a
framework for multidimensional linguistic data analysis.’
In Towards standards and tools for discourse tagging.
Proceedings of the ACL-99 Workshop. 1–10.

Bird S & Simons G (2001). ‘The OLAC metadata set
and controlled vocabularies.’ In Proceedings of the
ACL 2001 Workshop on Sharing Tools and Resources.
27–38.
Encyclopedia of Language & Ling

rso
na

l C
op

y

Bird S, Buneman P & Tan W (2000a). ‘Toward a query
language for annotation graphs.’ In Proceedings of the
Second International Conference on Language Resources
and Evaluation. Athens, Greece.

Bird S, Day D, Garofolo J, Henderson J, Laprun C &
Liberman M (2000b). ‘ATLAS: a flexible and extensible
architecture for linguistic annotation’ In Proceedings of
the Second International Conference on Language
Resources and Evaluation.

Bird S, Uszkoreit H & Simons G (2002). ‘The open lan-
guage archives community.’ In Proceedings of the LREC
2002 Third International Conference on Language
Resources and Evaluation.

Boguraev B, Garigliano R & Tait J (1995). ‘Editorial.’
Natural Language Engineering 1(1).

Boitet C & Seligman M (1994). ‘The ‘‘Whiteboard’’ archi-
tecture: a way to integrate heterogeneous components
of NLP systems.’ In Proceedings of COLING ’94.
426–430.

Bontcheva K, Cunningham H, Tablan V, Maynard D &
Saggion H (2002). ‘Developing reusable and robust lan-
guage processing components for information systems
using GATE.’ In Proceedings of the 3rd International
Workshop on Natural Language and Information Sys-
tems. Aix-en-Provence, France: IEEE Computer Society
Press.

Bontcheva K, Tablan V, Maynard D & Cunningham H
(2004). ‘Evolving GATE to meet new challenges in lan-
guage engineering.’ Natural Language Engineering
10(3/4), 349–373.

Booch G (1994). Object-oriented analysis and design (2nd
edn.). Amsterdam: Benjamin/Cummings.

Bos J, Rupp C, Buschbeck-Wolf B & Dorna M (1998).
‘Managing information at linguistic interfaces.’ In Pro-
ceedings of the 36th ACL and the 17th COLING
(ACL-COLING ’98). 160–166.

Brand S (1994). How buildings learn. London: Penguin.
Brew C, McKelvie D, Tobin R, Thompson H & Mikheev A

(1999). The XML Library LT XML version 1.1 User
documentation and reference guide. Edinburgh: Lan-
guage Technology Group. http://www.ltg.ed.ac.uk.

Brill E (1992). ‘A simple rule-based part-of-speech tagger.’
In Proceedings of the Third Conference on Applied
Natural Language Processing.

Broeder D & Wittenburg P (2001). ‘Multimedia language
resources.’ In Proceedings of the ACL 2001 Workshop on
Sharing Tools and Resources. 47–51.

Brown P, Cocke J, Pietra S D, Pietra V D, Jelinek F, Lafferty
J, Mercer R & Roossin P (1990). ‘A statistical approach
to machine translation.’ Computational Linguistics 16,
79–85.

Brugman H, Russel A, Wittenburg P & Piepenbrock R
(1998a). ‘Corpus-based research using the Internet.’ In
Workshop on Distributing and Accessing Linguistic
Resources. Granada, Spain. 8–15. http://www.dcs.shef.
ac.uk/ �hamish/dalr/.

Brugman H, Russel H & Wittenburg P (1998b). ‘An
infrastructure for collaboratively building and using
uistics (2006), vol. 2, pp. 733–752

http://crl.nmsu.edu/shiraz/archi.html
http://www.w3.org/1999/04/WebData
http://xxx.lanl.gov/abs/cs.CL/9903003
http://www.ltg.ed.ac.uk
http://www.dcs.shef.ac.uk/~hamish/dalr/
http://xxx.lanl.gov/abs/cs.CL/9903003
http://www.dcs.shef.ac.uk/~hamish/dalr/
http://www.w3.org/1999/04/WebData

e

Computational Language Systems: Architectures 749
Auth
or'

s P

multimedia corpora in the humaniora.’ In Proceedings of
the ED-MEDIA/ED-TELECOM Conference.

Buckley C (1998). ‘TIPSTER Advanced Query (DN2). TIP-
STER program working paper.’ (Unpublished).

