Developing Language Processing
Components with GATE

Version 5 (a User Guide)

For GATE version 5.2.1
(built May 6, 2010)

Hamish Cunningham
Diana Maynard
Kalina Bontcheva
Valentin Tablan
Niraj Aswani
[an Roberts
Genevieve Gorrell
Adam Funk
Angus Roberts
Danica Damljanovic
Thomas Heitz
Mark Greenwood
Horacio Saggion
Johann Petrak
Yaoyong Li
Wim Peters
et al
©The University of Sheffield 2001-2010

http://gate.ac.uk/

HTML version: http://gate.ac.uk/userguide

Work on GATE has been partly supported by EPSRC grants GR/K25267 (Large-Scale
Information Extraction), GR/M31699 (GATE 2), RA007940 (EMILLE), GR/N15764/01
(AKT) and GR/R85150/01 (MIAKT), AHRB grant APN16396 (ETCSL/GATE),
Matrixware, the Information Retrieval Facility and several EU-funded projects (SEKT,
TAO, NeOn, MediaCampaign, MUSING, KnowledgeWeb, PrestoSpace, h-TechSight,

enlRaF).

http://www.dcs.shef.ac.uk/~hamish/
http://www.dcs.shef.ac.uk/~diana/
http://www.dcs.shef.ac.uk/~kalina/
http://www.dcs.shef.ac.uk/~valyt/
http://www.dcs.shef.ac.uk/~niraj/
http://www.dcs.shef.ac.uk/~ian/
http://www.dcs.shef.ac.uk/~genevieve/
http://www.dcs.shef.ac.uk/~adam/
http://www.dcs.shef.ac.uk/~angus/
http://www.dcs.shef.ac.uk/~danica/
http://thomasheitz.free.fr/text.mining.researcher/
http://www.dcs.shef.ac.uk/~mark/
http://www.dcs.shef.ac.uk/~saggion/
http://www.dcs.shef.ac.uk/~johann/
http://personalpages.manchester.ac.uk/staff/Yaoyong.Li/
http://www.dcs.shef.ac.uk/~wim/
http://gate.ac.uk/
http://gate.ac.uk/userguide?gateVersion=5.2.1
http://www.matrixware.com/
http://www.ir-facility.org/
http://www.sekt-project.com
http://www.tao-project.eu
http://www.neon-project.org
http://www.media-campaign.eu
http://www.musing.eu
http://knowledgeweb.semanticweb.org
http://www.prestospace.org
http://gate.ac.uk/projects/htechsight/

Brief Contents

I GATE Basics

1 Introduction

2 Installing and Running GATE

3 Using GATE Developer

4 CREOLE: the GATE Component Model

5 Language Resources: Corpora, Documents and Annotations

6 ANNIE: a Nearly-New Information Extraction System

II GATE for Advanced Users

7 GATE Embedded

8 JAPE: Regular Expressions over Annotations
9 ANNIC: ANNotations-In-Context

10 Performance Evaluation of Language Analysers

11 Profiling Processing Resources

12 Developing GATE

III CREOLE Plugins
13 Gazetteers

14 Working with Ontologies
15 Machine Learning

16 Tools for Alignment Tasks

17 Parsers and Taggers
iii

27
37
67
87

109

127
129
169
203
213
237

245

257
259
281
317
367

381

iv Contents

18 Combining GATE and UIMA 409
19 More (CREOLE) Plugins 421
Appendices 457
A Change Log 459
B Version 5.1 Plugins Name Map 483
C Design Notes 485
D JAPE: Implementation 493
E Ant Tasks for GATE 503
F Named-Entity State Machine Patterns 511
G Part-of-Speech Tags used in the Hepple Tagger 519

References 520

Contents

I GATE Basics

1

Introduction
1.1 How to Use this Text
1.2 Context
1.3 Overview
1.3.1 Developing and Deploying Language Processing Facilities
1.3.2 Built-In Components
1.3.3 Additional Facilities L.
1.34 AnExample
1.4 Some Evaluations
1.5 Changes in this Version L
1.5.1 Version 5.2.1 (May 2010)
1.5.2 Version 5.2 (April 2010)
1.6 Further Reading
Installing and Running GATE

2.1 Downloading GATE
2.2 Installing and Running GATE
221 The Easy Way
2.2.2 The Hard Way (1)
2.2.3 The Hard Way (2): Subversion
2.3 Using System Properties with GATE
2.4 Configuring GATE
2.5 Building GATE
2.5.1 Using GATE with Maven or JPF
2.6 Uninstalling GATE
2.7 Troubleshooting
2.7.1 Idon’t see the Java console messages under Windows
2.7.2 When I execute GATE, nothing happens
2.7.3 On Ubuntu, GATE is very slow or doesn’t start
2.74 How to use GATE on a 64 bit system?
2.7.5 T got the error: Could not reserve enough space for object heap

2.7.6

From Eclipse, I got the error: java.lang.OutOfMemoryError: Java
heap space L

w

© o o G

11
12
14
15
15
16
17

27
27
27
27
28
29
29
30
31
32
33
33
33
33
33
34
34

vi

Contents

2.7.7 On MacOS, I got the error: java.lang.OutOfMemoryError: Java heap
SPACE « . v e e e e

2.7.8 I got the error: logdj:WARN No appenders could be found for logger...

2.7.9 Text is incorrectly refreshed after scrolling and become unreadable . .

3 Using GATE Developer

3.1
3.2
3.3
3.4

3.5
3.6
3.7

3.8

3.9
3.10

The GATE Developer Main Window
Loading and Viewing Documents
Creating and Viewing Corpora
Working with Annotations oL
3.4.1 The Annotation Sets View
3.4.2 The Annotations List View
3.4.3 The Annotations Stack View
3.4.4 The Co-reference Editor
3.4.5 Creating and Editing Annotations
3.4.6 Schema-Driven Editing 0oL
3.4.7 Printing Text with Annotations
Using CREOLE Plugins
Loading and Using Processing Resources
Creating and Running an Application
3.7.1 Running an Application on a Datastore
3.7.2 Running PRs Conditionally on Document Features
3.7.3 Doing Information Extraction with ANNIE
3.7.4 Modifying ANNIE
Saving Applications and Language Resources
3.8.1 Saving Documents to File 0000
3.8.2 Saving and Restoring LRs in Datastores
3.8.3 Saving Application Statestoa File
3.8.4 Saving an Application with its Resources (e.g. GATE Teamware)

Keyboard Shortcuts
Miscellaneous
3.10.1 Stopping GATE from Restoring Developer Sessions/Options
3.10.2 Working with Unicode

4 CREOLE: the GATE Component Model

4.1
4.2
4.3
4.4
4.5
4.6
4.7

The Web and CREOLE
The GATE Framework
The Lifecycle of a CREOLE Resource
Processing Resources and Applications
Language Resources and Datastores
Built-in CREOLE Resources
CREOLE Resource Configuration
4.7.1 Configuration with XML
4.7.2 Configuring Resources using Annotations

35
36

37
38
40
42
43
44
45
46
46
48
50
51
52
54
54
26
56
57
58
o8
o8
99
60
61
62
64
64
64

Contents vil

4.7.3 Mixing the Configuration Styles 82

4.8 Tools: How to Add Utilities to GATE Developer 84
4.8.1 Putting your tools in a sub-menu 85

5 Language Resources: Corpora, Documents and Annotations 87
5.1 Features: Simple Attribute/Value Data 87
5.2 Corpora: Sets of Documents plus Features 88
5.3 Documents: Content plus Annotations plus Features 88
5.4 Annotations: Directed Acyclic Graphs 88
5.4.1 Annotation Schemas, 88
5.4.2 Examples of Annotated Documents 90
5.4.3 Creating, Viewing and Editing Diverse Annotation Types 93

5.5 Document Formats 93
5.5.1 Detecting the Right Reader 95
552 XMLo 96
55,3 HTML 102
554 SGML 103
55,0 Plaintexto 104
55,6 RTF 105
55.7 Email 105

5.6 XML Input/Output 107
6 ANNIE: a Nearly-New Information Extraction System 109
6.1 Document Reset 110
6.2 Tokeniser 111
6.2.1 Tokeniser Rules 111
6.2.2 Token Types 112
6.2.3 English Tokeniser oL 113

6.3 Gazetteer e 113
6.4 Sentence Splitter 115
6.5 RegEx Sentence Splitter Lo 116
6.6 Part of Speech Tagger 117
6.7 Semantic Tagger 118
6.8 Orthographic Coreference (OrthoMatcher) 118
6.8.1 GATE Interface 118
6.8.2 Resources 119

6.8.3 Processing 119

6.9 Pronominal Coreference 119
6.9.1 Quoted Speech Submodule 120
6.9.2 Pleonastic It Submodule 0oL 120
6.9.3 Pronominal Resolution Submodule 120
6.9.4 Detailed Description of the Algorithm 121

6.10 A Walk-Through Example 125

6.10.1 Step 1 - Tokenisation 125

viil

6.10.2 Step 2 - List Lookup
6.10.3 Step 3 - Grammar Rules

II GATE for Advanced Users

7 GATE Embedded

7.1 Quick Start with GATE Embedded
7.2 Resource Management in GATE Embedded
7.3 Using CREOLE Plugins
7.4 Language Resources
7.4.1 GATE Documents
7.4.2 Feature Mapso
7.4.3 Annotation Sets
744 Annotations
74.5 GATE Corpora
7.5 Processing Resources
7.6 Controllers.
7.7 Duplicating a Resource,
7.8 Persistent Applications L
7.9 Ontologies
7.10 Creating a New Annotation Schema
7.11 Creating a New CREOLE Resource
7.12 Adding Support for a New Document Format
7.13 Using GATE Embedded in a Multithreaded Environment
7.14 Using GATE Embedded within a Spring Application
7.14.1 Duplication in Spring
7.14.2 Spring pooling
7.14.3 Further reading oL

7.15 Using GATE Embedded within a Tomcat Web Application

7.15.1 Recommended Directory Structure
7.15.2 Configuration Files
7.15.3 Imitialization Code
7.16 Groovy for GATE
7.16.1 Groovy Scripting Console for GATE
7.16.2 Groovy scripting PRo
7.16.3 Utility methods
7.17 Saving Config Data to gate.xml
7.18 Annotation merging through the APT

8 JAPE: Regular Expressions over Annotations

8.1 The Left-Hand Side
8.1.1 Matching a Simple Text String
8.1.2 Matching Entire Annotation Types
8.1.3 Using Attributes and Values

Contents

Contents

8.1.4 Using Meta-Properties oL
8.1.5 Multiple Pattern/Action Pairs
8.1.6 LHS Macros
8.1.7 Using Context
8.1.8 Multi-Constraint Statements
8.1.9 Negation
8.1.10 Escaping Special Characters
8.2 LHS Operators in Detail 0oL
8.2.1 Compositional Operators
8.2.2 Matching Operators
8.3 The Right-Hand Side
8.3.1 A Simple Example
8.3.2 Copying Feature Values from the LHS tothe RHS
833 RHS Macros
8.4 Useof Priority
8.5 Using Phases Sequentially
8.6 Using Java Code on the RHS
8.6.1 A More Complex Example
8.6.2 Adding a Feature to the Document
8.6.3 Finding the Tokens of a Matched Annotation
8.6.4 Using Named Blocks
8.6.5 Java RHS Overview
8.7 Optimising for Speed
8.8 Ontology Aware Grammar Transduction
8.9 Serializing JAPE Transducer L.
8.9.1 How to Serialize?
8.9.2 How to Use the Serialized Grammar File?
8.10 The JAPE Debugger
8.11 Notes for Montreal Transducer Users

9 ANNIC: ANNotations-In-Context

9.1 Instantiating SSD
9.2 Search GUI
9.2.1 Overview
9.2.2 Syntax of Queries
9.23 Top Section
9.24 Central Section
9.2.5 Bottom Section
9.3 Using SSD from GATE Embedded
9.3.1 How to instantiate a searchabledatastore
9.3.2 How to search in this datastore

10 Performance Evaluation of Language Analysers
10.1 Metrics for Evaluation in Information Extraction

1X

174
174
175
176
178
179
180
181
181
182
185
185
185
186
187
190
190
192
194
194
196
197
199
200
200
201
201
201
201

203
204
206
206
206
208
209
209
210
210
210

213

X Contents

10.1.1 Annotation Relations L. 214
10.1.2 Cohen’s Kappa 215
10.1.3 Precision, Recall, F-Measure 218
10.1.4 Macro and Micro Averaging 219

10.2 The Annotation Diff Tool, 220
10.2.1 Performing Evaluation with the Annotation Diff Tool 221

10.3 Corpus Quality Assurance 223
10.3.1 Description of the interface 223
10.3.2 Step by step usageo 224
10.3.3 Details of the Corpus statistics table 225
10.3.4 Details of the Document statistics table 225

10.4 Corpus Benchmark Tool 225
10.4.1 Preparing the Corpora for Use 226
10.4.2 Defining Properties oL 227
10.4.3 Running the Tool L 228
10.4.4 The Results 229

10.5 A Plugin Computing Inter-Annotator Agreement (IAA) 230
10.5.1 TAA for Classification 232
10.5.2 TAA For Named Entity Annotation 233
10.5.3 The BDM-Based TAA Scores 234

10.6 A Plugin Computing the BDM Scores for an Ontology 234
11 Profiling Processing Resources 237
11.1 Overview o o 237
11.1.1 Features 238
11.1.2 Limitations 238

11.2 Graphical User Interface 238
11.3 Command Line Interface L. 239
11.4 Application Programming Interface 240
11.4.1 Logdj.propertieso 240
11.4.2 Benchmark log format 241
11.4.3 Enabling profilingo 241
11.4.4 Reporting tool 241

12 Developing GATE 245
12.1 Reporting Bugs and Requesting Features 245
12.2 Contributing Patcheso 245
12.3 Creating New Plugins 246
12.3.1 Where to Keep Plugins in the GATE Hierarchy 246
12.3.2 What to Call your Plugin 246
12.3.3 Writing a New PR oo 247
12.3.4 Writinga New VR o oo oo 251
12.3.5 Adding Plugins to the Nightly Build 253

12.4 Updating this User Guide 253

Contents xi

12.4.1 Building the User Guide 254
12.4.2 Making Changes to the User Guide 254

III CREOLE Plugins 257
13 Gazetteers 259
13.1 Introduction to Gazetteers 259
13.2 ANNIE Gazetteer 260
13.2.1 Creating and Modifying Gazetteer Lists 261

13.3 Gazetteer Visual Resource - GAZE 261
13.3.1 Display Modes 262
13.3.2 Linear Definition Pane 262
13.3.3 Linear Definition Toolbar 262
13.3.4 Operations on Linear Definition Nodes 263
13.3.5 Gazetteer List Pane 263
13.3.6 Mapping Definition Pane 263

13.4 OntoGazetteer e 264
13.5 Gaze Ontology Gazetteer Editor 264
13.5.1 The Gaze Gazetteer List and Mapping Editor 264
13.5.2 The Gaze Ontology Editor 264

13.6 Hash Gazetteer 265
13.6.1 Prerequisites. 266
13.6.2 Parameters 266

13.7 Flexible Gazetteer 267
13.8 Gazetteer List Collector 268
13.9 OntoRoot Gazetteer 269
13.9.1 How Does it Work? 269
13.9.2 Initialisation of OntoRoot Gazetteer 271
13.9.3 Simple steps to run OntoRoot Gazetteer 272
13.10Large KB Gazetteer L 275
13.10.1 Quick usage overview 275
13.10.2Dictionary setup Lo 276
13.10.3 Additional dictionary configuration 277
13.10.4 Processing Resource Configuration 277
13.10.5 Runtime configuration L. 277
13.10.6 Semantic Enrichment PR. L. 278
13.11The Shared Gazetteer for multithreaded processing 278
14 Working with Ontologies 281
14.1 Data Model for Ontologies 282
14.1.1 Hierarchies of Classes and Restrictions 282
14.1.2 Instances 283
14.1.3 Hierarchies of Properties 284

