SUPPLE:
The Sheffield University Prolog Parser for Language Enginge

Horacio Saggion and Mark A. Greenwood
Department of Computer Science
University of Sheffield

September 30, 2005

A royalty-free license is granted for the use of this soft-
ware for NONCOMMERCIAL PURPOSES ONLY.

The program is provided “as is” without warranty of any
kind, either expressed or implied, including, but not lim-
ited to, the implied warranties of merchantability and fit-
ness for a particular purpose. The entire risk as to the qual-
ity and performance of the program is with you. Should
the program prove defective, you assume the cost of all
necessary servicing, repair or correction.

Chapter 1

Introduction

SUPPLE is a bottom-up parser that constructs syntax treblegital forms for English sentences. The parser is coraplet
in the sense that every analysis licensed by the grammasdsiped. In the current version only the ‘best’ parser isctete

at the end of the parsing process. The English grammar (sagt€}B) is implemented as an attribute-value context free
grammar which consists of subgrammars for noun phrases (i&R) phrases (VP), prepositional phrases (PP), relative
phrases (R) and sentences (S). The semantics associatashelit grammar rule allow the parser to produce logical forms
composed of unary predicates to denote entities and ewvegtschase(el), run(e2)) and binary predicates for properties
(e.g.lsubj(el,e2)). Constants (e.gel, €2) are used to represent entity and event identifiers. The SaRPLE Wrapper
stores syntactic infomation produced by the parser in the dacument in the form of: SyntaxTreeNodes which are used
to display the parsing tree when the sentence is ‘editedlis® annotations containing a bracketed representatithreo
parse; and ‘semantics’ annotations that contains thedabfpems produced by the parser.

Chapter 2

Software requirements

In order to compile and use the parser you will need the fallgvgoftware:

e SUPPLE parser and Gate wrapper
Available fromhttp://nlp.shef.ac.uk/research/supple/

e The GATE Framework
Available fromhttp://gate.ac.uk

e Java (v1.4 or above) Available frohitp://www.javasoft.com

e Ant (to construct the parser)
Available fromhttp://ant.apache.org

e A Prolog implementation. We currently support:
— SICStus prolog (v3.8.6 or above)
For details seéttp://www.sics.se/sicstus/

— PrologCafe (v0.9 or above)
Available fromhttp://kaminari.scitec.kobe-u.ac.jp/PrologCafe/

— SWI Prolog (v5.4.2 or above)
Available fromhttp://www.swi-prolog.org/

See Chapter 9 for details of how to use other Prolog impleatiemts.

Chapter 3

Distribution

The present distribution (‘supple’ is the root) contains thllowing project directories and files:

¢ build.xml: the build for ANT necessary to construct the syst
e classes: the java classes

e config: contains the configuration files the wrapper needststate information from Gate into SUPPLE. Two files
can be found here mapping.config and featiatde.config. See Section 7 for an explanation of how the ingpp
specified.

e docs: documentation. Contains this document.
e lib: libraries necessary to compile and run different pgalmplementations.
e src: the java source files.

e creole.xml the configuration of the Gate SUPPLE Wrapper

Chapter 4

Building the system

You will have to edit the build.xml file and adapt the ‘user rifiable options’ to your particular settings.
e ant plcafe constructs the PrologCafe version of the parser
e ant sicstus constructs the SICStus version of the parser

e ant swi constructts the SWIProlog version of the parser

Chapter 5

Running the parser in a Gate Gui

To run the parser from the Gate GUI you need to load the cpaunléhat comes with this distribution, you have to this in
the usual way in Gate. If you want a standalone applicatigst,lpok at the testing code provided in the source. In order
to parse a document you will need to construct an applicatianhas:

e documentreset (usefull)

tokeniser (mandatory)

splitter (mandatory)

POS-tagger (mandatory)

Morphology (mandatory)

Bottom-Up Chart Parser (mandatory) with parameters

— mapping file (config/mapping.config)

— feature table file (config/featutable,mapping)

— parser file (supple.plcafe, supple.sicstus or supple.swi)

— the classname of the Prolog wrapper (i.e. shef.nlp.symplieg.SICStusProlog)

You can take a look at build.xml to see examples of invocdtothe different implementations.

IMPORTANT NOTE: The wrapper writes temporary files in your temp directorgsthfiles are deleted once the
process is finishednlessthe debug option is set toue in which case the temporary files will be kept in your file syste
Do not forget to turn the debug option to false in order to dwisk space problems.

Chapter 6

Running the parser standalone

One test for each configuration is provided with the build.xm

e ant test.plcafe tests the PrologCafe implementation
e ant test.sicstus tests the Sicstus implementation

e ant test.swi tests the SWI Prolog implementation

The program run is shef.nlp.supple.TestSuite which yowsanas a base for developing your own application.