Burnard L (1995). ‘Users reference guide for the British
National Corpus.’ http://info.ox.ac.uk/bnc.

Busemann S (1999). ‘Constraint-based techniques for
interfacing software modules.’ In Proceedings of the
AISB’99 Workshop on Reference Architectures and
Data Standards for NLP. Edinburgh: Society for
the Study of Artificial Intelligence and Simulation of
Behaviour.

Cahill L, Doran C, Evans R, Mellish C, Paiva D, Reape M,
Scott D & Tipper N (1999a). ‘Towards a reference archi-
tecture for natural language generation systems.’ Tech.
Rep. ITRI-99-14; HCRC/TR-102. Edinburgh and
Brighton: University of Edinburgh and Information
Technology Research Institute.

Cahill L, Doran C, Evans R, Paiva D, Scott D, Mellish C &
Reape M (1999b). ‘Achieving theory-neutrality in refer-
ence architectures for NLP: to what extent is it possible
desirable?’ In Proceedings of the AISB’99 Workshop on
Reference Architectures and Data Standards for NLP.
Edinburgh: Society for the Study of Artificial Intelligence
and Simulation of Behaviour.

Cahoon B & McKinley K (1996). ‘Performance evaluation
of a distributed architecture for information retrieval.’ In
Proceedings of SIGIR ’96. 110–118.

Calzolari N, Lenci A & Zampolli A (2001). ‘International
standards for multilingual resource sharing: the isle
computational lexicon working group.’ In Proceedings
of the ACL 2001 Workshop on Sharing Tools and
Resources. 39–46.

Carreras X & Padró L (2002). ‘A flexible distributed
architecture for natural language Analyzers.’ In Proceed-
ings of the LREC 2002 Third International Con-
ference on Language Resources and Evaluation.
1813–1817.

Cassidy S (2002). ‘Xquery as an annotation query language:
a use case analysis.’ In Proceedings of the LREC 2002
Third International Conference on Language Resources
and Evaluation.

Cassidy S & Bird S (2000). ‘Querying databases of anno-
tated speech.’ In Eleventh Australasian Database Confer-
ence. Canberra: Australian National University.

Cassidy S & Harrington J (2001). ‘Multi-level annotation
in the Emu speech database management system.’ Speech
Communication 33, 61–77.

Cheong T, Kwang A, Gunawan A, Loo G, Qwun L & Leng
S (1994). ‘A pragmatic information extraction architec-
ture for the message formatting export (MFE) system.’ In
Proceedings of the Second Singapore Conference on
Intelligent Systems (SPICIS ’94). B371–B377.

Christ O (1994). ‘A modular and flexible architecture for an
integrated corpus query system.’ In Proceedings of the
Third Conference on Computational Lexicography and
Text Research (COMPLEX ’94). http://xxx.lanl.gov/abs/
cs.CL/9408005.

Encyclopedia of Language & Lin

rso
na

l C
op

y

Christ O (1995). ‘Linking WordNet to a corpus query sys-
tem.’ In Proceedings of the Conference on Linguistic
Databases.

Clements P & Northrop L (1996). Software architecture: an
executive overview. Tech. Rep. CMU/SEI-96-TR-003.
Pittsburgh: Software Engineering Institute, Carnegie
Mellon University.

Collier N, Takeuchi K, Nobata C, Fukumoto J & Ogata N
(2002). ‘Progress on multilingual named entity annota-
tion guidelines using RDF(s).’ In Proceedings of
the LREC 2002 Third International Conference on
Language Resources and Evaluation, Conference.

Cunningham H (1999). ‘A definition and short history
of language engineering.’ Journal of Natural Language
Engineering 5(1), 1–16.

Cunningham H (2000). Software architecture for language
engineering. Ph.D. diss., University of Sheffield. http://
gate.ac.uk/sale/thesis/.

Cunningham H (2002). ‘GATE, a general architecture for
text engineering.’ Computers and the Humanities 36,
223–254.

Cunningham H & Scott D (2004). ‘Introduction to the
special issue on software architecture for language engi-
neering.’ Natural Language Engineering 10, 205–211.

Cunningham H, Freeman M & Black W (1994). ‘Software
reuse, object-oriented frameworks and natural language
processing.’ In New methods in language processing
(NeMLaP-1). Manchester.