14.1.4 URIs o 0 286

xii Contents
14.2 Ontology Event Model 286
14.2.1 What Happens when a Resource is Deleted? 288

14.3 The Ontology Plugin: Current Implementation 289
14.3.1 The OWLIMOntology Language Resource 290
14.3.2 The ConnectSesameOntology Language Resource 292
14.3.3 The CreateSesameOntology Language Resource 293
14.3.4 The OWLIM2 Backwards-Compatible Language Resource 294

14.4 The Ontology_ OWLIM?2 plugin: backwards-compatible implementation . . . 294
14.4.1 The OWLIMOntologyLR Language Resource 294

14.5 GATE Ontology Editor 297
14.6 Ontology Annotation Tool 301
14.6.1 Viewing Annotated Text 302
14.6.2 Editing Existing Annotations L. 303
14.6.3 Adding New Annotations 304
14.6.4 Options 305

14.7 Using the ontology API. 306
14.8 Using the ontology API (old version) 308
14.9 Ontology-Aware JAPE Transducer 309
14.10 Annotating Text with Ontological Information 310
14.11Populating Ontologies 311
14.120ntology API and Implementation Changes 313
14.12.1 Differences between the implementation plugins 313
14.12.2 Changes in the Ontology API 314

15 Machine Learning 317
15.1 ML Generalities 318
15.1.1 Some Definitions 319
15.1.2 GATE-Specific Interpretation of the Above Definitions 319

15.2 Batch Learning PRo 319
15.2.1 Batch Learning PR Configuration File Settings 320
15.2.2 Case Studies for the Three Learning Types 334
15.2.3 How to Use the Batch Learning PR in GATE Developer 342
15.2.4 Output of the Batch Learning PR 343
15.2.5 Using the Batch Learning PR from the APT 350

15.3 Machine Learning PR.. oo 351
15.3.1 The DATASET Element 351
15.3.2 The ENGINE Element 353
15.3.3 The WEKA Wrapper 353
15.3.4 The MAXENT Wrapper 354
15.3.5 The SVM Light Wrapper 355
15.3.6 Example Configuration File 358

16 Tools for Alignment Tasks 367

16.1 Introduction 367

Contents xiii

16.2 The Tools 367
16.2.1 Compound Document 368
16.2.2 Compound Document Editor 370
16.2.3 Composite Document 370
16.2.4 DeleteMembersPR o oo 372
16.2.5 SwitchMembersPR oo o 372
16.2.6 Savingas XML o 373
16.2.7 Alignment Editor 373
16.2.8 Section-by-Section Processing L. 378

17 Parsers and Taggers 381

17.1 Verb Group Chunker 381

17.2 Noun Phrase Chunker, 381
17.2.1 Differences from the Original 382
17.2.2 Using the Chunker 382

17.3 Tree Tagger o e 382
17.3.1 POS Tags 384

17.4 TaggerFrameworko 384

17.5 Chemistry Tagger 387
17.5.1 Using the Tagger 387

17.6 ABNER 387

17.7 Stemmer 389
17.7.1 Algorithms 389

17.8 GATE Morphological Analyzer 389
1781 Rule File. o 390

17.9 MiniPar Parser 392
17.9.1 Platform Supported 395
17.9.2 Resources 395
17.9.3 Parameters 396
17.9.4 Prerequisites. 396
17.9.5 Grammatical Relationships. 396

17.10RASP Parser 397

17.11SUPPLE Parser 399
17.11.1Requirements Lo 400
17.11.2Building SUPPLE 400
17.11.3 Running the Parser in GATE 400
17.11.4 Viewing the Parse Tree 401
17.11.5System Properties.o 401
17.11.6 Configuration Files 402
17.11.7Parser and Grammar 403
17.11.8 Mapping Named Entities 404
17.11.9 Upgrading from BuChart to SUPPLE 404

17.12Stanford Parser 405

17.12.1Input Requirements 405

xXiv Contents

17.12.2 Initialization Parameters 406
17.12.3 Runtime Parameters 406
17.130penCalais, LingPipe and OpenNLP 407
18 Combining GATE and UIMA 409
18.1 Embedding a UIMA AEin GATE 410
18.1.1 Mapping File Format L. 410
18.1.2 The UIMA Component Descriptor 415
18.1.3 Using the AnalysisEnginePR 415

18.2 Embedding a GATE CorpusController in UIMA 416
18.2.1 Mapping File Format 417
18.2.2 The GATE Application Definition 417
18.2.3 Configuring the GATEApplicationAnnotator 418

19 More (CREOLE) Plugins 421
19.1 Language Plugins 422
19.1.1 French Plugin oo 422
19.1.2 German Plugin o 422
19.1.3 Romanian Plugin 423
19.1.4 Arabic Plugin 423
19.1.5 Chinese Plugin 423
19.1.6 Hindi Plugin. 424

19.2 Flexible Exporter 424
19.3 Annotation Set Transfer L. 425
19.4 Information Retrieval in GATE 427
19.4.1 Using the IR Functionality in GATE 429
19.4.2 Using the IR APT 431

19.5 Websphinx Web Crawler 432
19.5.1 Using the Crawler PR 432

19.6 Google Plugin 435
19.7 Yahoo Plugino 435
19.7.1 Using the YahooPR 435

19.8 WordNet in GATE 436
19.8.1 The WordNet APT 440

19.9 Kea - Automatic Keyphrase Detection 440
19.9.1 Using the ‘KEA Keyphrase Extractor’ PR 441
19.9.2 Using Kea Corpora 443
19.100ntotext JapeC Compiler oo 444
19.11Annotation Merging Plugin L. 445
19.12Chinese Word Segmentationo L. 447
19.13Copying Annotations between Documents 449
19.140penCalais Plugin 450
19.15LingPipe Plugino 451

19.15.1 LingPipe Tokenizer PRo oL 452

Contents

19.15.2 LingPipe Sentence Splitter PR
19.15.3 LingPipe POS Tagger PR
19.15.4LingPipe NER PR
19.15.5 LingPipe Language Identifier PR
19.160penNLP Plugin
19.16.1 Parameters common to all PRs
19.16.20penNLP PRs
19.16.3 Training new models Lo
19.17Inter Annotator Agreement
19.18Balanced Distance Metric Computation
19.19Schema Annotation Editor 0oL

Appendices

A Change Log
A1 Version 5.2.1 (May 2010)
A2 Version 5.2 (April 2010) Lo
A.2.1 JAPE and JAPE-related
A.2.2 Other Changes
A3 Version 5.1 (December 2009) o
A3.1 New Features
A.3.2 JAPE improvements
A.3.3 Other improvements and bug fixes
A4 Version 5.0 (May 2009) L
A.4.1 Major New Features
A.4.2 Other New Features and Improvements
A.4.3 Specific Bug Fixes
A5 Version 4.0 (July 2007)o
A.5.1 Major New Features
A.5.2 Other New Features and Improvements
A.5.3 Bug Fixes and Optimizations
A.6 Version 3.1 (April 2006)
A.6.1 Major New Features,
A.6.2 Other New Features and Improvements
A6.3 BugFixes
A7 January 2005
A.8 December 2004 L
A9 September 2004 L
A.10 Version 3 Beta 1 (August 2004)
ATTJuly 2004 .« . oo
A2 June 2004 . . .o
AI3April 2004 . . o
A.14 March 2004 L

XV

452
452
453
453
453
454
454
457
457
457
457

XVvi

Contents

A.15 Version 2.2 — August 2003o
A.16 Version 2.1 — February 2003
A7 June 2002o
Version 5.1 Plugins Name Map

Design Notes

C.1 Patterns e
C.1.1 Components
C.1.2 Model, view, controller,
C.1.3 Imterfaces

C.2 Exception Handling

JAPE: Implementation

D.1 Formal Description of the JAPE Grammar

D.2 Relation to CPSL

D.3 Initialisation of a JAPE Grammar

D.4 Execution of JAPE Grammars L

D.5 Using a Different Java Compiler

Ant Tasks for GATE

E.1 Declaring the Tasks

E.2 The packagegapp task - bundling an application with its dependencies . . .
E.2.1 Introduction
E.22 BasicUsage
E.2.3 Handling Non-Plugin Resources
E.2.4 Streamlining your Plugins
E.2.5 Bundling Extra Resources

483

485
485
486
488
489
489

493
494
496
497
499
201

208

E.3 The expandcreoles Task - Merging Annotation-Driven Config into creole.xml 509

Named-Entity State Machine Patterns
F.1 Mainjape o
F.2 firstjape
F.3 firstname.jape
F.4 name.jape
F.4.1 Person
F.4.2 Location
F.4.3 Organization
F.4.4 Ambiguities
F.4.5 Contextual information
F.5 name_post.jape
F.6 dateprejape
F.7 datejape
F.8 reldatejape
F.9 numberjape

Contents

F.10 address.japeo
F.11 urljape o
F.12 identifier.jape
F.13 jobtitlejape
F.14 finaljape L
F.15 unknown.jape Lo
F.16 name_context.jape L
F.17 org_context.jape L
F.18 loc_context.jape L
F.19 clean.jape L

G Part-of-Speech Tags used in the Hepple Tagger

References

516
516
016
016
516
017
o17
o17
018
018

519

520

Contents

Part 1

GATE Basics

Chapter 1

Introduction

Software documentation is like sex: when it is good, it is very, very good; and
when it is bad, it is better than nothing. (Anonymous.)

There are two ways of constructing a software design: one way is to make it so
simple that there are obviously no deficiencies; the other way is to make it so
complicated that there are no obvious deficiencies. (C.A.R. Hoare)

A computer language is not just a way of getting a computer to perform oper-
ations but rather that it is a novel formal medium for expressing ideas about
methodology. Thus, programs must be written for people to read, and only inci-
dentally for machines to execute. (The Structure and Interpretation of Computer
Programs, H. Abelson, G. Sussman and J. Sussman, 1985.)

If you try to make something beautiful, it is often ugly. If you try to make
something useful, it is often beautiful. (Oscar Wilde)®

GATE? is an infrastructure for developing and deploying software components that process
human language. It is nearly 15 years old and is in active use for all types of computational
task involving human language. GATE excels at text analysis of all shapes and sizes. From
large corporations to small startups, from €multi-million research consortia to undergraduate
projects, our user community is the largest and most diverse of any system of this type, and
is spread across all but one of the continents®.

GATE is open source free software; users can obtain free support from the user and developer
community via GATE.ac.uk or on a commercial basis from our industrial partners. We
are the biggest open source language processing project with a development team more
than double the size of the largest comparable projects (many of which are integrated with

IThese were, at least, our ideals; of course we didn’t completely live up to them. ..

2If you've read the overview on GATE.ac.uk you may prefer to skip to Section 1.1.

3Rumours that we’re planning to send several of the development team to Antarctica on one-way tickets
are false, libellous and wishful thinking.

5

http://www.fsf.org/
http://gate.ac.uk/
http://gate.ac.uk/customisation/
http://gate.ac.uk/overview.html

6 Introduction

GATE?). More than €5 million has been invested in GATE development®; our objective is
to make sure that this continues to be money well spent for all GATE’s users.

GATE has grown over the years to include a desktop client for developers, a workflow-based
web application, a Java library, an architecture and a process. GATE is:

e an IDE, GATE Developer®: an integrated development environment for language
processing components bundled with a very widely used Information Extraction system
and a comprehensive set of other plugins

e o web app, GATE Teamware: a collaborative annotation environment for factory-
style semantic annotation projects built around a workflow engine and a heavily-
optimised backend service infrastructure

e o framework, GATE Embedded: an object library optimised for inclusion in diverse
applications giving access to all the services used by GATE Developer and more

e an architecture: a high-level organisational picture of how language processing software
composition

a process for the creation of robust and maintainable services.

We also develop:

e a wiki/CMS, GATE Wiki (http://gatewiki.sf.net/), mainly to host our own
websites and as a testbed for some of our experiments

e a cloud computing solution for hosted large-scale text processing, GATE Cloud
(http://gatecloud.net/)

For more information see the family pages.

One of our original motivations was to remove the necessity for solving common engineering
problems before doing useful research, or re-engineering before deploying research results
into applications. Core functions of GATE take care of the lion’s share of the engineering:

e modelling and persistence of specialised data structures

e measurement, evaluation, benchmarking (never believe a computing researcher who
hasn’t measured their results in a repeatable and open setting!)

40ur philosophy is reuse not reinvention, so we integrate and interoperate with other systems e.g.:
LingPipe, OpenNLP, UIMA, and many more specific tools.

5This is the figure for direct Sheffield-based investment only and therefore an underestimate.

6GATE Developer and GATE Embedded are bundled, and in older distributions were referred to just as
‘GATE".

http://gate.ac.uk/family/developer.html
http://gate.ac.uk/ie
http://gate.ac.uk/gate/doc/plugins.html
http://gate.ac.uk/teamware/
http://gate.ac.uk/family/embedded.html
http://gate.ac.uk/family/process.html
http://gatewiki.sf.net/
http://gatecloud.net/
http://gate.ac.uk/family/

Introduction 7

visualisation and editing of annotations, ontologies, parse trees, etc.

a finite state transduction language for rapid prototyping and efficient implementation
of shallow analysis methods (JAPE)

extraction of training instances for machine learning

pluggable machine learning implementations (Weka, SVM Light, ...)

On top of the core functions GATE includes components for diverse language processing
tasks, e.g. parsers, morphology, tagging, Information Retrieval tools, Information Extraction
components for various languages, and many others. GATE Developer and Embedded are
supplied with an Information Extraction system (ANNIE) which has been adapted and
evaluated very widely (numerous industrial systems, research systems evaluated in MUC,
TREC, ACE, DUC, Pascal, NTCIR, etc.). ANNIE is often used to create RDF or OWL
(metadata) for unstructured content (semantic annotation).

GATE version 1 was written in the mid-1990s; at the turn of the new millennium we com-
pletely rewrote the system in Java; version 5 was released in June 2009. We believe that
GATE is the leading system of its type, but as scientists we have to advise you not to take
our word for it; that’s why we’ve measured our software in many of the competitive evalu-
ations over the last decade-and-a-half (MUC, TREC, ACE, DUC and more; see Section 1.4
for details). We invite you to give it a try, to get involved with the GATE community, and
to contribute to human language science, engineering and development.

This book describes how to use GATE to develop language processing components, test their
performance and deploy them as parts of other applications. In the rest of this chapter:
e Section 1.1 describes the best way to use this book;

e Section 1.2 briefly notes that the context of GATE is applied language processing, or
Language Engineering,

Section 1.3 gives an overview of developing using GATE;

Section 1.4 lists publications describing GATE performance in evaluations;

Section 1.5 outlines what is new in the current version of GATE;

e Section 1.6 lists other publications about GATE.

Note: if you don’t see the component you need in this document, or if we mention a com-
ponent that you can’t see in the software, contact gate-users@lists.sourceforge.net” —
various components are developed by our collaborators, who we will be happy to put you
in contact with. (Often the process of getting a new component is as simple as typing the
URL into GATE Developer; the system will do the rest.)

"Follow the ‘support’ link from the GATE web server to subscribe to the mailing list.

http://www.ontotext.com/kim/semanticannotation.html
http://gate.ac.uk/

8 Introduction

1.1 How to Use this Text

The material presented in this book ranges from the conceptual (e.g. ‘what is software
architecture?’) to practical instructions for programmers (e.g. how to deal with GATE
exceptions) and linguists (e.g. how to write a pattern grammar). Furthermore, GATE’s
highly extensible nature means that new functionality is constantly being added in the form
of new plugins. Important functionality is as likely to be located in a plugin as it is to
be integrated into the GATE core. This presents something of an organisational challenge.
Our (no doubt imperfect) solution is to divide this book into three parts. Part I covers
installation, using the GATE Developer GUI and using ANNIE, as well as providing some
background and theory. We recommend the new user to begin with Part I. Part II covers
the more advanced of the core GATE functionality; the GATE Embedded API and JAPE
pattern language among other things. Part III provides a reference for the numerous plugins
that have been created for GATE. Although ANNIE provides a good starting point, the
user will soon wish to explore other resources, and so will need to consult this part of the
text. We recommend that Part III be used as a reference, to be dipped into as necessary. In
Part I1I, plugins are grouped into broad areas of functionality.

