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Abstract 
Understanding knowledge co-creation in key emerging areas of European research is a critical issue for policy 
makers in order to analyse impact and make strategic decisions. However, current methods for characterising and 
visualising the field have limitations concerning the changing nature of research, the differences in language and 
topic structure between policies and scientific topics, and the coverage of a broad range of scientific and political 
issues that have different characteristics. In this work, we discuss the novel use of ontologies and semantic 
technologies as a way to bridge the linguistic and conceptual gap between policy questions and data sources. Our 
experience suggests that a proper interlinking between intellectual tasks and the use of advanced techniques for 
language processing is key for the success of this endeavour. 

Introduction 
Mapping diverse kinds of scientific output to key topics in the science policy debate is a central 
concern that still requires more research. Traditional methods to characterise and visualise the 
field of knowledge production have important limitations. The move towards open linked data 
in STI studies is generating new opportunities, but also new challenges that are at the core of 
this paper. The opportunities concern the ability to interlink different kinds of data sources, 
such as publications, projects and patents, in order to provide a richer view of knowledge 
production (Light et al, 2014); the challenges are related to the need for a robust approach to 
identify and model relevant topics, such as those associated with specific policy and scholarly 
questions (Cassi et al, 2017). 
Traditional classification systems for characterising research, e.g. the Web of Science Journal 
classification (Leydesdorff et al., 2009) and the IPC codes for patent classification (Debackere 
and Luwel, 2005), are typically simple, stable, and have widespread coverage. However, 
combining such schemes in order to depict an overall view of scientific knowledge production 
that encompasses different data sources is inherently challenging: each scheme is closely related 
to a specific type of data source, and despite wide-ranging efforts to map different classification 
schemes (Schmoch et al, 2003), they remain largely incommensurable. Without this overall 
view of knowledge production, cross-field comparisons cannot be made. Furthermore, mapping 
these classifications of scientific basis to policy-oriented topics presents a further issue due to 
terminological and conceptual divergence. 
We address these problems through the use of ontologies to drive the development of a web-
based tool providing interactive visualizations on European research. The tool is designed to 
provide information to users wishing to understand the nature of, and connections between, key 
European research, focusing on two topic areas central to policy makers: Key Enabling 
Technologies (KET) and Societal Grand Challenges (SGC). Ontologies share with 



classifications the fact that they are constructed upon some intellectual understanding of reality; 
while their creation can be assisted by all kinds of text-based methods, they ultimately require 
some method of expert-based arbitration and must rely on some kind of “shared vision of the 
structure of the domain of interest” (Daraio et al, 2016). Our experience shows that while 
natural language processing (NLP) techniques are critical for linking ontologies with large 
datasets and extracting from the latter robust evidence, nevertheless some key design choices 
on the ontology and its application to data are basically of an intellectual nature. This suggests 
that the design of robust interactions between expert-based priori knowledge and evaluation on 
the one hand, and the use of advanced data techniques on the other hand, is a key requirement 
for robust S&T ontologies. 

Related Work 
A large body of work has been developed to address the limitations of classification systems 
outlined above. These mostly rely on individual data items, and include citation analysis (Šubelj 
et al, 2016) and NLP (Van den Besselaar and Heimeriks, 2006). Recent NLP work has focused 
on extracting relevant information from scholarly documents1, but this is primarily concerned 
with metadata and citation extraction. Other research has investigated keyword extraction from 
academic publications (Shah et al., 2003) and overlay maps (Rafols, 2010). The semantic web 
approach of Motta and Osborne (2012) in Rexplore takes scholarly data analysis a step further 
by examining research trends at different levels of granularity, and by finding semantic relations 
between authors, using relations such as co-citation, co-publication and topic similarity. 
However, this is again limited to only publication data, which is relatively cohesive. 
Another strand of research that moves away from traditional classification systems involves 
modelling topics and domains in order to gain an overview of the field. Here, techniques such 
as LDA (Blei et al., 2003), PLSA (Blei, 2012) and KDV (Börner et al, 2003) are used 
extensively for understanding and mapping large research areas, for example to understand the 
evolution of topics over time (Chen et al., 2017).  These techniques essentially model the 
distribution of topics, based on the principle that documents typically contain multiple topics 
according to a probabilistic distribution. However, the drawback is that it can be hard to make 
sense of the resulting information and to understand the nature of these unlabelled clusters and 
topics, and this work often has to be done manually. Furthermore, these methods do not deal 
well with topics outside a core subject domain, and clustering may result in multi-disciplinary 
topics without strong internal cohesion (Boyack, 2017). 
All these techniques extract topics in a bottom-up manner from structural (in the case of citation 
analysis) and linguistic (in the case of NLP and topic modelling) features of documents. 
However, while these provide detailed views of specific knowledge domains and of their 
evolution over time, they are currently less suited for large-scale mapping across the whole 
S&T landscape. Methods like LDA also work well on homogenous kinds of data, such as a 
large collection of publication abstracts, but cannot extract good topics that encompass the 
diversity of more disparate datasets. Finally, connecting such topics with relevant themes at the 
policy level is far from simple, since the associated terminologies are largely incompatible 
(Cassi et al, 2017). 