Cunningham H, Humphreys K, Gaizauskas R & Wilks Y
(1997). ‘Software infrastructure for natural language
processing.’ In Proceedings of the Fifth Conference on
Applied Natural Language Processing (ANLP-97).
http://xxx.lanl.gov/abs/cs.CL/9702005.

Cunningham H, Peters W, McCauley C, Bontcheva K &
Wilks Y (1998). ‘A level playing field for language
resource evaluation.’ In Workshop on Distributing and
Accessing Lexical Resources at Conference on Language
Resources Evaluation.

Cunningham H, Gaizauskas R, Humphreys K & Wilks Y
(1999). ‘Experience with a language engineering ar-
chitecture: three years of GATE.’ In Proceedings of
the AISB’99 Workshop on Reference Architectures
and Data Standards for NLP. Edinburgh: Society for
the Study of Artificial Intelligence and Simulation of
Behaviour.

Cunningham H, Bontcheva K, Peters W & Wilks Y (2000).
‘Uniform language resource access and distribution
in the context of a General Architecture for Text
Engineering (GATE).’ In Proceedings of the Workshop
on Ontologies and Language Resources (Onto-
Lex’2000). Bulgaria: Sozopol. http://gate.ac.uk/sale/
ontolex/ontolex.ps.

Cunningham H, Maynard D, Bontcheva K & Tablan V
(2002a). ‘GATE: a framework and graphical develop-
ment environment for robust NLP tools and applica-
tions.’ In Proceedings of the 40th Anniversary Meeting
of the Association for Computational Linguistics
(ACL’02).
guistics (2006), vol. 2, pp. 733–752

http://info.ox.ac.uk/bnc
http://xxx.lanl.gov/abs/cs.CL/9408005
http://gate.ac.uk/sale/thesis/
http://xxx.lanl.gov/abs/cs.CL/9702005
http://gate.ac.uk/sale/ontolex/ontolex.ps
http://gate.ac.uk/sale/thesis/
http://gate.ac.uk/sale/ontolex/ontolex.ps
http://xxx.lanl.gov/abs/cs.CL/9408005

750 Computational Language Systems: Architectures
Auth
or'

s P
e

Cunningham H, Maynard D, Bontcheva K, Tablan V &
Ursu C (2002b). ‘The GATE user guide.’ http://gate.
ac.uk/.

Dalli A (2002). ‘Creation and evaluation of extensible
language resources for Maltese.’ In Proceedings of
the LREC 2002 Third International Conference on
Language Resources and Evaluation.

Declerck T (2001). ‘Introduction: extending NLP tool repo-
sitories for the interaction with language data resource
repositories.’ In Proceedings of the ACL 2001 Workshop
on Sharing Tools and Resources. 3–6.

DFKI (1999). ‘The Natural Language Software Registry.’
http://www.dfki.de/lt/registry/.

EAGLES (1999). EAGLES recommendations. . http://
www.ilc.pi.cnr.it/EAGLES96/browse.html.

Edmondson W & Iles J (1994). ‘A non-linear architecture
for speech and natural language processing.’ In Proceed-
ings of International Conference on Spoken Language
Processing, vol. 1. 29–32.

Eriksson M (1996). ALEP. http://www.sics.se/humle/
projects/svensk/platforms.html.

Erman L, Hayes-Roth F, Lesser V & Reddy D (1980). ‘The
Hearsay II speech understanding system: integrating
knowledge to resolve uncertainty.’ Computing Surveys
12.

Estival D, Lavelli A, Netter K & Pianesi F (eds.) (1997).
‘Computational environments for grammar development
and linguistic engineering.’ Madrid: Association for
Computational Linguistics.

Evans R & Gazdar G (1996). ‘DATR: a language for lexical
knowledge representation.’ Computational Linguistics
22(1).

Ferrucci D & Lally A (2004). ‘UIMA: an architectural
approach to unstructured information processing in
the corporate research environment.’ Natural Language
Engineering 10, 327–349.

Fikes R & Farquhar A (1999). ‘Distributed repositories of
highly expressive reusable ontologies.’ IEEE Intelligent
Systems 14(2), 73–79.

Fischer D, Mohr W & Rostek L (1996). ‘A modular, object-
oriented and generic approach for building terminology
maintenance systems.’ In TKE ’96: Terminology and
Knowledge Engineering. 245–258.