1.2 Context

GATE can be thought of as a Software Architecture for Language Engineering
[Cunningham 00].

‘Software Architecture’ is used rather loosely here to mean computer infrastructure for soft-
ware development, including development environments and frameworks, as well as the more
usual use of the term to denote a macro-level organisational structure for software systems

[Shaw & Garlan 96].

Language Engineering (LE) may be defined as:

... the discipline or act of engineering software systems that perform tasks involv-
ing processing human language. Both the construction process and its outputs
are measurable and predictable. The literature of the field relates to both appli-
cation of relevant scientific results and a body of practice. [Cunningham 99a]

The relevant scientific results in this case are the outputs of Computational Linguistics, Nat-
ural Language Processing and Artificial Intelligence in general. Unlike these other disciplines,
LE, as an engineering discipline, entails predictability, both of the process of constructing LE-
based software and of the performance of that software after its completion and deployment
in applications.

Some working definitions:

http://gate.ac.uk/sale/thesis/

Introduction 9

1. Computational Linguistics (CL): science of language that uses computation as an
investigative tool.

2. Natural Language Processing (NLP): science of computation whose subject mat-
ter is data structures and algorithms for computer processing of human language.

3. Language Engineering (LE): building NLP systems whose cost and outputs are
measurable and predictable.

4. Software Architecture: macro-level organisational principles for families of systems.
In this context is also used as infrastructure.

5. Software Architecture for Language Engineering (SALE): software infrastruc-
ture, architecture and development tools for applied CL, NLP and LE.

(Of course the practice of these fields is broader and more complex than these definitions.)

In the scientific endeavours of NLP and CL, GATE’s role is to support experimentation. In
this context GATE’s significant features include support for automated measurement (see
Chapter 10), providing a ‘level playing field” where results can easily be repeated across
different sites and environments, and reducing research overheads in various ways.

1.3 Overview

1.3.1 Developing and Deploying Language Processing Facilities

GATE as an architecture suggests that the elements of software systems that process natural
language can usefully be broken down into various types of component, known as resources®.
Components are reusable software chunks with well-defined interfaces, and are a popular
architectural form, used in Sun’s Java Beans and Microsoft’s .Net, for example. GATE

components are specialised types of Java Bean, and come in three flavours:

e LanguageResources (LRs) represent entities such as lexicons, corpora or ontologies;

e ProcessingResources (PRs) represent entities that are primarily algorithmic, such as
parsers, generators or ngram modellers;

e VisualResources (VRs) represent visualisation and editing components that participate

in GUIs.

8The terms ‘resource’ and ‘component’ are synonymous in this context. ‘Resource’ is used instead of just
‘component’ because it is a common term in the literature of the field: cf. the Language Resources and
Evaluation conference series [LREC-1 98, LREC-2 00].

10 Introduction

These definitions can be blurred in practice as necessary.

Collectively, the set of resources integrated with GATE is known as CREOLE: a Collection
of REusable Objects for Language Engineering. All the resources are packaged as Java
Archive (or ‘JAR’) files, plus some XML configuration data. The JAR and XML files are
made available to GATE by putting them on a web server, or simply placing them in the
local file space. Section 1.3.2 introduces GATE’s built-in resource set.

When using GATE to develop language processing functionality for an application, the
developer uses GATE Developer and GATE Embedded to construct resources of the three
types. This may involve programming, or the development of Language Resources such as
grammars that are used by existing Processing Resources, or a mixture of both. GATE
Developer is used for visualisation of the data structures produced and consumed during
processing, and for debugging, performance measurement and so on. For example, figure 1.1
is a screenshot of one of the visualisation tools.

File Options Tools Help

® wE
ATE : Messages ’/ﬁimpelinn_uuﬂn\ r@Hindl ‘
Applications ‘ i S:lsH i LislH i Slack”c T EEdIlDI"
$ eine_ovo1a —

Language Resources

&7 Hindi

Processing Resources

-
[] SpaceToken
Token

S i e e i i 1 6 ol @ i | | P Orioinal markups

-

B} Hindi Gazetteer_0002C
", Hindi Tokeniser_00021

\. Hindi POS Tagger_00020

E Data stores

[l I I ID

MimeType w [[text/xa

gateSourceURL | |[file:/h

Features
4|{kind=word, length=6, string= 315, type=other}
532|{kind=word, length=6, string= AP, type=other}
6| {kind=word, length=5, string=4M, type=other}

534/ {kind=word, length=5, string=4MT, lype=other}

9|{kind=punctuation, length=1, string=:}
Tal 16 17| 537[king inn lannth—1 ctring—-1
|482 Annotations (0 selected) Selen.'| ‘l New
e D Document Editor | Initialisation Parameters

Views builts]

Figure 1.1: One of GATE’s visual resources

GATE Developer is analogous to systems like Mathematica for Mathematicians, or JBuilder
for Java programmers: it provides a convenient graphical environment for research and
development of language processing software.

Introduction 11

When an appropriate set of resources have been developed, they can then be embedded in
the target client application using GATE Embedded. GATE Embedded is supplied as a
series of JAR files.” To embed GATE-based language processing facilities in an application,
these JAR files are all that is needed, along with JAR files and XML configuration files for
the various resources that make up the new facilities.

1.3.2 Built-In Components

GATE includes resources for common LE data structures and algorithms, including doc-
uments, corpora and various annotation types, a set of language analysis components for
Information Extraction and a range of data visualisation and editing components.

GATE supports documents in a variety of formats including XML, RTF, email, HTML,
SGML and plain text. In all cases the format is analysed and converted into a sin-
gle unified model of annotation. The annotation format is a modified form of the TIP-
STER format [Grishman 97] which has been made largely compatible with the Atlas format
[Bird & Liberman 99], and uses the now standard mechanism of ‘stand-off markup’. GATE
documents, corpora and annotations are stored in databases of various sorts, visualised via
the development environment, and accessed at code level via the framework. See Chapter 5
for more details of corpora etc.

A family of Processing Resources for language analysis is included in the shape of ANNIE,
A Nearly-New Information Extraction system. These components use finite state techniques
to implement various tasks from tokenisation to semantic tagging or verb phrase chunking.
All ANNIE components communicate exclusively via GATE’s document and annotation
resources. See Chapter 6 for more details. Other CREOLE resources are described in
Part III.

1.3.3 Additional Facilities

Three other facilities in GATE deserve special mention:

e JAPE, a Java Annotation Patterns Engine, provides regular-expression based pat-
tern/action rules over annotations — see Chapter 8.

e The ‘annotation diff’ tool in the development environment implements performance
metrics such as precision and recall for comparing annotations. Typically a language
analysis component developer will mark up some documents by hand and then use these

9The main JAR file (gate.jar) supplies the framework. Built-in resources and various 3rd-party libraries
are supplied as separate JARs; for example (guk.jar, the GATE Unicode Kit.) contains Unicode support
(e.g. additional input methods for languages not currently supported by the JDK). They are separate because
the latter has to be a Java extension with a privileged security profile.

12 Introduction

along with the diff tool to automatically measure the performance of the components.
See Chapter 10.

e GUK, the GATE Unicode Kit, fills in some of the gaps in the JDK’s'® support for
Unicode, e.g. by adding input methods for various languages from Urdu to Chinese.
See Section 3.10.2 for more details.

And by version 4 it will make a mean cup of tea.

1.3.4 An Example

This section gives a very brief example of a typical use of GATE to develop and deploy
language processing capabilities in an application, and to generate quantitative results for
scientific publication.

Let’s imagine that a developer called Fatima is building an email client!! for Cyberdyne
Systems’ large corporate Intranet. In this application she would like to have a language
processing system that automatically spots the names of people in the corporation and
transforms them into mailto hyperlinks.

A little investigation shows that GATE’s existing components can be tailored to this purpose.
Fatima starts up GATE Developer, and creates a new document containing some example
emails. She then loads some processing resources that will do named-entity recognition (a
tokeniser, gazetteer and semantic tagger), and creates an application to run these components
on the document in sequence. Having processed the emails, she can see the results in one of
several viewers for annotations.

The GATE components are a decent start, but they need to be altered to deal specially
with people from Cyberdyne’s personnel database. Therefore Fatima creates new ‘cyber-’
versions of the gazetteer and semantic tagger resources, using the ‘bootstrap’ tool. This tool
creates a directory structure on disk that has some Java stub code, a Makefile and an XML
configuration file. After several hours struggling with badly written documentation, Fatima
manages to compile the stubs and create a JAR file containing the new resources. She tells
GATE Developer the URL of these files'?, and the system then allows her to load them in
the same way that she loaded the built-in resources earlier on.

Fatima then creates a second copy of the email document, and uses the annotation editing
facilities to mark up the results that she would like to see her system producing. She saves

10JDK: Java Development Kit, Sun Microsystem’s Java implementation. Unicode support is being actively
improved by Sun, but at the time of writing many languages are still unsupported. In fact, Unicode itself
doesn’t support all languages, e.g. Sylheti; hopefully this will change in time.

"Perhaps because Outlook Express trashed her mail folder again, or because she got tired of Microsoft-
specific viruses and hadn’t heard of Netscape or Emacs.

12\While developing, she uses a file:/... URL; for deployment she can put them on a web server.

Introduction 13

this and the version that she ran GATE on into her serial datastore. From now on she can
follow this routine:

1. Run her application on the email test corpus.

2. Check the performance of the system by running the ‘annotation diff” tool to compare
her manual results with the system’s results. This gives her both percentage accuracy
figures and a graphical display of the differences between the machine and human
outputs.

3. Make edits to the code, pattern grammars or gazetteer lists in her resources, and
recompile where necessary.

4. Tell GATE Developer to re-initialise the resources.

5. Go to 1.

To make the alterations that she requires, Fatima re-implements the ANNIE gazetteer so that
it regenerates itself from the local personnel data. She then alters the pattern grammar in the
semantic tagger to prioritise recognition of names from that source. This latter job involves
learning the JAPE language (see Chapter 8), but as this is based on regular expressions it
isn’t too difficult.

Eventually the system is running nicely, and her accuracy is 93% (there are still some prob-
lem cases, e.g. when people use nicknames, but the performance is good enough for pro-
duction use). Now Fatima stops using GATE Developer and works instead on embedding
the new components in her email application using GATE Embedded. This application is
written in Java, so embedding is very easy'®: the GATE JAR files are added to the project
CLASSPATH, the new components are placed on a web server, and with a little code to do
initialisation, loading of components and so on, the job is finished in half a day — the code
to talk to GATE takes up only around 150 lines of the eventual application, most of which
is just copied from the example in the sheffield.examples.StandAloneAnnie class.

Because Fatima is worried about Cyberdyne’s unethical policy of developing Skynet to help
the large corporates of the West strengthen their strangle-hold over the World, she wants
to get a job as an academic instead (so that her conscience will only have to cope with the
torture of students, as opposed to humanity). She takes the accuracy measures that she
has attained for her system and writes a paper for the Journal of Nasturtium Logarithm
Incitement describing the approach used and the results obtained. Because she used GATE
for development, she can cite the repeatability of her experiments and offer access to example
binary versions of her software by putting them on an external web server.

And everybody lived happily ever after.

13Languages other than Java require an additional interface layer, such as JNI, the Java Native Interface,
which is in C.

http://gate.ac.uk/GateExamples/doc/java2html/sheffield/examples/StandAloneAnnie.java.html

14 Introduction

1.4 Some Evaluations

This section contains an incomplete list of publications describing systems that used GATE in
competitive quantitative evaluation programmes. These programmes have had a significant
impact on the language processing field and the widespread presence of GATE is some
measure of the maturity of the system and of our understanding of its likely performance on
diverse text processing tasks.

[Li et al. 07d] describes the performance of an SVM-based learning system in the NTCIR-6
Patent Retrieval Task. The system achieved the best result on two of three measures
used in the task evaluation, namely the R-Precision and F-measure. The system ob-
tained close to the best result on the remaining measure (A-Precision).

[Saggion 07] describes a cross-source coreference resolution system based on semantic clus-
tering. It uses GATE for information extraction and the SUMMA system to cre-
ate summaries and semantic representations of documents. One system configuration
ranked 4th in the Web People Search 2007 evaluation.

[Saggion 06] describes a cross-lingual summarization system which uses SUMMA compo-
nents and the Arabic plugin available in GATE to produce summaries in English from
a mixture of English and Arabic documents.

Open-Domain Question Answering: The University of Sheffield has a long history
of research into open-domain question answering. GATE has formed the ba-
sis of much of this research resulting in systems which have ranked highly dur-
ing independent evaluations since 1999. The first successful question answering
system developed at the University of Sheffield was evaluated as part of TREC
8 and used the LaSIE information extraction system (the forerunner of ANNIE)
which was distributed with GATE [Humphreys et al. 99]. Further research was
reported in [Scott & Gaizauskas. 00], [Greenwood et al. 02], [Gaizauskas et al. 03],
|Gaizauskas et al. 04] and [Gaizauskas et al. 05]. In 2004 the system was ranked 9th
out of 28 participating groups.

[Saggion 04] describes techniques for answering definition questions. The system uses def-
inition patterns manually implemented in GATE as well as learned JAPE patterns
induced from a corpus. In 2004, the system was ranked 4th in the TREC/QA evalua-
tions.

[Saggion & Gaizauskas 04b] describes a multidocument summarization system imple-
mented using summarization components compatible with GATE (the SUMMA sys-
tem). The system was ranked 2nd in the Document Understanding Evaluation pro-
grammes.

[Maynard et al. 03e] and [Maynard et al. 03d] describe participation in the TIDES
surprise language program. ANNIE was adapted to Cebuano with four person days of

Introduction 15

effort, and achieved an F-measure of 77.5%. Unfortunately, ours was the only system
participating!

[Maynard et al. 02b] and [Maynard et al. 03b] describe results obtained on systems
designed for the ACE task (Automatic Content Extraction). Although a compari-
son to other participating systems cannot be revealed due to the stipulations of ACE,
results show 82%-86% precision and recall.

[Humphreys et al. 98] describes the LaSIE-II system used in MUC-7.

[Gaizauskas et al. 95] describes the LaSIE-II system used in MUC-6.

1.5 Changes in this Version

This section logs changes in the latest version of GATE. Appendix A provides a complete
change log.

1.5.1 Version 5.2.1 (May 2010)

This is a bugfix release to resolve several bugs that were reported shortly after the release of
version 5.2:

e Fixed some bugs with the automatic “create instance” feature in OAT (the ontology
annotation tool) when used with the new Ontology plugin.

e Added validation to datatype property values of the date, time and datetime types.

e Fixed a bug with Gazetteer_LKB that prevented it working when the dictionaryPath
contained spaces.

e Added a utility class to handle common cases of encoding URIs for use in ontologies,
and fixed the example code to show how to make use of this. See chapter 14 for details.

e The annotation set transfer PR now copies the feature map of each annotation it trans-
fers, rather than re-using the same FeatureMap (this means that when used to copy
annotations rather than move them, the copied annotation is independent from the
original and modifying the features of one does not modify the other). See section 19.3
for details.

e The Log4J log files are now created by default in the .gate directory under the user’s
home directory, rather than being created in the current directory when GATE starts,
to be more friendly when GATE is installed in a shared location where the user does
not have write permission.

16 Introduction

This release also fixes some shortcomings in the Groovy support added by 5.2, in particular:

e The corpora variable in the console now includes persistent corpora (loaded from a
datastore) as well as transient corpora.

e The subscript notation for annotation sets works with long values as well as ints, so
someAS [annotation.start()..annotation.end ()] works as expected.