Chapter 7

Configuration files

Two files are used to pass information from Gate to the SUPRIrEep: themapping file and thefeature tabl efile.

7.1 Mapping file

The mapping file specifies how annotations produced using &&tto be passed to the parser. The file is composed of
a number of pairs of lines, the first line in a pair specifies ge@anotation we want to pass to the parser. It includes the
AnnotationSet (or default), the AnnotationType, and a nena features and values that depend on the AnnotationType.
The second line of the pair specifies how to encode the Gatetation in a SUPPLE syntactic category, this line also
includes a number of features and values. As an exampledmrthie mapping:

Gate;AnnotationType=Token;category=DT;string=&S
SUPPLE;category=dt;m_root=&S;s_form=&S

It specifies how a determinant (‘DT") will be translated it@ategory ‘dt’ for the parser. The construct ‘&S’ is used
to represent a variable that will be instantiated to the eppate value during the mapping process. More specifieally
token like ‘The’ recognised as a DT by the POS-tagging wilhtepped into the following category:

dt(s_form:'The’,m_root:'The’,m_affix:'_’text:').
As another example consider the mapping:

Gate;AnnotationType=Lookup;majorType=person_first;m inorType=female;string=&S
SUPPLE;category=list_np;s_form=&S;ne_tag=person;ne_ type=person_first;gender=female

It specified that an annotation of type ‘Lookup’ in Gate is ipeg into a category ‘lishp’ with specific features and
values. More specifically a token like ‘Mary’ identified in t@aas a Lookup will be mapped into the following SUPPLE
category:

list_ np(s_form:'‘Mary’,m_root:' ' ,m_affix:' ’,
text:*_’,ne_tag:‘person’,ne_type:‘person_first’,gen der:‘female’).
7.2 Feature table
The feature table file specifies SUPPLE ‘lexical’ categoaied its features. As an example an entry in this file is:
n;s_form;m_root;m_affix;text;person;number

which specifies which features and in which order a noun cageghould be writen. In this case:

n(s_form:...,m_root:...,m_affix:...,text:...,person l...,number:....).

Chapter 8

Parser and Grammar

The parser which is a Bottom-up Chart Parser builds a semaresentation compositionally, and a ‘best parse’ algo-
rithm is applied to each final chart, providing a partial jgafsro complete sentence span can be constructed. The parser
uses a feature valued grammar. E&atiegory entry has the form:

Category(Featurel:Valuel,...,FeatureN:ValueN)

where the number and type of features is dependent on thgocgtiype (see Section 7.2). All categories will have the
features _form (surface form) andiroot (morphological root); nominal and verbal categories wbehaveperson
andnumber features; verbal categories will also haease andvform features; and adjectival categories will have
adegree feature. Thdist _np category has the same features as other nominal categlusesptag andne _type .

Syntactic rules are specifed in Prolog with the predicatie(LH S, RHS) whereLH S is a syntactic category and
RHS is a list of syntactic categories. A rule suchBd’ P_.HFEAD = N (“a basic noun phrase head is composed of a
noun”) is writen as follows:

rule(bnp_head(sem:E"[[R,E],[number,E,N]],number:N),
[n(m_root:R,number:N)]).

Where the feature ‘sem’ is used to construct the semantide wie parser processes input, and E, R, and N are
variables tobe instantiated during parsing.

The full grammar of this distribution can be found in the pgrammar directory, the file load.pl specifies which
grammars are used by the parser. The grammars are compitadtiva system is built and the compied version is used
for parsing.

8.0.1 Mapping Named Entities

SUPPLE has a prolog grammar which deals with named entitieinly information required is the Lookup annotations
produced by Gate, which are specified in the mapping file. Hewgou may want to pass named entities identified with
your own Jape grammars in Gate. This can be done using a kpatiiactic category provided with this distribution. The
category sentat is used as a bridge between GATE named entities and thelSgrammar. An example of how to use
it (provided in the mapping file) is:

Gate;AnnotationType=Date;string=&S
SUPPLE;category=sem_cat;type=Date;text=&S;kind=date ;name=&S

which maps a named entity ‘Date’ into a syntactic categoeyrigat’. A grammar file called semantiales.pl is
provided to map semsat into the appropriate syntactic category expected bylkirasal rules. The following rule for
example:

rule(ne_np(s_form:F,sem:X"[[name,X,NAME],[KIND,X]]) A
sem_cat(s_form:F,text: TEXT,type:‘Date’,kind:KIND,na me:NAME)]).

is used to parse a ‘Date’ into a named entity in SUPPLE whidhrin will be parsed into a noun phrase.

10

Chapter 9

Using Other Prolog Implementations

You have to write a new Prolog wrapper by extending shefnlmple.prolog.Prolog and you will probably have to write
a Prolog file to compile the parser (look at mkparser-*.ph)@dgamples of how to do this.

11