Gaizauskas R & Wilks Y (1998). ‘Information extraction:
beyond document retrieval.’ Journal of Documentation
54(1), 70–105.

Goldfarb C & Prescod P (1998). The XML handbook. New
York: Prentice Hall.

Goldfarb C F (1990). The SGML handbook. Oxford:
Oxford University Press.

Goni J, Gonzalez J & Moreno A (1997). ‘ARIES: a
lexical platform for engineering Spanish processing
tools.’ Journal of Natural Language Engineering 3(4),
317–347.

Görz G, Kessler M, Spilker J & Weber H (1996). ‘Research
on architectures for integrated speech/language systems
in Verbmobil.’ In Proceedings of COLING-96.

Encyclopedia of Language & Ling

rso
na

l C
op

y

Grishman R (1997). ‘TIPSTER architecture design docu-
ment version 2.3. Tech. rep., DARPA.’ http://www.itl.-
nist.gov/div894.02/related_projects/tipster/.

Hendler J & Stoffel K (1999). ‘Back-end technology for
high-performance knowledge representation systems.’
IEEE Intelligent Systems 14(3), 63–69.

Herzog G, Ndiaye A, Merten S, Kirchmann H, Becker T &
Poller P (2004). ‘Large-scale software integration
for spoken language and multimodal dialog systems.’
Natural Language Engineering 10, 283–307.

Hobbs J (1993). ‘The generic information extraction sys-
tem.’ In Proceedings of the Fifth Message Understanding
Conference (MUC-5). http://www.itl.nist.gov/div894/
894.02/related_projects/tipster/gen_ie.htm.

Ibrahim M & Cummins F (1989). ‘TARO: an interactive,
object-oriented tool for Building natural language sys-
tems.’ In IEEE International Workshop on Tools for
Artificial Intelligence. 108–113.

Ide N (1998). ‘Corpus encoding standard: SGML guidelines
for encoding linguistic corpora.’ In Proceedings of the
First International Language Resources and Evaluation
Conference. 463–470.

Ide N & Romary L (2002). ‘Standards for language
resources.’ In Proceedings of the LREC 2002 Third In-
ternational Conference on Language Resources and
Evaluation.

Ide N & Romary L (2004). ‘Standards for language
resources.’ Natural Language Engineering 10, 211–227.

Ide N, Bonhomme P & Romary L (2000). ‘XCES: an XML-
based standard for Linguistic corpora.’ In Proceedings
of the Second International Language Resources and
Evaluation Conference (LREC). 825–830.

Jing H & McKeown K (1998). ‘Combining multiple, large-
scale resources in a reusable lexicon for natural
language generation.’ In Proceedings of the 36th
ACL and the 17th COLING (ACL-COLING ’98).
607–613.

Kay M, Gawron J & Norvig P (1994). Verbmobil, a
translation system for face-to-face dialog. Stanford:
CSLI.

Koning J, Stefanini M & Deamzeau Y (1995). ‘DAI inter-
action protocols as control strategies in a natural lan-
guage processing system.’ In Proceedings of IEEE
Conference on Systems, Man and Cybernetics.

Lassila O & Swick R (1999). ‘Resource description frame-
work (RDF) model and syntax specification. Tech. Rep.
19990222, W3C Consortium.’ http://www.w3.org/-TR/
REC-rdf-syntax/.

Lavelli A, Pianesi F, Maci E, Prodanof I, Dini L & Mazzini
G (2002). ‘SiSSA: an infrastructure for developing NLP
applications.’ In Proceedings of the LREC 2002 Third
International Conference on Language Resources and
Evaluation.

LREC-1 (1998). Conference on Language Resources Eval-
uation (LREC-1).

LuperFoy S, Loehr D, Duff D, Miller K, Reeder F &
Harper L (1998). ‘An architecture for dialogue man-
uistics (2006), vol. 2, pp. 733–752

http://gate.ac.uk/
http://www.dfki.de/lt/registry/
http://www.ilc.pi.cnr.it/EAGLES96/browse.html
http://www.sics.se/humle/projects/svensk/platforms.html
http://www.itl.nist.gov/div894.02/related_projects/tipster/
http://www.itl.nist.gov/div894/894.02/related_projects/tipster/gen_ie.htm
http://www.w3.org/-TR/REC-rdf-syntax/
http://gate.ac.uk/
http://www.itl.nist.gov/div894.02/related_projects/tipster/
http://www.itl.nist.gov/div894/894.02/related_projects/tipster/gen_ie.htm
http://www.ilc.pi.cnr.it/EAGLES96/browse.html
http://www.sics.se/humle/projects/svensk/platforms.html
http://www.w3.org/-TR/REC-rdf-syntax/

e

Computational Language Systems: Architectures 751
Auth
or'

s P

agement, context tracking, and pragmatic adaptation
in spoken dialogue systems.’ In Proceedings of the
36th ACL and the 17th COLING (ACL-COLING
’98). 794–801.