1.5.2 Version 5.2 (April 2010)
JAPE and JAPE-related

Introduced a utility class gate.Utils containing static utility methods for frequently-used
idioms such as getting the string covered by an annotation, finding the start and end offsets
of annotations and sets, etc. This class is particularly useful on the right hand side of JAPE
rules (section 8.6.5).

Added type parameters to the bindings map available on the RHS of JAPE rules, so you can
now do AnnotationSet as = bindings.get("label") without a cast (see section 8.6.5).

Fixed a bug with JAPE’s handling of features called “class” in non-ontology-aware mode.
Previously JAPE would always match such features using an equality test, even if a dif-
ferent operator was used in the grammar, i.e. {SomeType.class !'= "foo"} was matched
as {SomeType.class == "foo"}. The correct operator is now used. Note that this does
not affect the ontology-aware behaviour: when an ontology parameter is specified, “class”
features are always matched using ontology subsumption.

Custom JAPE operators and annotation accessors can now be loaded from plugins as well
as from the 1ib directory (see section 8.2.2).

Other Changes

Added a mechanism to allow plugins to contribute menu items to the “Tools” menu in GATE
Developer. See section 4.8 for details.

Enhanced Groovy support in GATE: the Groovy console and Groovy Script PR (in the
Groovy plugin) now import many GATE classes by default, and a number of utility methods
are mixed in to some of the core GATE API classes to make them more natural to use in
Groovy. See section 7.16 for details.

Modified the batch learning PR (in the Learning plugin) to make it safe to use several
instances in APPLICATION mode with the same configuration file and the same learned
model at the same time (e.g. in a multithreaded application). The other modes (including

http://gate.ac.uk/gate/doc/javadoc/gate/Utils.html

Introduction 17

training and evaluation) are unchanged, and thus are still not safe for use in this way. Also
fixed a bug that prevented APPLICATION mode from working anywhere other than as the
last PR in a pipeline when running over a corpus in a datastore.

Introduced a simple way to create duplicate copies of an existing resource instance, with a
way for individual resource types to override the default duplication algorithm if they know
a better way to deal with duplicating themselves. See section 7.7.

Enhanced the Spring support in GATE to provide easy access to the new duplication API,
and to simplify the configuration of the built-in Spring pooling mechanisms when writing
multi-threaded Spring-based applications. See section 7.14.

The GAPP packager Ant task now respects the ordering of mapping hints, with earlier hints
taking precedence over later ones (see section E.2.3).

Bug fix in the UIMA plugin from Roland Cornelissen - AnalysisEnginePR now properly
shuts down the wrapped AnalysisEngine when the PR is deleted.

Patch from Matt Nathan to allow several instances of a gazetteer PR in an embedded appli-
cation to share a single copy of their internal data structures, saving considerable memory
compared to loading several complete copies of the same gazetteer lists (see section 13.11).

1.6 Further Reading

Lots of documentation lives on the GATE web server, including;:

e movies of the system in operation;

e the main system documentation tree;

JavaDoc API documentation;

e HTML of the source code;

parts of the requirements analysis that version 3 was based on.

For more details about Sheffield University’s work in human language processing see the NLP
group pages or A Definition and Short History of Language Engineering ([Cunningham 99a]).
For more details about Information Extraction see IF, a User Guide or the GATE IE pages.

A list of publications on GATE and projects that use it (some of which are available on-line):

2009

http://gate.ac.uk/
http://gate.ac.uk/demos/movies.html
http://gate.ac.uk/gate/doc/
http://gate.ac.uk/gate/doc/javadoc
http://gate.ac.uk/gate/doc/java2html
http://gate.ac.uk/gate/doc/usecases.html
http://nlp.shef.ac.uk/
http://nlp.shef.ac.uk/
http://www.dcs.shef.ac.uk/~hamish/LeIntro.html
http://www.dcs.shef.ac.uk/~hamish/IE/
http://gate.ac.uk/ie/
http://gate.ac.uk/gate/doc/papers.html

18 Introduction

[Bontcheva et al. 09] is the ‘Human Language Technologies’ chapter of ‘Semantic Knowl-
edge Management’ (John Davies, Marko Grobelnik and Dunja Mladeni eds.)

[Damljanovic et al. 09] - to appear.

[Laclavik & Maynard 09] reviews the current state of the art in email processing and
communication research, focusing on the roles played by email in information manage-
ment, and commercial and research efforts to integrate a semantic-based approach to
email.

[Li et al. 09] investigates two techniques for making SVMs more suitable for language learn-
ing tasks. Firstly, an SVM with uneven margins (SVMUM) is proposed to deal with
the problem of imbalanced training data. Secondly, SVM active learning is employed
in order to alleviate the difficulty in obtaining labelled training data. The algorithms
are presented and evaluated on several Information Extraction (IE) tasks.

2008

[Agatonovic et al. 08] presents our approach to automatic patent enrichment, tested in
large-scale, parallel experiments on USPTO and EPO documents.

[Damljanovic et al. 08] presents Question-based Interface to Ontologies (QuestIO) - a tool
for querying ontologies using unconstrained language-based queries.

[Damljanovic & Bontcheva 08] presents a semantic-based prototype that is made for
an open-source software engineering project with the goal of exploring methods for
assisting open-source developers and software users to learn and maintain the system
without major effort.

[Della Valle et al. 08] presents ServiceFinder.

[Li & Cunningham 08] describes our SVM-based system and several techniques we de-
veloped successfully to adapt SVM for the specific features of the F-term patent clas-
sification task.

[Li & Bontcheva 08] reviews the recent developments in applying geometric and quantum
mechanics methods for information retrieval and natural language processing.

[Maynard 08] investigates the state of the art in automatic textual annotation tools, and
examines the extent to which they are ready for use in the real world.

[Maynard et al. 08a] discusses methods of measuring the performance of ontology-based
information extraction systems, focusing particularly on the Balanced Distance Metric
(BDM), a new metric we have proposed which aims to take into account the more
flexible nature of ontologically-based applications.

[Maynard et al. 08b] investigates NLP techniques for ontology population, using a com-
bination of rule-based approaches and machine learning.

Introduction 19

[Tablan et al. 08] presents the QuestIO system a natural language interface for accessing
structured information, that is domain independent and easy to use without training.

2007

[Funk et al. 07a] describes an ontologically based approach to multi-source, multilingual
information extraction.

[Funk et al. 07b] presents a controlled language for ontology editing and a software im-
plementation, based partly on standard NLP tools, for processing that language and
manipulating an ontology.

[Maynard et al. 07a] proposes a methodology to capture (1) the evolution of metadata
induced by changes to the ontologies, and (2) the evolution of the ontology induced by
changes to the underlying metadata.

[Maynard et al. 07b] describes the development of a system for content mining using do-
main ontologies, which enables the extraction of relevant information to be fed into
models for analysis of financial and operational risk and other business intelligence
applications such as company intelligence, by means of the XBRL standard.

[Saggion 07] describes experiments for the cross-document coreference task in SemEval
2007. Our cross-document coreference system uses an in-house agglomerative clustering
implementation to group documents referring to the same entity.

[Saggion et al. 07] describes the application of ontology-based extraction and merging in
the context of a practical e-business application for the EU MUSING Project where the
goal is to gather international company intelligence and country/region information.

[Li et al. 07a] introduces a hierarchical learning approach for IE, which uses the target
ontology as an essential part of the extraction process, by taking into account the
relations between concepts.

[Li et al. 07Tb] proposes some new evaluation measures based on relations among classifi-
cation labels, which can be seen as the label relation sensitive version of important
measures such as averaged precision and F-measure, and presents the results of apply-
ing the new evaluation measures to all submitted runs for the NTCIR-6 F-term patent
classification task.

[Li et al. 07c] describes the algorithms and linguistic features used in our participating
system for the opinion analysis pilot task at NTCIR-6.

[Li et al. 07d] describes our SVM-based system and the techniques we used to adapt the
approach for the specifics of the F-term patent classification subtask at NTCIR-6
Patent Retrieval Task.

20 Introduction

[Li & Shawe-Taylor 07] studies Japanese-English cross-language patent retrieval using
Kernel Canonical Correlation Analysis (KCCA), a method of correlating linear rela-
tionships between two variables in kernel defined feature spaces.

2006

[Aswani et al. 06] (Proceedings of the 5th International Semantic Web Conference
(ISWC2006)) In this paper the problem of disambiguating author instances in on-
tology is addressed. We describe a web-based approach that uses various features such
as publication titles, abstract, initials and co-authorship information.

[Bontcheva et al. 06a] ‘Semantic Annotation and Human Language Technology’, contri-
bution to ‘Semantic Web Technology: Trends and Research’ (Davies, Studer and War-
ren, eds.)

[Bontcheva et al. 06b] ‘Semantic Information Access’, contribution to ‘Semantic Web
Technology: Trends and Research’ (Davies, Studer and Warren, eds.)

[Bontcheva & Sabou 06] presents an ontology learning approach that 1) exploits a range
of information sources associated with software projects and 2) relies on techniques
that are portable across application domains.

[Davis et al. 06] describes work in progress concerning the application of Controlled Lan-
guage Information Extraction - CLIE to a Personal Semantic Wiki - Semper- Wiki,
the goal being to permit users who have no specialist knowledge in ontology tools or
languages to semi-automatically annotate their respective personal Wiki pages.

[Li & Shawe-Taylor 06] studies a machine learning algorithm based on KCCA for cross-
language information retrieval. The algorithm is applied to Japanese-English cross-
language information retrieval.

[Maynard et al. 06] discusses existing evaluation metrics, and proposes a new method for
evaluating the ontology population task, which is general enough to be used in a variety
of situation, yet more precise than many current metrics.

[Tablan et al. 06a] describes an approach that allows users to create and edit ontologies
simply by using a restricted version of the English language. The controlled language
described is based on an open vocabulary and a restricted set of grammatical con-
structs.

[Tablan et al. 06b] describes the creation of linguistic analysis and corpus search tools for
Sumerian, as part of the development of the ETCSL.

[Wang et al. 06] proposes an SVM based approach to hierarchical relation extraction, using
features derived automatically from a number of GATE-based open-source language
processing tools.

Introduction 21

2005

[Aswani et al. 05] (Proceedings of Fifth International Conference on Recent Advances in
Natural Language Processing (RANLP2005)) It is a full-featured annotation indexing
and search engine, developed as a part of the GATE. It is powered with Apache Lucene
technology and indexes a variety of documents supported by the GATE.

[Bontcheva 05] presents the ONTOSUM system which uses Natural Language Generation
(NLG) techniques to produce textual summaries from Semantic Web ontologies.

[Cunningham 05] is an overview of the field of Information Extraction for the 2nd Edition
of the Encyclopaedia of Language and Linguistics.

[Cunningham & Bontcheva 05] is an overview of the field of Software Architecture for
Language Engineering for the 2nd Edition of the Encyclopaedia of Language and Lin-
guistics.

[Dowman et al. 05a] (Euro Interactive Television Conference Paper) A system which can
use material from the Internet to augment television news broadcasts.

[Dowman et al. 05b] (World Wide Web Conference Paper) The Web is used to assist the
annotation and indexing of broadcast news.

[Dowman et al. 05c] (Second European Semantic Web Conference Paper) A system that
semantically annotates television news broadcasts using news websites as a resource to
aid in the annotation process.

[Li et al. 05a] (Proceedings of Sheffield Machine Learning Workshop) describe an SVM
based IE system which uses the SVM with uneven margins as learning component and
the GATE as NLP processing module.

[Li et al. 05b] (Proceedings of Ninth Conference on Computational Natural Language
Learning (CoNLL-2005)) uses the uneven margins versions of two popular learning
algorithms SVM and Perceptron for IE to deal with the imbalanced classification prob-
lems derived from IE.

[Li et al. 05c] (Proceedings of Fourth SIGHAN Workshop on Chinese Language processing
(Sighan-05)) a system for Chinese word segmentation based on Perceptron learning, a
simple, fast and effective learning algorithm.

[Polajnar et al. 05] (University of Sheffield-Research Memorandum CS-05-10) User-
Friendly Ontology Authoring Using a Controlled Language.

[Saggion & Gaizauskas 05] describes experiments on content selection for producing bi-
ographical summaries from multiple documents.

[Ursu et al. 05] (Proceedings of the 2nd European Workshop on the Integration of Knowl-
edge, Semantic and Digital Media Technologies (EWIMT 2005))Digital Media Preser-
vation and Access through Semantically Enhanced Web-Annotation.

22 Introduction

[Wang et al. 05] (Proceedings of the 2005 IEEE/WIC/ACM International Conference on
Web Intelligence (WI 2005)) Extracting a Domain Ontology from Linguistic Resource
Based on Relatedness Measurements.

2004

[Bontcheva 04] (LREC 2004) describes lexical and ontological resources in GATE used for
Natural Language Generation.

[Bontcheva et al. 04] (JNLE) discusses developments in GATE in the early naughties.
[Cunningham & Scott 04a] (JNLE) is the introduction to the above collection.

[Cunningham & Scott 04b] (JNLE) is a collection of papers covering many important
areas of Software Architecture for Language Engineering.

[Dimitrov et al. 04] (Anaphora Processing) gives a lightweight method for named entity
coreference resolution.

[Li et al. 04] (Machine Learning Workshop 2004) describes an SVM based learning algo-
rithm for IE using GATE.

[Maynard et al. 04a] (LREC 2004) presents algorithms for the automatic induction of
gazetteer lists from multi-language data.

[Maynard et al. 04b] (ESWS 2004) discusses ontology-based IE in the hTechSight project.

[Maynard et al. 04c] (AIMSA 2004) presents automatic creation and monitoring of se-
mantic metadata in a dynamic knowledge portal.

[Saggion & Gaizauskas 04a] describes an approach to mining definitions.

[Saggion & Gaizauskas 04b] describes a sentence extraction system that produces two
sorts of multi-document summaries; a general-purpose summary of a cluster of related
documents and an entity-based summary of documents related to a particular person.

[Wood et al. 04] (NLDB 2004) looks at ontology-based IE from parallel texts.
2003

[Bontcheva et al. 03] (NLPXML-2003) looks at GATE for the semantic web.

[Cunningham et al. 03] (Corpus Linguistics 2003) describes GATE as a tool for collabo-
rative corpus annotation.

[Kiryakov 03] (Technical Report) discusses semantic web technology in the context of mul-
timedia indexing and search.

Introduction 23

[Manov et al. 03] (HLT-NAACL 2003) describes experiments with geographic knowledge
for 1E.

[Maynard et al. 03a] (EACL 2003) looks at the distinction between information and con-
tent extraction.

[Maynard et al. 03c] (Recent Advances in Natural Language Processing 2003) looks at
semantics and named-entity extraction.

[Maynard et al. 03e] (ACL Workshop 2003) describes NE extraction without training
data on a language you don’t speak (!).

[Saggion et al. 03a] (EACL 2003) discusses robust, generic and query-based summarisa-
tion.

[Saggion et al. 03b] (Data and Knowledge Engineering) discusses multimedia indexing
and search from multisource multilingual data.

[Saggion et al. 03c] (EACL 2003) discusses event co-reference in the MUMIS project.
[Tablan et al. 03] (HLT-NAACL 2003) presents the OLLIE on-line learning for IE system.

[Wood et al. 03] (Recent Advances in Natural Language Processing 2003) discusses using
parallel texts to improve IE recall.

2002

[Baker et al. 02] (LREC 2002) report results from the EMILLE Indic languages corpus
collection and processing project.

[Bontcheva et al. 02a] (ACI 2002 Workshop) describes how GATE can be used as an en-
vironment for teaching NLP, with examples of and ideas for future student projects
developed within GATE.

[Bontcheva et al. 02b] (NLIS 2002) discusses how GATE can be used to create HLT mod-
ules for use in information systems.

[Bontcheva et al. 02c], [Dimitrov 02a] and [Dimitrov 02b] (TALN 2002, DAARC
2002, MSc thesis) describe the shallow named entity coreference modules in GATE:
the orthomatcher which resolves pronominal coreference, and the pronoun resolution
module.