Task 
In this work, we use an ontology-based approach to address these issues. An ontology is defined 
as the “explicit formal specification of the terms in the domain and relations among 
them” (Gruber 1993), and in our case, acts as a bridge between the different and evolving 
vocabularies across heterogenous data sources. Our ontology is essentially a hierarchical 

                                                
1 http://csxstatic.ist.psu.edu/about/scholarly-information-extraction 



representation of topics, as seen in many traditional classification systems, but with the 
possibility of multiple inheritance. While keeping some basic features of classifications, like 
the presence of a core set of subjects organized in layers, ontologies are more flexible in their 
structure and, through instances (keywords), can be connected to (different and evolving) 
vocabularies across heterogeneous data sources. An ontology thus offers a formal 
representation of a domain of knowledge that is shared by a specific group of “experts”, based 
largely on a priori conceptual knowledge, while clustering approaches represent a more 
informal, data-driven view.  

Challenges 
Implementing an ontology involves 2 major aspects: first, the design of the ontology structure, 
consisting of a set of related topics and subtopics in the areas of KET and SGC; and second, a 
way to map relevant documents to topics in this structure (which can be seen as a problem of 
multi-class classification, with a large number of classes). 
There are several major challenges associated with the design and use of ontologies in this 
scenario: both conceptual and practical. First, the ontology structure is hard to define because 
it is not clear what level of precision is both needed and practical, and because these affect the 
implementation of the document-topic mapping. The structure must also be intuitive for human 
users to navigate, and this is perhaps the most challenging component: it must reflect both the 
needs of the policy makers, but also the variety of ways in which information is portrayed in 
the data sources (in our case comprising publications, project abstracts, patents, and 
descriptions of social innovation projects). This latter is also critical for the data classification 
task. 
We have attempted to mitigate this problem by consulting experts at every stage of the process, 
holding workshops with policy makers from a variety of fields in order to understand their 
needs, and following a principled development process. However, the intrinsic vagueness of 
the notion of Key Enabling Technologies and especially Societal Grand Challenges means that 
the topics are hard to define, and there is no gold standard against which to evaluate.  
Second, differences in vocabularies within academia, industry and society mean that the same 
concepts are typically expressed in very different ways, especially in patents which are 
extremely technical. Existing attempts at classification, as described earlier, have highlighted 
these issues. Our solution to this lies in the use of sophisticated techniques from NLP and 
Machine Learning, where this kind of language variation is a common problem and techniques 
go far beyond the simple keyword matching approach used in other work. For example, word 
embeddings and a plethora of similarity and distance measures are used to determine possible 
mappings between data and classes in the ontology.  
Finally, there are numerous issues related to evaluation of such a large-scale classification. It is 
impossible to know if every document has been correctly classified, and almost certainly there 
will be errors. We mitigate this by testing in different ways and at a variety of stages in the 
process, checking a sample of annotated documents, looking at the global picture for 
incongruities (such as topics with an unexpectedly high or low number of documents), 
evaluating different keyword generation strategies, and tweaking the ontology where needed.  

Approach 
The method we adopt in this work comprises 3 steps: ontology creation, ontology population, 
and ontology-based classification (data annotation). All three steps require human intervention 
to define prior assumptions and to evaluate outcomes, but they integrate automatic processing 
through advanced language analysis techniques. Consequently, if any changes are deemed 
necessary, the process can easily be rerun and the data re-annotated within a short period of 



time and in a principled way. The current version of the ontology contains 150 topics based 
around the 6 KETs and 7 SGCs, and around 8,700 unique keywords. 

Ontology creation 
The ontology is defined according to the two strands of KET and SGC. We take as a starting 
point some existing classifications, which we merge and map, such as the mappings between 
IPC (International Patent Classification) codes and both KETs (Van der Velde, 2012) and SGCs 
(Frietsch et al., 2016). For KETs, we also make use of the structure implemented in the 
nature.com ontologies portal (Hammond and Pasin, 2015). Some of these topics are already 
connected to DBpedia and MESH, which provides us with an additional source of information 
for keywords. We manually refine this structure, removing the lower levels, to make a slightly 
more generic set of topics. We also create subclasses based on EU policy documents, which 
describe how the KETs and SGCs are structured. A key expert decision relates to the extent of 
overlap between classes and subclasses, as some KETs are intrinsically related. 