Ma X, Lee H, Bird S & Maeda K (2002). ‘Models and tools
for collaborative annotation.’ In Proceedings of the
LREC 2002 Third International Conference on Lan-
guage Resources and Evaluation.

Macleod C, Ide N & Grishman R (2002). ‘The American
National Corpus: standardized resources for American
English.’ In Proceedings of the LREC Second Interna-
tional Conference on Language Resources and Evalua-
tion. 831–836.

Marcus M, Santorini B & Marcinkiewicz M (1993).
‘Building a large annotated corpus of English: the
Penn Treebank.’ Computational Linguistics 19(2),
313–330.

Martin W (2001). ‘An archive for all of Europe.’ In Pro-
ceedings of the ACL 2001 Workshop on Sharing Tools
and Resources. 11–14.

Mason O (1998). ‘The CUE corpus access tool.’ In
Workshop on Distributing and Accessing Linguistic
Resources. 20–27. http://www.dcs.shef.ac.uk/ �hamish/
dalr/.

Maynard D, Tablan V, Cunningham H, Ursu C, Saggion H,
Bontcheva K & Wilks Y (2002). ‘Architectural
elements of language engineering robustness.’ Journal of
Natural Language Engineering Special Issue on Robust
Methods in Analysis of Natural Language Data 8(2/3),
257–274.

McClelland J & Rumelhart D (1986). Parallel distributed
processing. Cambridge, MA: MIT Press.

McKelvie D & Mikheev A (1998). ‘Indexing SGML files
using LT NSL, IT Index documentation.’ http://
www.ltg.ed.ac.uk/.

McKelvie D, Brew C & Thompson H (1998). ‘Using
SGML as a basis for data-intensive natural language
processing.’ Computers and the Humanities 31(5),
367–388.

Mellish C & Evans R (2004). ‘Implementation architec-
tures for natural language generation.’ Natural Language
Engineering 10, 261–283.

Mellish C & Scott D (1999). ‘Workshop preface.’ In Pro-
ceedings of the AISB’99 Workshop on Reference Archi-
tectures and Data Standards for NLP. Edinburgh: Society
for the Study of Artificial Intelligence and Simulation of
Behaviour.

Mellish C, Scott D, Cahill L, Evans R, Paiva D & Reape M
(2004). ‘A reference architecture for generation systems.’
Natural Language Engineering.

Miller G A (ed.) (1990). ‘WordNet: an on-line lexical
database.’ International Journal of Lexicography 3(4)
235–312.

MITRE (2002). ‘Galaxy communicator.’ http://communi-
cator.sourceforge.net/.

Neff M S, Byrd R J & Boguraev B K (2004). ‘The
talent system: TEXTRACT architecture and data
model.’ Natural Language Engineering.

Encyclopedia of Language & Lin

rso
na

l C
op

y

Nelson T (1997). ‘Embedded markup considered harmful.’
In Connolly D (ed.) XML: principles tools and tech-
niques. Cambridge, MA: O’Reilly. 129–134.

Netter K & Pianesi F (1997). ‘Preface.’ In Proceedings of the
Workshop on Computational Environments for Gram-
mar Development and Linguistic Engineering. iii–v.

Ogden B (1999). ‘TIPSTER annotation and the Corpus
Encoding Standard.’ http://crl.nmsu.edu/Research/
Projects/tipster/annotation.

Olson M & Lee B (1997). ‘Object databases for SGML
document management.’ In IEEE International Confer-
ence on Systems Sciences.

Petasis G, Karkaletsis V, Paliouras G, Androutsopoulos I &
Spyropoulos C (2002). ‘Ellogon: a new text engineer-
ing platform.’ In Proceedings of the LREC 2002 Third
International Conference on Language Resources and
Evaluation.