[Cunningham 02] (Computers and the Humanities) describes the philosophy and moti-
vation behind the system, describes GATE version 1 and how well it lived up to its
design brief.

[Cunningham et al. 02] (ACL 2002) describes the GATE framework and graphical devel-
opment environment as a tool for robust NLP applications.

24 Introduction

[Dimitrov 02a, Dimitrov et al. 02] (DAARC 2002, MSc thesis) discuss lightweight coref-
erence methods.

[Lal 02] (Master Thesis) looks at text summarisation using GATE.
[Lal & Ruger 02] (ACL 2002) looks at text summarisation using GATE.

[Maynard et al. 02a] (ACL 2002 Summarisation Workshop) describes using GATE to
build a portable IE-based summarisation system in the domain of health and safety.

[Maynard et al. 02c] (AIMSA 2002) describes the adaptation of the core ANNIE modules
within GATE to the ACE (Automatic Content Extraction) tasks.

[Maynard et al. 02d] (Nordic Language Technology) describes various Named Entity
recognition projects developed at Sheffield using GATE.

[Maynard et al. 02e] (JNLE) describes robustness and predictability in LE systems, and
presents GATE as an example of a system which contributes to robustness and to low
overhead systems development.

[Pastra et al. 02] (LREC 2002) discusses the feasibility of grammar reuse in applications
using ANNIE modules.

[Saggion et al. 02b] and [Saggion et al. 02a] (LREC 2002, SPLPT 2002) describes how
ANNIE modules have been adapted to extract information for indexing multimedia
material.

[Tablan et al. 02] (LREC 2002) describes GATE’s enhanced Unicode support.

Older than 2002

[Maynard et al. 01] (RANLP 2001) discusses a project using ANNIE for named-entity
recognition across wide varieties of text type and genre.

[Bontcheva et al. 00] and [Brugman et al. 99] (COLING 2000, technical report) de-
scribe a prototype of GATE version 2 that integrated with the EUDICO multimedia
markup tool from the Max Planck Institute.

[Cunningham 00] (PhD thesis) defines the field of Software Architecture for Language
Engineering, reviews previous work in the area, presents a requirements analysis for
such systems (which was used as the basis for designing GATE versions 2 and 3), and
evaluates the strengths and weaknesses of GATE version 1.

[Cunningham et al. 00a], [Cunningham et al. 98a] and [Peters et al. 98] (OntoLex 2000,
LREC 1998) presents GATE’s model of Language Resources, their access and distri-
bution.

http://www.mpi.nl/world/tg/lapp/eudico/eudico.html
http://www.mpi.nl/world/tg/lapp/eudico/eudico.html

Installing and Running GATE 25

[Cunningham et al. 00b] (LREC 2000) taxonomises Language Engineering components
and discusses the requirements analysis for GATE version 2.

[Cunningham et al. 00c] and [Cunningham et al. 99] (COLING 2000, AISB 1999)
summarise experiences with GATE version 1.

[Cunningham et al. 00d] and [Cunningham 99b] (technical reports) document early
versions of JAPE (superseded by the present document).

[Gambick & Olsson 00] (LREC 2000) discusses experiences in the Svensk project, which
used GATE version 1 to develop a reusable toolbox of Swedish language processing
components.

[Maynard et al. 00] (technical report) surveys users of GATE up to mid-2000.

[McEnery et al. 00] (Vivek) presents the EMILLE project in the context of which GATE’s
Unicode support for Indic languages has been developed.

[Cunningham 99a] (JNLE) reviewed and synthesised definitions of Language Engineering.

[Stevenson et al. 98] and [Cunningham et al. 98b] (ECAI 1998, NeMLaP 1998) re-
port work on implementing a word sense tagger in GATE version 1.

[Cunningham et al. 97b] (ANLP 1997) presents motivation for GATE and GATE-like
infrastructural systems for Language Engineering.

[Cunningham et al. 96a] (manual) was the guide to developing CREOLE components for
GATE version 1.

[Cunningham et al. 96b] (TIPSTER) discusses a selection of projects in Sheffield using
GATE version 1 and the TIPSTER architecture it implemented.

[Cunningham et al. 96c, Cunningham et al. 96d, Cunningham et al. 95] (COLING
1996, AISB Workshop 1996, technical report) report early work on GATE version 1.

[Gaizauskas et al. 96a] (manual) was the user guide for GATE version 1.

[Gaizauskas et al. 96b, Cunningham et al. 97a, Cunningham et al. 96e] (ICTAI 1996,
TIPSTER 1997, NeMLaP 1996) report work on GATE version 1.

[Humphreys et al. 96] (manual) describes the language processing components dis-
tributed with GATE version 1.

[Cunningham 94, Cunningham et al. 94] (NeMLaP 1994, technical report) argue that
software engineering issues such as reuse, and framework construction, are important
for language processing R&D.

http://www.emille.lancs.ac.uk/

26

Installing and Running GATE

Chapter 2

Installing and Running GATE

2.1 Downloading GATE

To download GATE point your web browser at http://gate.ac.uk/download/.

2.2 Installing and Running GATE

GATE will run anywhere that supports Java 5 or later, including Solaris, Linux, Mac OS
X and Windows platforms. We don’t run tests on other platforms, but have had reports of
successful installs elsewhere.

2.2.1 The Easy Way

The easy way to install is to use one of the platform-specific installers (created using the
excellent 1zPack). Download a ‘platform-specific installer’ and follow the instructions it
gives you. Once the installation is complete, you can start GATE Developer using gate.exe
(Windows) or GATE.app (Mac) in the top-level installation directory, or gate.sh in the bin
directory (other platforms).

Note for Mac users: on 64-bit-capable systems, GATE.app will run as a 64-bit application.
It will use the first listed 64-bit JVM in your Java Preferences, even if your highest priority
JVM is a 32-bit one. Thus if you want to run using Java 5 rather than 6 you must ensure
that “J2SE 5.0 64-bit” is listed ahead of “Java SE 6 64-bit”.

27

http://gate.ac.uk/download/
http://izpack.org/
http://gate.ac.uk/download/

28 Installing and Running GATE

2.2.2 The Hard Way (1)

Download the Java-only release package or the binary build snapshot, and follow the instruc-
tions below.

Prerequisites:

e A conforming Java 2 environment,

— wversion 1.4.2 or above for GATE 3.1
— version 5.0 for GATE 4.0 beta 1 or later.

available free from Sun Microsystems or from your UNIX supplier. (We test on various
Sun JDKs on Solaris, Linux and Windows XP.)

e Binaries from the GATE distribution you downloaded: gate.jar, 1ib/ext/guk. jar
(Unicode editing support) and a suitable script to start Ant, e.g. ant.sh or ant.bat.
These are held in a directory called bin like this:

.../bin/
gate.jar
ant.sh
ant.bat

You will also need the 1ib directory, containing various libraries that GATE depends
on.

e An open mind and a sense of humour.
Using the binary distribution:

e Unpack the distribution, creating a directory containing jar files and scripts.

e To run GATE Developer: on Windows, start a Command Prompt window, change
to the directory where you unpacked the GATE distribution and run ‘bin/ant.bat
run’; on UNIX or mac open a terminal window and run ‘bin/ant run’.

e To embed GATE as a library (GATE Embedded), put gate.jar and all the libraries
in the lib directory in your CLASSPATH and tell Java that guk.jar is an extension
(-Djava.ext.dirs=path-to-guk. jar).

The Ant scripts that start GATE Developer (ant.bat or ant) require you to set the
JAVA_HOME environment variable to point to the top level directory of your JAVA instal-
lation. The value of GATE_CONFIG is passed to the system by the scripts using either a -i
command-line option, or the Java property gate.config.

http://java.sun.com/products/jdk/

Installing and Running GATE 29

2.2.3 The Hard Way (2): Subversion

The GATE code is maintained in a Subversion repository. You can use a Subversion client
to check out the source code — the most up-to-date version of GATE is the trunk:
svn checkout https://gate.svn.sourceforge.net/svnroot/gate/gate/trunk gate

Once you have checked out the code you can build GATE using Ant (see Section 2.5)

You can browse the complete Subversion repository online at http://gate.svn.sourceforge.net /.

2.3 Using System Properties with GATE

During initialisation, GATE reads several Java system properties in order to decide where
to find its configuration files.

Here is a list of the properties used, their default values and their meanings:

gate.home sets the location of the GATE install directory. This should point to the top
level directory of your GATE installation. This is the only property that is required.
If this is not set, the system will display an error message and them it will attempt to
guess the correct value.

gate.plugins.home points to the location of the directory containing installed plug-
ins (a.k.a. CREOLE directories). If this is not set then the default value of
{gate.home}/plugins is used.

gate.site.config points to the location of the configuration file containing the site-wide
options. If not set this will default to {gate.home}/gate.xml. The site configuration
file must exist!

gate.user.config points to the file containing the user’s options. If not specified, or if the
specified file does not exist at startup time, the default value of gate.xml (.gate.xml on
Unix platforms) in the user’s home directory is used.

gate.user.session points to the file containing the user’s saved session. If not specified,
the default value of gate.session (.gate.session on Unix) in the user’s home directory
is used. When starting up GATE Developer, the session is reloaded from this file if it
exists, and when exiting GATE Developer the session is saved to this file (unless the

user has disabled ‘save session on exit’ in the configuration dialog). The session is not
used when using GATE Embedded.

load.plugin.path is a path-like structure, i.e. a list of URLSs separated by ;’. All directories
listed here will be loaded as CREOLE plugins during initialisation. This has similar
functionality with the the -d command line option.

http://subversion.tigris.org
http://gate.svn.sourceforge.net/

30 Installing and Running GATE

gate.builtin.creole.dir is a URL pointing to the location of GATE’s built-in CREOLE
directory. This is the location of the creole.xml file that defines the fundamental
GATE resource types, such as documents, document format handlers, controllers and
the basic visual resources that make up GATE. The default points to a location inside
gate. jar and should not generally need to be overridden.

When using GATE Embedded, you can set the values for these properties before you call
Gate.init(). Alternatively, you can set the values programmatically using the static
methods setGateHome(), setPluginsHome(), setSiteConfigFile(), etc. before calling
Gate.init (). See the Javadoc documentation for details. If you want to set these values
from the command line you can use the following syntax for setting gate.home for example:

java -Dgate.home=/my/new/gate/home/directory -cp... gate.Main

When running GATE Developer, you can set the properties by creating a file
build.properties in the top level GATE directory. In this file, any system properties
which are prefixed with ‘run.’ will be passed to GATE. For example, to set an alternative
user config file, put the following line in build.properties!:

run.gate.user.config=${user.home}/alternative-gate.xml

This facility is not limited to the GATE-specific properties listed above, for example the
following line changes the default temporary directory for GATE (note the use of forward
slashes, even on Windows platforms):

run.java.io.tmpdir=d:/bigtmp

2.4 Configuring GATE

When GATE Developer is started, or when Gate.init () is called from GATE Embedded,
GATE loads various sorts of configuration data stored as XML in files generally called
something like gate.xml or .gate.xml. This data holds information such as:

whether to save settings on exit;

whether to save session on exit;

what fonts GATE Developer should use;

plugins to load at start;

e colours of the annotations;

'In this specific case, the alternative config file must already exist when GATE starts up, so you should
copy your standard gate.xml file to the new location.

Installing and Running GATE 31

e locations of files for the file chooser;

e and a lot of other GUI related options;
This type of data is stored at two levels (in order from general to specific):

e the site-wide level, which by default is located the gate.xml file in top level directory
of the GATE installation (i.e. the GATE home. This location can be overridden by the
Java system property gate.site.config;

e the user level, which lives in the user’s HOME directory on UNIX or their profile
directory on Windows (note that parts of this file are overwritten when saving user
settings). The default location for this file can be overridden by the Java system
property gate.user.config.

Where configuration data appears on several different levels, the more specific ones overwrite
the more general. This means that you can set defaults for all GATE users on your system,
for example, and allow individual users to override those defaults without interfering with
others.

Configuration data can be set from the GATE Developer GUI via the ‘Options’ menu then
‘Configuration’. The user can change the appearance of the GUI in the ‘Appearance’ tab,
which includes the options of font and the ‘look and feel’. The ‘Advanced’ tab enables the
user to include annotation features when saving the document and preserving its format, to
save the selected Options automatically on exit, and to save the session automatically on
exit. The ‘Input Methods’ submenu from the ‘Options’ menu enables the user to change the
default language for input. These options are all stored in the user’s .gate.xml file.

When using GATE Embedded, you can also set the site config location using
Gate.setSiteConfigFile(File) prior to calling Gate.init ().

2.5 Building GATE

Note that you don’t need to build GATE unless you're doing development on the system
itself.

Prerequisites:

e A conforming Java environment as above.

32 Installing and Running GATE

e A copy of the GATE sources and the build scripts — either the SRC distribution package
from the nightly snapshots or a copy of the code obtained through Subversion (see
Section 2.2.3).

e An appreciation of natural beauty.
GATE now includes a copy of the ANT build tool which can be accessed through the scripts

included in the bin directory (use ant.bat for Windows 98 or ME, ant.cmd for Windows
NT, 2000 or XP, and ant.sh for Unix platforms).

To build gate, cd to gate and:
1. Type:
bin/ant

2. [optional] To test the system:
bin/ant test

3. [optional] To make the Javadoc documentation:
bin/ant doc

4. You can also run GATE Developer using Ant, by typing:
bin/ant run

5. To see a full list of options type: bin/ant help

(The details of the build process are all specified by the build.xml file in the gate directory.)

You can also use a development environment like Borland JBuilder (click on the gate. jpx
file), but note that it’s still advisable to use ant to generate documentation, the jar file and so
on. Also note that the run configurations have the location of a gate.xml site configuration
file hard-coded into them, so you may need to change these for your site.

2.5.1 Using GATE with Maven or JPF

This section is based on contributions by Georg Ottl and William Oberman.

To use GATE with Maven you need a definition of the dependencies in POM format. There’s
an example POM here.

To use GATE with JPF (a Java plugin framework) you need a plugin definition like this one.

file:maven/pom.xml
file:maven/plugin.xml

Installing and Running GATE 33

2.6 Uninstalling GATE

If you have used the installer, run:
java -jar uninstaller. jar

or just delete the whole of the installation directory (the one containing bin, lib, Uninstaller,
etc.). The installer doesn’t install anything outside this directory, but for completeness you
might also want to delete the settings files GATE creates in your home directory (.gate.xml
and .gate.session).

2.7 'Troubleshooting

2.7.1 1 don’t see the Java console messages under Windows

Note that the gate.bat script uses javaw.exe to run GATE which means that you will see
no console for the java process. If you have problems starting GATE and you would like to
be able to see the console to check for messages then you should edit the gate.bat script
and replace javaw.exe with java.exe in the definition of the JAVA environment variable.

2.7.2 When I execute GATE, nothing happens

You might get some clues if you start GATE from the command line, using:
bin/ant -Druntime.spawn=false run

which will allow you to see all error messages GATE generates.

2.7.3 On Ubuntu, GATE is very slow or doesn’t start

GATE and many other Java applications are known not to work with GCJ, the open-source
Java SDK or others non SUN Java SDK.

Make sure you have the official version of Java installed. Provided by Sun, the package is
named ‘sun-java6-jdk’ in Synaptic. GATE also works with Java version 5 so ‘sun-javab-jdk’.

To install it, run in a terminal:

34 Installing and Running GATE

sudo apt-get install sun-java6-jdk
Make sure that your default Java version is the one from SUN. You can do this by running:
sudo update-java-alternatives -1

This will list the installed Java VMs. You should see ‘java-6-sun’ as one of the options.

Then you should run :
sudo update-java-alternatives -s java-6-sun

to set the ‘java-6-sun’ as your default.

Finally, try GATE again.