Ontology population 
Having created an initial structure containing the concepts (topics and sub-topics), the ontology 
then needs to be populated with instances (keywords) from various data sources. These 
instances help us to: (1) match user queries to topics in the ontology; and (2) match documents 
from the various databases to these topics. These two issues form the crux of the system.  
The first stage consists of automatically generating key terms from the ontology class names 
and associated information, such as class descriptions, using Automatic Term Recognition 
techniques. Additional terms are manually generated by experts where information is sparse or 
where there is possible ambiguity. Terms in which the experts are highly confident are 
designated “preferred” and are used as seed terms for the expansion stage. These are typically 
the topic name itself, synonyms or linguistic variants of it, and additional manually generated 
terms. For example, one preferred term for the topic “intelligent transport” is “intelligent 
navigation”.  The remaining (non-preferred) terms are the automatically generated ones, and 
are only used for the matching stage later. These have a lower weighting during the matching, 
since we are less confident about their relevance. An example of a non-preferred term for the 
topic “intelligent transport” is “radar tracker” (which is somehow connected with the topic but 
is not a close synonym). This term might be relevant if found in conjunction with another 
relevant term for the topic, but not on its own. 
The second stage involves the generation of additional keywords. First, our preferred terms are 
used to generate a seed set of initial keywords associated with each ontology class. We then 
find semantically similar terms to these using word embeddings trained on a large corpus of 
just over 8.3 million documents, comprising a mixture of publications, project descriptions, 
policy documents and patent abstracts. This corpus will be extended periodically as additional 
data becomes available – while larger corpora may provide better training, there is a tradeoff 
between this and the relevance of the documents (our previous experiments showed that using 
larger corpora of pre-trained embeddings on more general corpora gave worse results). The 
method consists of extracting a set of possible terms from that corpus using Automatic Term 
Recognition and NLP techniques, and then finding the ones most similar to the seeds. Finally, 
the terms are scored according to how “representative” they are of that class, and prior 
probabilities are generated using PMI for term combinations, based on frequency of co-
occurrence in the training data. 
The implementation of this process showed that automatic techniques enable the generation of 
a large number of keywords, but become problematic when two subclasses share some similar 
terms (like rail and road transport). Additional statistical techniques can be used to further 
weight terms based on maximising the semantic distance between terms from such closely 



related classes, but some level of expert intervention is nevertheless required in order to delimit 
the subclasses and to attribute a sufficient number of distinct terms to each of them.  
The result of the ontology population stage is thus a set of keywords associated with each class, 
each of which has a score indicating the degree of its relevance to that class. These keywords 
are used for the mapping between documents and topics in the final data annotation stage. 

Data annotation 
The data sources take the form of 4 databases containing information about projects, patents, 
publications and social innovation respectively. The idea of the annotation is to link each data 
element (e.g. a project) with the relevant topic(s) in the ontology, so that indicators (and from 
there visualisations) can be built around these. For example, in order to know how many EU 
projects there have been about “gene therapy” in a particular year and location, we must first 
know which projects should be associated with this topic.  
We have developed a classifier which takes documents as input and returns information about 
the class(es) to which each is linked, and a score for it. The scores are based on (i) the weight 
of that keyword for that class (e.g. preferred terms have a higher score, as do terms ranked close 
in similarity to these); (ii) the combination of keywords found in the document using PMI 
calculations from the ontology population stage (on the assumption that term combinations with 
high PMI are better indicators that the class is relevant for that document); (iii) subclass 
boosting, whereby keywords belonging to a more specific class in the ontology are to be 
preferred over more general ones. 
The process of classification thus assigns multiple possible topics to each document, not all of 
which are likely to be useful as some will be low-scoring. Thresholds are used to decide which 
of the topics are most relevant, based on analysis of distributions and some inspection of results. 
This is a typical expert-based task that involves manual checking of classified documents to 
find a reasonable balance between recall and precision.  

Discussion and Conclusions 
In this work, we aim to address some of the current limitations in applying traditional 
classifications to a science policy domain, through the use of ontologies, thereby extending the 
reach of existing text-based methods while still maintaining the power and rigour of 
classification systems. In particular, we overcome the problems in connecting policy-based 
topics with science-based topics. This wide-ranging view of the research domain requires the 
focus to shift from static maps and detailed analyses towards indicators that can be compared 
temporally, geographically, and across topics. 
Our approach is designed to maximize automated processes wherever possible, which is not 
only critical for dealing with massive volumes of data, but also lends itself to domain and topic 
adaptation. Since research is not static – topics change over time, new terminology comes to 
the fore, and even geographical boundaries do not remain the same – this enables much greater 
flexibility than many existing classification-based systems. Changes to the ontology or the input 
of new research data can easily be handled automatically, and updates pushed seamlessly to the 
central databases from which visualisations are generated. On the other hand, these are 
tempered by expert intervention at critical stages.  
There are, however, limitations. Rigorous evaluation is always difficult, and requires manual 
intervention, which is time-consuming and subjective. The use of NLP techniques brings its 
own problems: language is tricky for machines to understand, and tools will never be 100% 
accurate. Numerous issues in terminology extraction still need to be solved globally: many 
terms are ambiguous and require at the least context, and in some cases, only the kinds of world 
knowledge that humans can provide. Nevertheless, this work provides some critical new 
pathways for STI technologies, which open up avenues for future research directions. 
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