Peters W, Cunningham H, McCauley C, Bontcheva K &
Wilks Y (1998). ‘Uniform Language resource access and
distribution.’ In Workshop on Distributing and Accessing
Lexical Resources at Conference on Language Resources
Evaluation.

Poirier H (1999). ‘The XeLDA Framework.’ http://
www.dcs.shef.ac.uk/�hamish/dalr/baslow/xelda.pdf.

Popov B, Kiryakov A, Kirilov A, Manov D, Ognyanoff D &
Goranov M (2004). ‘KIM – semantic annotation plat-
form.’ Natural Language Engineering.

Reiter E (1994). ‘Has a consensus NL generation architec-
ture appeared, and is it psycholinguistically plausible?’ In
Proceedings of the Seventh International Workshop on
Natural Language Generation (INLGW-1994). http://
xxx.lanl.gov/abs/CS.cl/9411032.

Reiter E (1999). ‘Are reference architectures standardisa-
tion tools or descriptive aids?’ In Proceedings of the
AISB’99 Workshop on Reference Architectures and
Data Standards for NLP. Edinburgh: Society for the
Study of Artificial Intelligence and Simulation of
Behaviour.

Reiter E & Dale R (2000). Building natural language
generation systems. Cambridge: Cambridge University
Press.

Rösner D & Kunze M (2002). ‘An XML-based docu-
ment suite.’ In Proceedings of the 19th International
Conference on Computational Linguistics (COL-
ING’02).

Schütz J (1994). ‘Developing lingware in ALEP.’ ALEP User
Group News 1(1).

Schütz J, Thurmair G & Cencioni R (1991). ‘An architec-
ture sketch of Eurotra-II.’ In MT Summit III. 3–11.

Shieber S (1992). Constraint-based grammar formalisms.
Cambridge, MA: MIT Press.

Simkins N K (1992). ALEP user guide. Luxemburg: cEC.
Simkins N K (1994). ‘An open architecture for language

engineering.’ In First CEC Language Engineering Con-
vention.

Sperberg-McQueen C & Burnard L (1994). ‘Guidelines
for electronic text encoding and interchange (TEI P3).
ACH, ACL, ALLC.’ http://etext.virginia.edu/TEI.html.
guistics (2006), vol. 2, pp. 733–752

http://www.dcs.shef.ac.uk/~hamish/dalr/
http://www.ltg.ed.ac.uk/
http://communicator.sourceforge.net/
http://crl.nmsu.edu/Research/Projects/tipster/annotation
http://www.dcs.shef.ac.uk/~hamish/dalr/baslow/xelda.pdf
http://xxx.lanl.gov/abs/CS.cl/9411032
http://etext.virginia.edu/TEI.html
http://crl.nmsu.edu/Research/Projects/tipster/annotation
http://www.dcs.shef.ac.uk/~hamish/dalr/
http://www.dcs.shef.ac.uk/~hamish/dalr/baslow/xelda.pdf
http://xxx.lanl.gov/abs/CS.cl/9411032
http://www.ltg.ed.ac.uk/

752 Computational Language Systems: Architectures
r's
 P

e

Sperberg-McQueen C & Burnard L (eds.) (2002). Guide-
lines for electronic text encoding and interchange (TEI
P4). TEI Consortium.

Tablan V, Bontcheva K, Maynard D & Cunningham H
(2003). ‘OLLIE: on-line learning for information extrac-
tion.’ In Proceedings of the HLT-NAACL Workshop on
Software Engineering and Architecture of Language
Technology Systems.

Tablan V, Ursu C, Bontcheva K, Cunningham H, Maynard
D, Hamza O, McEnery T, Baker P & Leisher M (2002).
‘A Unicode-based environment for creation and use of
language resources.’ In Proceedings of the LREC 2002
Third International Conference on Language Resources
and Evaluation.

Object Management Group (1992). The common object
request broker: architecture and specification. New
York: John Wiley.

TIPSTER (1995). ‘The generic document detection system.’
http://www.itl.nist.gov/div894/894.02/related_projects/
tipster/gen_ir.htm.

Todirascu A, Kow E & Romary L (2002). ‘Towards reus-
able nlp components.’ In Proceedings of the LREC 2002
Third International Conference on Language Resources
and Evaluation.