2.7.4 How to use GATE on a 64 bit system?

32-bit vs. 64-bit is a matter of the JVM rather than the build of GATE -

For example, on Mac OS X, either use Applications/Utilities/Java Preferences and put one

of the 64-bit options at the top of the list, or run GATE from the terminal using Java 1.6.0
(which is 64-bit only on Mac OS):

export JAVA_HOME=/System/Library/Frameworks/JavaVM.framework/Versions/1.6.0/Home

bin/ant run

2.7.5 1 got the error: Could not reserve enough space for object
heap

GATE doesn’t use the JAVA_OPTS variable. The default memory allocations are defined in
the gate/build.xml file but you can override them by creating a file called build.properties
in the same directory containing

runtime.start.memory=256m
runtime.max.memory=1048m

If you don’t use ant to start GATE but your own application directly with the ‘java’ exe-
cutable then you must use something like:

java -Xmx512m -classpath <your classpath here> <yourClassName>

Installing and Running GATE 35

2.7.6 From Eclipse, I got the error: java.lang.OutOfMemoryError:
Java heap space

Configuring xms and xmx parameters in eclipse.ini file just adds memory to your Eclipse
process. If you start a Java application from within Eclipse, that will run in a different
process.

To give more memory to your application, as opposed to just to Eclipse, you need to add
those values in the ‘VM Arguments’ section of the run application dialog: lower pane, in the
second tab of ‘Run Configurations’ dialog.

2.7.7 On MacOS, I got the error: java.lang.OutOfMemoryError:
Java heap space

You can try to set the environment variable ANT_OPTS to allow for more memory as follows:

export ANT_0OPTS=-Xmx1024m

Another cause can be when compiling with Java 6 on Mac. It builds OK using Java 5 with

export JAVA_HOME=/System/Library/Frameworks/JavaVM.framework/Versions/1.5.0/Home

and once built it runs fine with Java 6. Adding

fork="true"
memoryMaximumSize="500M"

or similar to the <javac> in build.xml might fix it but if you're making changes that are to
be committed to subversion you really ought to be building with Java 5 anyway :-)

2.7.8 I got the error: log4j:WARN No appenders could be found
for logger...

You need to copy the ‘gate/bin/logdj.properties’ file to the directory from which you execute
your project.

36 Using GATE Developer

2.7.9 Text is incorrectly refreshed after scrolling and become un-
readable

Change the look and feel used in GATE with menu ‘Options’ then ‘Configuration’. Restart
GATE and try again. We use mainly ‘Metal’ and ‘Nimbus’ without problem.

Change the video driver you use.

Update Java.

Chapter 3

Using GATE Developer

‘The law of evolution is that the strongest survives!’

‘Yes; and the strongest, in the existence of any social species, are those who are
most social. In human terms, most ethical. ... There is no strength to be gained
from hurting one another. Only weakness.’

The Dispossessed [p.183], Ursula K. le Guin, 1974.

This chapter introduces GATE Developer, which is the GATE graphical user interface. It is
analogous to systems like Mathematica for mathematicians, or Eclipse for Java programmers,
providing a convenient graphical environment for research and development of language
processing software. As well as being a powerful research tool in its own right, it is also very
useful in conjunction with GATE Embedded (the GATE API by which GATE functionality
can be included in your own applications); for example, GATE Developer can be used to
create applications that can then be embedded via the API. This chapter describes how
to complete common tasks using GATE Developer. It is intended to provide a good entry
point to GATE functionality, and so explanations are given assuming only basic knowledge
of GATE. However, probably the best way to learn how to use GATE Developer is to use
this chapter in conjunction with the demonstrations and tutorials movies. There are specific
links to them throughout the chapter. There is also a complete new set of video tutorials
here.

The basic business of GATE is annotating documents, and all the functionality we will
introduce relates to that. Core concepts are;

e the documents to be annotated,

e corpora comprising sets of documents, grouping documents for the purpose of running
uniform processes across them,

e annotations that are created on documents,
37

http://gate.ac.uk/demos/movies.html
https://gate.ac.uk/demos/developer-videos/

38 Using GATE Developer

e annotation types such as ‘Name’ or ‘Date’,
e annotation sets comprising groups of annotations,
e processing resources that manipulate and create annotations on documents, and

e applications, comprising sequences of processing resources, that can be applied to a
document or corpus.

What is considered to be the end result of the process varies depending on the task, but
for the purposes of this chapter, output takes the form of the annotated document/corpus.
Researchers might be more interested in figures demonstrating how successfully their appli-
cation compares to a ‘gold standard’ annotation set; Chapter 10 in Part II will cover ways of
comparing annotation sets to each other and obtaining measures such as F1. Implementers
might be more interested in using the annotations programmatically; Chapter 7, also in Part
I1, talks about working with annotations from GATE Embedded. For the purposes of this
chapter, however, we will focus only on creating the annotated documents themselves, and
creating GATE applications for future use.

GATE includes a complete information extraction system that you are free to use, called
ANNIE (a Nearly-New Information Extraction System). Many users find this is a good
starting point for their own application, and so we will cover it in this chapter. Chapter 6
talks in a lot more detail about the inner workings of ANNIE, but we aim to get you started
using ANNIE from inside of GATE Developer in this chapter.

We start the chapter with an exploration of the GATE Developer GUI, in Section 3.1. We
describe how to create documents (Section 3.2) and corpora (Section 3.3). We talk about
viewing and manually creating annotations (Section 3.4).

We then talk about loading the plugins that contain the processing resources you will use
to construct your application, in Section 3.5. We then talk about instantiating processing
resources (Section 3.6). Section 3.7 covers applications, including using ANNIE (Section
3.7.3). Saving applications and language resources (documents and corpora) is covered in
Section 3.8. We conclude with a few assorted topics that might be useful to the GATE
Developer user, in Section 3.10.

3.1 The GATE Developer Main Window

Figure 3.1 shows the main window of GATE Developer, as you will see it when you first run
it. There are five main areas:

1. at the top, the menus bar and tools bar with menus ‘File’, ‘Options’; ‘Tools’, ‘Help’
and icons for the most frequently used actions;

Using GATE Developer

File Options Tools Help

G caTE
% Applications

@ Language Resources

% Processing Resources

ﬁ Data stores

4
k

| Messages |

§§ GATE 5.1-snapshot build 3394 started at Wed Oct 28 10:39:31 GMT 2009
§§ and using Java 1.6.0_1& Sun Microsystems Inc. on Linux amdé&4 2.6.28-15-generic.

Edit GATE options

Figure 3.1: Main Window of GATE Developer

39

2. on the left side, a tree starting from ‘GATE’ and containing ‘Applications’, ‘Language
Resources’ etc. — this is the resources tree;

3. in the bottom left corner, a rectangle, which is the small resource viewer,

4. in the center, containing tabs with ‘Messages’ or the name of a resource from the
resources tree, the main resource viewer,

5. at the bottom, the messages bar.

The menu and the messages bar do the usual things. Longer messages are displayed in the
messages tab in the main resource viewer area.

The resource tree and resource viewer areas work together to allow the system to display
diverse resources in various ways. The many resources integrated with GATE can have either
a small view, a large view, or both.

At any time, the main viewer can also be used to display other information, such as messages,
by clicking on the appropriate tab at the top of the main window. If an error occurs in
processing, the messages tab will flash red, and an additional popup error message may also

occur.

40 Using GATE Developer

In the options dialogue from the Options menu you can choose if you want to link the
selection in the resources tree and the selected main view.

3.2 Loading and Viewing Documents

Name: | |
Name Type [Refwired Value

{2) collectRepositioninginfo |Boolean v [raise |
{2} encoding String [|
{2) markupAware Boolean |+ |true |
{2) mimeType String | |
{g) preserveOriginalContent |Boolean |+ [raise |
{27} sourceUrl w || URL v %

(‘.’} sourceUrlEnd Offset Long | |
(‘.’) sourceUriStartOffset Long | |

‘ oK H Cancel H Help |

Figure 3.2: Making a New Document

If you right-click on ‘Language Resources’ in the resources pane, select “New’ then ‘GATE
Document’, the window ‘Parameters for the new GATE Document’ will appear as shown in
figure 3.2. Here, you can specify the GATE document to be created. Required parameters
are indicated with a tick. The name of the document will be created for you if you do not
specify it. Enter the URL of your document or use the file browser to indicate the file you
wish to use for your document source. For example, you might use ‘http://www.gate.ac.uk’,
or browse to a text or XML file you have on disk. Click on ‘OK’ and a GATE document
will be created from the source you specified.

See also the movie for creating documents.

The document editor is contained in the central tabbed pane in GATE Developer. Double-
click on your document in the resources pane to view the document editor. The document
editor consists of a top panel with buttons and icons that control the display of different
views and the search box. Initially, you will see just the text of your document, as shown in
figure 3.3. Click on ‘Annotation Sets’ and ‘Annotations List’ to view the annotation sets to
the right and the annotations list at the bottom. You will see a view similar to figure 3.4.
In place of the annotations list, you can also choose to see the annotations stack. In place of
the annotation sets, you can also choose to view the co-reference editor. More information
about this functionality is given in Section 3.4.

Text in a loaded document can be edited in the document viewer. The usual platform specific
cut, copy and paste keyboard shortcuts should also work, depending on your operating

http://gate.ac.uk/demos/movies.html#loadDocs

Using GATE Developer 41

File Options Tools Help

7' GATE : Messages @ﬂ— aircraft-cra. .. |
% Applications |Annotation Sets| |Annutalions List| |Annotations Slack| ‘ Co-reference Editor|

@ Language Resources e
Hre==

@ﬂ,aircﬂﬂ,cﬂsh,u?,ou “[finvestigations into the crash of a Siberia airlines Tu- over ack Sea intensified on Sunday with Russian k

|fofficials focusing on the theory that a wayward Ikrainian missile was responsible for downing the aircraft en
ﬁ' Processing Resources

i|lroute from Israel, killing 78 people
ﬁ Data stores

delegation from Ukraine's defence ministry is due to arrive on Monday in the Russian Black Sea resort of Sochi,
:fwhere the investigation is centrad, following calls on Saturday from Sergei Ivanov, Russian defence minister, for
:ffinformation on live missile fire during Ukrainian military exercises at the time of the crash

ladimir Putin, Russian presidant, was not satisfiad with preliminary information supplied by Ukraine, according
:|fto Mr lvanov, who said in a blunt statement that material provided by Alexander Kuzmuk, his Ukrainian
:ffcounterpart, was "not sufficiently complete”. b

fiThe comments by Mr lvanov mark the strongest indication Russia is prepared to accept the view that a Ukrainian
¢[imissile was involved. Russian authorities had initially backed Ukrainian denials of such a possidility. H

5 he request for more information followed comments on Saturday by Viadimir Rushailo, head of Russia's
:[linvestigation into the crash, that items of crash debris recovered from the Black Sea could not have come from
:|fthe aircraft itself.

Mr Fushailo told reporters that the aircraft appearad to have been destroyed by a blow "of an explosive nature”
:(finvestigators have not ruled out the possibility that the aircraft was destroyed in & terrorist attack.

team of Israeli experts arrivad in Sochi on Sunday to assist in the enguiry. Relatives of the victims, most of
hom were Israeli nationals, are also making their way to the scene of the investigation

MimeType - |[text/htn

gate.SourceURL | w |[file:/Z:/

3l o o

o] D Document Editor Llnilialisation Parameters

GATE transient document.

Figure 3.3: The Document Editor

system (e.g. CTRL-C, CTRL-V for Windows). The last icon, a magnifying glass, at the
top of the document editor is for searching in the document. To prevent the new annotation
windows popping up when a piece of text is selected, hold down the CTRL key. Alternatively,
you can hide the annotation sets view by clicking on its button at the top of the document
view; this will also cause the highlighted portions of the text to become un-highlighted.

You can set the document editor to be read-only in the options dialogue from the ‘Options’
menu. If enabled, you won’t be able to edit the text but you will still be able to edit
annotations.

Another options is to choose if the insertion when editing text should be before or after the
caret.

See also Section 16.2.2 for the compound document editor.

42 Using GATE Developer

File Options Tools Help

7' GATE : Messages @ﬂ— aircraft-cra. .. |
?ﬁ Applications - - - - =
2 |Annotat|on Sets| |Annntal|nns L|st| |Annotat|ons Slack| ‘ Co-reference Edltor| Q
@ Language Resources i
@ﬂ,aircmﬂ,cmsh,gy,ou :{finvestigations into the crash of a Siberia airlines Tu-154 over the |~ ¥
§§ Black Sea intensified on Sunday with Russian officials focusing on the : b Key
%E' Processing Resources “lftheory that a wayward Ukrainian missile was responsible for downing :| % Original markups
:(lfthe aircraft en route from Israel, killing 78 people
ﬁ Data stores i : O et
;b delegation from Ukraine's defance ministry is due 1o arrive on ‘L] body
Monday in the Russian Black Sea resort of Sochi, where the : D font
i [linvestioation is centrad, following calls on Saturday from Sergei = 0] i
:ffvanoy, Russian defence minister, for information on live missile fire : A
during Ukrainian military exercises at the time of the crash [Ip
1 : table
£ |fviadimir Putin, Russian prasident, was not satisfied with preliminary : O
:flinformation supplied by Ukraine, according to Mr lvanov, who said in : [ta
¢[la blunt statement that material provided by Alexander Kuzmuk, his | 3|] &
:[iUkrainian counterpart, was "not sufficiently complete”. :
:ffiThe comments by Mr lvanov mark the strongest indication Russia is
prepared to accept the view that a Ukrainian missile was involved. :
:ffFussian authorities had initially backed Ukrainian denials of such a : h
i [frossibility. E
W The request for more infarmation followsd comments an Saturday b X
P U — l l — :[ITypesefstarfEndidFeatures
MimeType w |[text/ ht
gate.SourceURL w |[file:/ Z:f
- i
‘{0 Annotations @ selected) Select: | : || New
[T D Document Editor Llnilialisation Parameters

GATE transient document.

Figure 3.4: The Document Editor with Annotation Sets and Annotations List

3.3 Creating and Viewing Corpora

You can create a new corpus in a similar manner to creating a new document; simply right-
click on ‘Language Resources’ in the resources pane, select ‘New’ then ‘GATE corpus’. A
brief dialogue box will appear in which you can optionally give a name for your corpus (if
you leave this blank, a corpus name will be created for you) and optionally add documents
to the corpus from those already loaded into GATE.

There are three ways of adding documents to a corpus:

1. When creating the corpus, clicking on the icon next to the “documentsList” input field
brings up a popup window with a list of the documents already loaded into GATE
Developer. This enables the user to add any documents to the corpus.

2. Alternatively, the corpus can be loaded first, and documents added later by double
clicking on the corpus and using the + and - icons to add or remove documents to the
corpus. Note that the documents must have been loaded into GATE Developer before
they can be added to the corpus.

Using GATE Developer 43

3. Once loaded, the corpus can be populated by right clicking on the corpus and selecting
‘Populate’. With this method, documents do not have to have been previously loaded
into GATE Developer, as they will be loaded during the population process. If you
right-click on your corpus in the resources pane, you will see that you have the option
to ‘Populate’ the corpus. If you select this option, you will see a dialogue box in which
you can specify a directory in which GATE will search for documents. You can specify
the extensions allowable; for example, XML or TXT. This will restrict the corpus
population to only those documents with the extensions you wish to load. You can
choose whether to recurse through the directories contained within the target directory
or restrict the population to those documents contained in the top level directory. Click
on ‘OK’ to populate your corpus. This option provides a quick way to create a GATE
Corpus from a directory of documents.

Additionally, right-clicking on a loaded document in the tree and selecting the ‘New corpus
with this document’ option creates a new transient corpus named Corpus for document
name containing just this document.

See also the movie for creating and populating corpora.

Double click on your corpus in the resources pane to see the corpus editor, shown in figure 3.5.
You will see a list of the documents contained within the corpus.

In the top left of the corpus editor, plus and minus buttons allow you to add documents to
the corpus from those already loaded into GATE and remove documents from the corpus
(note that removing a document from a corpus does not remove it from GATE).

Up and down arrows at the top of the view allow you to reorder the documents in the corpus.
The rightmost button in the view opens the currently selected document in a document
editor.

At the bottom, you will see that tabs entitled ‘Initialisation Parameters’ and ‘Corpus Quality
Assurance’ are also available in addition to the corpus editor tab you are currently looking at.
Clicking on the ‘Initialisation Parameters’ tab allows you to view the initialisation parameters
for the corpus. The ‘Corpus Quality Assurance’ tab allows you to calculate agreement
measures between the annotations in your corpus. Agreement measures are discussed in
depth in Chapter 10. The use of corpus quality assurance is discussed in Section 10.3.

3.4 Working with Annotations

In this section, we will talk in more detail about viewing annotations, as well as creating and
editing them manually. As discussed in at the start of the chapter, the main purpose of GATE
is annotating documents. Whilst applications can be used to annotate the documents entirely
automatically, annotation can also be done manually, e.g. by the user, or semi-automatically,
by running an application over the corpus and then correcting/adding new annotations

http://gate.ac.uk/demos/movies.html#corpora

44 Using GATE Developer

File Omions Tuols Help

@ﬂ bt-26-jul-2001.xml_ ;;(Messages r@ln whitbread-10.. rf GATE corpus_000... r@ﬂ—hank—nf—uk—ﬂ...

& ft-bt-03-aug-2001.xml

@ﬂ—hmi—airline—ﬂ?—aug— All the documents loaded in the system are in this corpus.
&7 fi-bmi-25-feb-2001.xn| | |[Index Document name

&) 047 ft-BT-07-aug-2001.xml_0000D el
@f‘l—hml—ﬂg—mw—Zﬂﬂl.X 1 @7 ft-BT-briefing-02-aug-2001.xmI_0000E
fizbankcofuk-08-Aug 2 @ ft-ET-loop-01-aug-2001.xmlI_0000F
@ﬂ_hankmf—mgland_uz 3467 - GKN-09- aug-2001.xm1_00010 T
@ﬂ-amours-us-aug-zuu 4|47 f1-SSL-10-aug-2001.xml_00011
@ﬂ_a"""es_ﬂ_jm_zuul 5467 fl-Wes1LE-ET-05-aug-2001.xmi_00012
@“'MSILB'BT'US'““' 6|47 fi-airlines-27-jul-2001.xml_00013]
4 1-SSL-10-aug-2001xm 7|47 ft-airtours-08-aug-2001.xm|_00014
& f1-GKN-09-aug-2001.x 84 ft-bank-of-england-02- aug-2001.xm1_00015
47 ft-BT-loop-01-aug-20 Al 9|47 fi-bank-of-uk-08-Aug-2001.xm1_00016
&6 f1-BT-briefing-02-aug- 1047 ft-bmi- 09-may-2001.xmI_00017
&7 11-BT-07-aug-200Lxm| || 11/& rt-bmi-25-ren-2001.xm1_00018
& GATE corpus 00008 5 12|47 ft-bmi-airline-07-aug-2001.xm1_00019
¢ Processing Resources |l 134" r-b1-03-aug-2001.xmI_00014
Data stores =) 14 @’ ft-bt-26-jul-2001.xmI_0001E

] i | vl |

R R AN AR REND T

15467 ft-bi-at&t- 01-jul-2001.xml_0001C

16467 ft-bi-wireless-09-jul-2001.xmI_0001D

~|

17|67 ft-daims-direct- 10-aug-2001.xml_0001E

18|46 Tt-commerzbank-10-aug-2001.xml_0001F

22|47 ft-equitable-09-aug-2001.xml_00023

4]

Pl | Ml D Corpus editor L Initialisation Parameters LCnrpus Quality Assurance

Views built!

Figure 3.5: Corpus Editor

manually. Section 3.4.5 focuses on manual annotation. In Section 3.6 we talk about running
processing resources on our documents. We begin by outlining the functionality around
viewing annotations, organised by the GUI area to which the functionality pertains.

3.4.1 The Annotation Sets View

To view the annotation sets, click on the ‘Annotation Sets’ button at the top of the document
editor, or use the F3 key (see Section 3.9 for more keyboard shortcuts). This will bring up the
annotation sets viewer, which displays the annotation sets available and their corresponding
annotation types.

The annotation sets view is displayed on the left part of the document editor. It’s a tree-like
view with a root for each annotation set. The first annotation set in the list is always a
nameless set. This is the default annotation set. You can see in figure 3.4 that there is a

Using GATE Developer 45

drop-down arrow with no name beside it. Other annotation sets on the document shown in
figure 3.4 are ‘Key’ and ‘Original markups’. Because the document is an XML document,
the original XML markup is retained in the form of an annotation set. This annotation set
is expanded, and you can see that there are annotations for ‘TEXT’, ‘body’, ‘font’, ‘html’,
‘p’, ‘table’, ‘td” and ‘tr’.

To display all the annotations of one type, tick its checkbox or use the space key. The text
segments corresponding to these annotations will be highlighted in the main text window.
To delete an annotation type, use the delete key. To change the color, use the enter key.
There is a context menu for all these actions that you can display by right-clicking on one
annotation type, a selection or an annotation set.

If you keep shift key pressed when you open the annotation sets view, GATE Developer will
try to select any annotations that were selected in the previous document viewed (if any);
otherwise no annotation will be selected.

Having selected an annotation type in the annotation sets view, hovering over an annotation
in the main resource viewer or right-clicking on it will bring up a popup box containing a
list of the annotations associated with it, from which one can select an annotation to view
in the annotation editor, or if there is only one, the annotation editor for that annotation.
Figure 3.6 shows the annotation editor.

<>_’Z<>I\’ o

(53

|Refe rence

Kl

id v |12 =

multiple v”false -

ype v”Figure -

XX X[X

P Open Search & Annotate tool

Figure 3.6: The Annotation Editor

3.4.2 The Annotations List View

To view the list of annotations and their features, click on the ‘Annotations list’ button
at the top of the main window or use F4 key. The annotation list view will appear below
the main text. It will only contain the annotations selected from the annotation sets view.
These lists can be sorted in ascending and descending order for any column, by clicking on
the corresponding column heading. Moreover you can hide a column by using the context
menu by right-clicking on the column headings. Selecting rows in the table will blink the
respective annotations in the document. Right-click on a row or selection in this view to
delete or edit an annotation. Delete key is a shortcut to delete selected annotations.

46 Using GATE Developer

3.4.3 The Annotations Stack View

b Key

A » Key2

:| p Original markups
‘| % annotator1

B Measurement

NE

Previous annotation || Mext annotati0n| Target set; Ccansensus

Context either 22°C, 27°C ar33°C. At day 1-8, cells were counted. Figure 1 shows thatt _
annatatar L#Measurement O 0 [:| e Section
annotatar 1#Reference. type - ¥ annotator2?
annotator 1#5ection. iype [Examples ||: Measurement

| FerEE—
annotator2 #Measurernent |:|:| |:|:| 5

| [v] Section
annatator2#Reference. type - i

- :|® consensus

annatator2#section. tyoe |Examp|es | 3

i Measurement
cansensus#k easurement |:|:| £

| v] RETErETEE
cansensus#Reference e - :

" R0

Figure 3.7: Annotations stack view centred on the document caret.

This view is similar to the ANNIC view described in section 9.2. It displays annotations
at the document caret position with some context before and after. The annotations are
stacked from top to bottom, which gives a clear view when they are overlapping.

As the view is centred on the document caret, you can use the conventional keypresses to
move it and update the view: notably the keys left and right to skip one letter; control +
left /right to skip one word; up and down to go one line up or down; and use the document
scrollbar then click in the document to move further. There are also two buttons at the top
of the view that centre the view on the closest previous/next annotation boundary among
all displayed. This is useful when you want to skip a region without annotation or when you
want to reach the beginning or end of a very long annotation.

The annotation types displayed correspond to those selected in the annotation sets view. You
can display feature values for an annotation rectangle by hovering the mouse on it or select
only one feature to display by double-clicking on the annotation type in the first column.

Right-clicking on an annotation in the annotations stack view gives the option to edit that
annotation.

3.4.4 The Co-reference Editor

The co-reference editor allows co-reference chains (see Section 6.9) to be displayed and edited
in GATE Developer. To display the co-reference editor, first open a document in GATE
Developer, and then click on the Co-reference Editor button in the document viewer.

The combo box at the top of the co-reference editor allows you to choose which annotation
set to display co-references for. If an annotation set contains no co-reference data, then the

Using GATE Developer 47

: Sets =

DATE HOME Types : |Organizati0n |v || Shaw |
AFl docs | mowies | download | support | science | business | education | develapers | H

Hnews | credits | S|Co-reference Data

i |9 Default

CATE is... the Eclipse of Matural Language Engineering, the Lucene of Information EC

§§ Extraction, a leading toolkit for Text Mining i B AvdihEeure fr To

Hused worldwide by thousands of scientists, carmpanies, teachers and students
ARcomprised of an architecture, a free open source framewark {or SDK) and graphical
cevelopment environment

“fused for all sorts of language processing tasks, including Information Extraction in

§§ mary languages ;
“|lffunded by the EPSRC, BBSRC, AHRC, the EU and commercial users 1
1003 Java referenladd "EPSRC” to h ¥CES in the AMC B

10wyears old in 2 | || |[l0]e wwith [BM's
|| [Mew Chain]

based on MYC, m
|Pwith code hasted {EC
General Architecture for Text Engineering
ame projects: SEKT (EC); TAQ (EC); MEOM (EC), LarkC (EC), MC (EC), MUSING (EC),
T; Prestospace; Ki'ekb; MMEM; ETCSL; MultiFlora; Service-Finder; more.
i sample of users: British Telecom; Imperial College; Hewlett Packard; OntoText;
HFFerseus; Greenstone; MCS4 AT&T. In the news: Grimes on Spock on [GATE

developrment,

| hamish cunningham | kalina bontchewva | walentin tablan | diana maynard | et al. |
H|Hosted on

Figure 3.8: Co-reference editor inside a document editor. The popup window in the doc-
ument under the word ‘EPSRC’ is used to add highlighted annotations to a co-reference
chain. Here the annotation type ‘Organization’ of the annotation set ‘Default’ is highlighted
and also the co-references ‘EC’ and ‘GATE’.

tree below the combo box will just show ‘Coreference Data’ and the name of the annotation
set. However, when co-reference data does exist, a list of all the co-reference chains that are
based on annotations in the currently selected set is displayed. The name of each co-reference
chain in this list is the same as the text of whichever element in the chain is the longest. It
is possible to highlight all the member annotations of any chain by selecting it in the list.

When a co-reference chain is selected, if the mouse is placed over one of its member annota-
tions, then a pop-up box appears, giving the user the option of deleting the item from the
chain. If the only item in a chain is deleted, then the chain itself will cease to exist, and it
will be removed from the list of chains. If the name of the chain was derived from the item
that was deleted, then the chain will be given a new name based on the next longest item
in the chain.

A combo box near the top of the co-reference editor allows the user to select an annotation
type from the current set. When the Show button is selected all the annotations of the
selected type will be highlighted. Now when the mouse pointer is placed over one of those
annotations, a pop-up box will appear giving the user the option of adding the annotation
to a co-reference chain. The annotation can be added to an existing chain by typing the
name of the chain (as shown in the list on the right) in the pop-up box. Alternatively, if
the user presses the down cursor key, a list of all the existing annotations appears, together
with the option [New Chain]. Selecting the [New Chain] option will cause a new chain to
be created containing the selected annotation as its only element.

48 Using GATE Developer

Each annotation can only be added to a single chain, but annotations of different types can
be added to the same chain, and the same text can appear in more than one chain if it is
referenced by two or more annotations.

The movie for inspecting results is also useful for learning about viewing annotations.

3.4.5 Creating and Editing Annotations

To create annotations manually, select the text you want to annotate and hover the mouse
on the selection or use control+E keys. A popup will appear, allowing you to create an
annotation, as shown in figure 3.9

o o E&’ b

New.| -

P Open Search & Annotate tool

Figure 3.9: Creating a New Annotation

The type of the annotation, by default, will be the same as the last annotation you created,
unless there is none, in which case it will be ‘_New_". You can enter any annotation type name
you wish in the text box, unless you are using schema-driven annotation (see Section 3.4.6).
You can add or change features and their values in the table below.

To delete an annotation, click on the red X icon at the top of the popup window. To
grow /shrink the span of the annotation at its start use the two arrow icons on the left or
right and left keys. Use the two arrow icons next on the right to change the annotation end
or alt+right and alt+left keys. Add shift and control+shift keys to make the span increment
bigger. The red X icon is for removing the annotation.

The pin icon is to pin the window so that it remains where it is. If you drag and drop the
window, this automatically pins it too. Pinning it means that even if you select another
annotation (by hovering over it in the main resource viewer) it will still stay in the same
position.

The popup menu only contains annotation types present in the Annotation Schema and
those already listed in the relevant Annotation Set. To create a new Annotation Schema,
see Section 3.4.6. The popup menu can be edited to add a new annotation type, however.

http://gate.ac.uk/demos/movies.html#inspectResults

Using GATE Developer

The new annotation created will automatically be placed in the annotation set that has been
selected (highlighted) by the user. To create a new annotation set, type the name of the new

set to be created in the box below the list of annotation sets, and click on ‘New’.

Figure 3.10 demonstrates adding a ‘Organization’ annotation for the string ‘EPSRC’ (high-
lighted in green) to the default annotation set (blank name in the annotation set view on

the right) and a feature name ‘type’ with a value about to be added.

GAIE b.0-snapshot build 3092 x|
File Options Tools Help

Yo%k ® |7

G cate
T ??Applications

? @ Language Resources
@http:jfgate.ac.uk_o
¢ iﬁ' Processing Resources
A@ i
a a AMMIE OrthoMatcher S\ ATE s the Eclipse of Matural Language Engineering, the LUcene of
% g@ Information Extraction, a leading toolkit for Text

e AMNIE NE Transduce “used warldwide by thousands of scientists, campanies, teachers and
+|[}students
Afcomprised of an architecture, a free open source frarmewark (or SDK)

*ANNIE_OOO2E

B annie Pos Tagger_

S ANNIE Sertence Splif
R “|Jused for all sorts of language processing tasks, including Information

Extraction in many languages
“funded by the EFSRC, BESRC, AHRC, the EU and commercial users

@ AMMIE Gazetteer_0

T ANNEE English Toker|

@ Document Reset PR

ﬁ Data stores

| Messages @ http: ffgate.ac.. |

| Annotation Sets | | Annotations List| | Co-reference Edit0r| |Text|

s eo; 4

MimeType w (ftextiht|

gate. SourcelRL | w ||(httpe ff

(]

1{l2
‘|| organization 588 592108

i i

Wiews il

CATE, A Ceneral Architecture for Text Engineering

CATE HOME

and graphical development environment

Al docs | movies | download | support | science | business | education
|f developers | news | credits |

Mining

Organization
W Original markups

100% |ava refd kh
CES in the AN 4 ¥ 1 © 4 =
10 wears old i
“\cornpatible Wn|0rganization |'|
Hloased on My C n
“||ctevelopment, e v w || X

orme projects v

ervice—Finder] P Open Search & Annatate tool

amule 0f L e e e T e e e T I e T T e e T T

Set
T TITAT I i

FITET

=TOSTTESS T |

Original markups| 346 367 33

{href=

teaching. html}

Qriginal markups| 4000 404 3%

{href=

http: fifsf org}

Original markups| 23| 55%| 27

{href=

iefindex. html}

{tpe

=)

4 e T

[]

S & Annotations (lselected)

Daocument Editar L Initialization Parameters |

Figure 3.10: Adding an Organization annotation to the Default Annotation Set

To add a second annotation to a selected piece of text, or to add an overlapping annotation to
an existing one, press the CTRL key to avoid the existing annotation popup appearing, and
then select the text and create the new annotation. Again by default the last annotation type
to have been used will be displayed; change this to the new annotation type. When a piece
of text has more than one annotation associated with it, on mouseover all the annotations

will be displayed. Selecting one of them will bring up the relevant annotation popup.