Tracz W (1995). ‘Domain-specific software architecture
(DSSA) frequently asked questions (FAQ).’ http://
www.oswego.com/dssa/faq/faq.html.

University of Essex (1999). ‘Description of the W3-Corpora
web-site.’ http://clwww.essex.ac.uk/w3c/.

van Rijsbergen C (1979). Information retrieval. London:
Butterworths.

Veronis J & Ide N (1996). ‘Considerations for the reusabil-
ity of linguistic software. Tech. rep., EAGLES.’ http://
w3.lpl.univ-aix.fr/projects/multext/LSD/LSD1.html.

von Hahn W (1994). ‘The architecture problem in natural
language processing.’ Prague Bulletin of Mathematical
Linguistics 61, 48–69.

Wolinski F, Vichot F & Gremont O (1998). ‘Producing
NLP-based on-line contentware.’ In Natural Language

Auth
o

Encyclopedia of Language & Ling

al
Cop

y

and Industrial Applications. http://xxx.lanl.gov/abs/
cs.CL/9809021.

Wynne M (2002). ‘The language resource archive of the
21st century.’ In Proceedings of the LREC 2002 Third
International Conference on Language Resources and
Evaluation.

Young S, Kershaw D, Odell J, Ollason D, Valtchev V &
Woodland P (1999). The HTK book (Version 2.2). Cam-
bridge: Entropic Ltd. ftp://ftp.entropic.com/pub/htk/.

Yourdon E (1989). Modern structured analysis. New York:
Prentice-Hall.

Zajac R (1992). ‘Towards computer-aided linguistic engi-
neering.’ In Proceedings of COLING ’92. 828–834.

Zajac R (1997). ‘An open distributed architecture for reuse
and integration of heterogenous NLP components.’ In
Proceedings of the 5th Conference on Applied Natural
Language Processing (ANLP-97).

Zajac R (1998a). ‘Feature structures, unification and fini-
te-state transducers.’ In International Workshop on
Finite State Methods in Natural Language Processing.

Zajac R (1998b). ‘Reuse and integration of NLP com-
ponents in the Calypso architecture.’ In Workshop on
Distributing and Accessing Linguistic Resources. 34–40.
http://www.dcs.shef.ac.uk/ �hamish/dalr/.
rso
n

Relevant Websites

http://www.tc37sc4.org – ISO standardization.
http://www.ldc.upenn.edu – Linguistic Data Consortium.
http://www.info.ox.ac.uk – British National Corpus.
http://www.openarchives.org – Open Archives Initiative.
http://www.dublincore.org – Dublin Core Initiative for

Resource Metadata.
http://www.openrdf.org – Knowledge and information

management.
uistics (2006), vol. 2, pp. 733–752

http://www.itl.nist.gov/div894/894.02/related_projects/tipster/gen_ir.htm
http://www.oswego.com/dssa/faq/faq.html
http://clwww.essex.ac.uk/w3c/
http://w3.lpl.univ-aix.fr/projects/multext/LSD/LSD1.html
http://xxx.lanl.gov/abs/
ftp://ftp.entropic.com/pub/htk/
http://www.dcs.shef.ac.uk/hamish/dalr/
http://www.tc37sc4.org
http://www.ldc.upenn.edu
http://www.info.ox.ac.uk
http://www.openarchives.org
http://www.dublincore.org
http://www.openrdf.org
http://www.itl.nist.gov/div894/894.02/related_projects/tipster/gen_ir.htm
http://www.oswego.com/dssa/faq/faq.html
http://w3.lpl.univ-aix.fr/projects/multext/LSD/LSD1.html

	Computational Language Systems: Architectures
	Software Architecture
	Software Architectures for Language Engineering
	Categories of Work on SALE
	Processing Resources
	Locating and Loading
	Execution
	Metadata
	Commonalities

	Language Resources
	Programmatic Access
	Documents, Formats, and Corpora
	Annotation
	Markup-Based Architectures
	Reference Annotation I: TIPSTER
	Reference Annotation II: Linguistic Data Consortium
	Reference Annotation III: GATE

	Data about Language
	Indexing and Retrieval

	Recent Trends and Future Directions
	Toward Multipurpose Repositories
	Resource Metadata and Annotation Standards
	Open Archives
	Component Reusability, Distributed Access, and Execution
	Measurement

	Prognosis
	Acknowledgments
	Bibliography
	Relevant Websites