20 Using GATE Developer

ALl BLGEY 11 any dnguages

inded by the EPSRC, BESEC, AHFR.C, the EU and commercial users

Q0% |ava refq

CES in the AM .

0 years ald i

ompatible wit

ased on MyC —

evelopment,

ame projects]

IUSIMG (EC), 4

arvice—Findar] ¥ Case Regexp [| Whaole [Highlights | ||

Samile TS L, 2=
Type X

rganization |Erev. | |Next | |gnn0tate | ~|:

T

E— T =l o]
N caet e arlenmel T 1 Al P pef — Wttec f faeahn o

Figure 3.11: Search and Annotate Function of the Annotation Editor.

To search and annotate the document automatically, use the search and annotate function
as shown in figure 3.11:

e Create and/or select an annotation to be used as a model to annotate.

Open the panel at the bottom of the annotation editor window.

Change the expression to search if necessary.

Use the [First] button or Enter key to select the first expression to annotate.

Use the [Annotate| button if the selection is correct otherwise the [Next] button. After
a few cycles of [Annotate] and [Next], Use the [Ann. all next] button.

Note that after using the [First] button you can move the caret in the document and use the
[Next| button to avoid continuing the search from the beginning of the document. The [?]
button at the end of the search text field will help you to build powerful regular expressions
to search.

3.4.6 Schema-Driven Editing

Annotation schemas allow annotation types and features to be pre-specified, so that during
manual annotation, the relevant options appear on the drop-down lists in the annotation
editor. You can see some example annotation schemas in Section 5.4.1. Annotation schemas
provide a means to define types of annotations in GATE Developer. Basically this means
that GATE Developer ‘knows about’ annotations defined in a schema.

Annotation schemas are supported by the ‘Annotation schema’ language resource in ANNIE,
so to use them you must first ensure that the ‘ANNIE’ plugin is loaded (see Section 3.5).
This will load a set of default schemas, as well as allowing you to load schemas of your own.

Using GATE Developer 51

The default annotation schemas contain common named entities such as Person, Organisa-
tion, Location, etc. You can modify the existing schema or create a new one, in order to tell
GATE Developer about other kinds of annotations you frequently use. You can still create
annotations in GATE Developer without having specified them in an annotation schema,
but you may then need to tell GATE Developer about the properties of that annotation
type each time you create an annotation for it.

To load a schema of your own, right-click on ‘Language Resources’ in the resources pane.
Select ‘New’ then ‘Annotation schema’. A popup box will appear in which you can browse
to your annotation schema XML file.

An alternative annotation editor component is available which constrains the available an-
notation types and features much more tightly, based on the annotation schemas that are
currently loaded. This is particularly useful when annotating large quantities of data or for
use by less skilled users.

To use this, you must load the Schema_Annotation_Editor plugin. With this plugin loaded,
the annotation editor will only offer the annotation types permitted by the currently loaded
set of schemas, and when you select an annotation type only the features permitted by the
schema are available to edit!. Where a feature is declared as having an enumerated type the
available enumeration values are presented as an array of buttons, making it easy to select
the required value quickly.

3.4.7 Printing Text with Annotations

We suggest you to use your browser to print a document as GATE don’t propose a printing
facility for the moment.

First save your document by right clicking on the document in the left resources tree then
choose ‘Save Preserving Format’. You will get an XML file with all the annotations high-
lighted as XML tags plus the ‘Original markups’ annotations set.

Then add a stylesheet processing instruction at the beginning of the XML file:

<?xml version="1.0" encoding="UTF-8" 7>
<?7xml-stylesheet type="text/css" href="gate.css"?>

And create a file ‘gate.css’ in the same directory:

BODY, body { margin: 2em } /* or any other first level tag */
P, p { display: block } /* or any other paragraph tag */

Lexisting features outwith the schema, e.g. those created by previously-run processing resources, are not
editable but not modified or removed by the editor.

52 Using GATE Developer

/* ANNIE tags but you can use whatever tags you want */
/* be careful that XML tags are case sensitive */

Date { background-color: rgb(230, 150, 150) }
FirstPerson { background-color: rgb(150, 230, 150) }
Identifier { background-color: rgb(150, 150, 230) }
JobTitle { background-color: rgb(150, 230, 230) }
Location { background-color: rgb(230, 150, 230) }
Money { background-color: rgb(230, 230, 150) }
Organization { background-color: rgb(230, 200, 200) }
Percent { background-color: rgb(200, 230, 200) }
Person { background-color: rgb(200, 200, 230) }
Title { background-color: rgb(200, 230, 230) }
Unknown { background-color: rgb(230, 200, 230) }
Etc { background-color: rgb(230, 230, 200) }

Finally open the XML file in your browser and print it.

Note that overlapping annotations, cannot be expressed correctly with inline XML tags and
thus won'’t be displayed correctly.

3.5 Using CREOLE Plugins

In GATE, processing resources are used to automatically create and manipulate annotations
on documents. We will talk about processing resources in the next section. However, we
must first introduce CREOLE plugins. In most cases, in order to use a particular processing
resource (and certain language resources) you must first load the CREOLE plugin that
contains it. This section talks about using CREOLE plugins. Then, in Section 3.6, we will
talk about creating and using processing resources.

The definitions of CREOLE resources (e.g. processing resources such as taggers and parsers,
see Chapter 4) are stored in CREOLE directories (directories containing an XML file de-
scribing the resources, the Java archive with the compiled executable code and whatever
libraries are required by the resources).

Starting with version 3, CREOLE directories are called ‘CREOLE plugins’ or simply ‘plug-
ins’. In previous versions, the CREOLE resources distributed with GATE used to be included
in the monolithic gate. jar archive. Version 3 includes them as separate directories under
the plugins directory of the distribution. This allows easy access to the linguistic resources
used without the requirement to unpack the gate. jar file.

Plugins can have one or more of the following states in relation with GATE:

known plugins are those plugins that the system knows about. These include all the plugins

Using GATE Developer 53

in the plugins directory of the GATE installation (the so—called installed plugins) as
well all the plugins that were manually loaded from the user interface.

loaded plugins are the plugins currently loaded in the system. All CREOLE resource types
from the loaded plugins are available for use. All known plugins can easily be loaded
and unloaded using the user interface.

auto-loadable plugins are the list of plugins that the system loads automatically during
initialisation.

The default location for installed plugins can be modified using the gate.plugins.home sys-
tem property while the list of auto-loadable plugins can be set using the load.plugin.path
property, see Section 2.3 above.

The CREOLE plugins can be managed through the graphical user interface which can be
activated by selecting ‘Manage CREOLE Plugins’ from the ‘File’ menu. This will bring up
a window listing all the known plugins. For each plugin there are two check-boxes — one
labelled ‘Load now’, which will load the plugin, and the other labelled ‘Load always’ which
will add the plugin to the list of auto-loadable plugins. A ‘Delete’ button is also provided —
which will remove the plugin from the list of known plugins. This operation does not delete
the actual plugin directory. Installed plugins are found automatically when GATE is started;
if an installed plugin is deleted from the list, it will re-appear next time GATE is launched.

Known CREOLE directories Filter:| |X :| CREOLE resources in directory
Name URL Load nowLoad alwaysDelet |- |[c. Document
& A file:/home/ genevieve/gate-top/ externals/gate/ plugins/ Alignment/ n|] x ||| compound Document From Xmi
- - - — Document Editor
& file:/home/ genevieve/ gate-top) externals/ gate/ plugins/ ANNIE/ O O X GATE Composite document
& ion_Merging file:/ home/ genevieve/ gate-top/ externals/ gate/ plugins/ Annotation_Merging/ [m] [} X Alignment Editor
== | | switch Member PR
%Fn" _Annots_Between_Docs ffile:/home/genevieve/ gate-top/ externals/ gate/plugins/ Copy_Annots_Between_Docs/ =] =] X Delete Member PR
I _ : - . T~ | || Combine Members PR
& _LKB file:/home/ genevieve/ gate-top/ externals/ gate/ plugins/ Gazetteer_LKB/ O O X Segment Processing PR
‘; _Ontology_Based file:/home/ genevieve/gate-top/ externals/ gate/plugins/ Gazetteer_Ontology_Based/ |} O X
‘; ion_Retrieval file:/home/ genevieve / gate-top/ externals/ gate/ plugins/Information_Retrieval/ =] =] X |
“} _Ag! (filez/home/genevieve/gate-top/ externals/ gate/plugins/Inter_Annotator_Agreement/ [m] O X
Qjape,compiler file:/home/genevieve/gate-top/externals/ gate/ plugins/Jape_Compiler/ =] O X
&5 Keyphrase_Bxaraction. ithm/file:/home ieve/gate-top/externals/ gate/ plugins/Keyphrase_Extraction_Algorithm/| [] =] X
%Lang,Amm(files/ home/ genevieve/ gate-top, externals/ gate/ plugins/ Lag. Arabic/] =] X
QLanu,cenuanu file:/home/ genevieve, gate-top/ externals/ gate/plugins/Lang_Cebuano/ O O x
QLang_Hinm file:/home/ genevieve, gate-top/ externals/gate/plugins/Lang_Hindi/ [m} [m} x|
QLang,nnmanian files/home/ genevieve/ gate-top; externals/ gate/ plugins/Lang_Romanian/] O X
& Learning file:/ home/ genevieve/gate-top/ externals/ gate/plugins/Leaming/ =] O x
Qungmpe file:/home/ genevieve, gate-top/ externals/gate/plugins/LingPipe/ [m} [m} X
QMamine,Leaming file:/home/ genevieve, gate-top/ externals/ gate/ plugins/Machine_Learning/] O X
%nnmlnn file:/home/ genevieve/ gate-top,/ externals/gate/plugins/Ontology/ [m] m] X
%nmﬂlnm,BDM,r file:/home/ genevieve/ gate-top/ externals/ gate/plugins/ Ontology_BDM_Computation/ |} =] X
%nmm"n _OWLIM2 file:/home/ genevieve, gate-top/ externals/ gate/ plugins/ Ontology_OWLIM2/ =] =] X
ntology_Tools ile:/home/ genevieve/ gate-top) externals/ gate/ plugins/ Ontology_Tools
%ﬂlTl files/ h i I lugins/ Ontology_Tool X
%nmnNLP file:/home/genevieve/gate-top/ externals/ gate/ plugins/OpenNLP/ a =] X
%Parser_Minipar file:/home/ genevieve gate-top/ externals/ gate/ plugins/ Parser_Minipar/ m| m| X 7
< IL [[»]

<~ Add a CREOLE repository

Figure 3.12: Plugin Management Console

If you select a plugin, you will see in the pane on the right the list of resources that plugin
contains. For example, in figure 3.12, the ‘Alignment’ plugin is selected, and you can see that

54 Using GATE Developer

it contains ten processing resources; ‘Compound Document’, ‘Compound Document From
Xml’, ‘Compound Document Editor’, ‘GATE Composite document’ etc. If you wish to use
a particular resource you will have to ascertain which plugin contains it. This list can be
useful for that. Alternatively, the GATE website provides a directory of plugins and their
processing resources.

Having loaded the plugins you need, the resources they define will be available for use.
Typically, to the GATE Developer user, this means that they will appear on the ‘New’ menu
when you right-click on ‘Processing Resources’ in the resources pane, although some special
plugins have different effects; for example, the Schema_Annotation_Editor (see Section 3.4.6).

3.6 Loading and Using Processing Resources

This section describes how to load and run CREOLE resources not present in ANNIE. To load
ANNIE, see Section 3.7.3. For technical descriptions of these resources, see the appropriate
chapter in Part III (e.g. Chapter 19). First ensure that the necessary plugins have been
loaded (see Section 3.5). If the resource you require does not appear in the list of Processing
Resources, then you probably do not have the necessary plugin loaded. Processing resources
are loaded by selecting them from the set of Processing Resources: right click on Processing
Resources or select ‘New Processing Resource’ from the File menu.

For example, use the Plugin Console Manager to load the ‘Tools’ plugin. When you right
click on ‘Processing Resources’ in the resources pane and select ‘New’ you have the option
to create any of the processing resources that plugin provides. You may choose to create a
‘GATE Morphological Analyser’, with the default parameters. Having done this, an instance
of the GATE Morphological Analyser appears under ‘Processing Resources’. This processing
resource, or PR, is now available to use. Double-clicking on it in the resources pane reveals
its initialisation parameters, see figure 3.13.

This processing resource is now available to be added to applications. It must be added to
an application before it can be applied to documents. You may create as many of a par-
ticular processing resource as you wish, for example with different initialisation parameters.
Section 3.7 talks about creating and running applications.

See also the movie for loading processing resources.

3.7 Creating and Running an Application

Once all the resources you need have been loaded, an application can be created from them,
and run on your corpus. Right click on ‘Applications’ and select ‘New’ and then either
‘Corpus Pipeline’ or ‘Pipeline’. A pipeline application can only be run over a single document,

http://www.gate.ac.uk/gate/doc/plugins.html
http://www.gate.ac.uk/gate/doc/plugins.html
http://gate.ac.uk/demos/movies.html#loadPRs

Using GATE Developer 55

Flle Optlons Tools Help

’ﬁ/@ﬂ aircraft-cra.. I/ \ GATE Morpholoagi...

 Applications Name Type [Required Value
:[(2} caseSensitive|Boolean |+ |[false

" Language Resources

(?) rulesFile URL ~ ||fi|e:,fhume,fgene\rie\re,fgate—tup,fexternals,fgate,fplugins;TuoIs;resource

& GATE corpus_00011 _
@n— aircraft-crash-07-oct- 20
© Processing Resources :
‘\, GATE Morphological analyse

' Data stores

q] il DE K Il D
Views built!

Figure 3.13: GATE Morphological Analyser Initialisation Parameters

while a corpus pipeline can be run over a whole corpus.

To build the pipeline, double click on it, and select the resources needed to run the application
(you may not necessarily wish to use all those which have been loaded).

Transfer the necessary components from the set of ‘loaded components’ displayed on the left
hand side of the main window to the set of ‘selected components’ on the right, by selecting
each component and clicking on the left and right arrows, or by double-clicking on each
component.

Ensure that the components selected are listed in the correct order for processing (starting
from the top). If not, select a component and move it up or down the list using the up/down
arrows at the left side of the pane.

Ensure that any parameters necessary are set for each processing resource (by clicking on
the resource from the list of selected resources and checking the relevant parameters from

26 Using GATE Developer

the pane below). For example, if you wish to use annotation sets other than the Default one,
these must be defined for each processing resource.

Note that if a corpus pipeline is used, the corpus needs only to be set once, using the drop-
down menu beside the ‘corpus’ box. If a pipeline is used, the document must be selected for
each processing resource used.

Finally, right-click on ‘Run’ to run the application on the document or corpus.
See also the movie for loading and running processing resources.

For how to use the conditional versions of the pipelines see Section 3.7.2 and for saving/restor-
ing the configuration of an application see Section 3.8.3.

3.7.1 Running an Application on a Datastore

To avoid loading all your documents at the same time you can run an application on a
datastore corpus.

To do this you need to load your datastore, see section 3.8.2, and to load the corpus from
the datastore by double clicking on it in the datastore viewer.

Then, in the application viewer, you need to select this corpus in the drop down list of
corpora.

When you run the application on the corpus datastore, each document will be loaded, pro-
cessed, saved then unloaded. So at any time there will be only one document from the
datastore corpus loaded. This prevent memory shortage but is also a little bit slower than
if all your documents were already loaded.

The processed documents are automatically saved back to the datastore so you may want
to use a copy of the datastore to experiment.

Be very careful that if you have some documents from the datastore corpus already loaded
before running the application then they will not be unloaded nor saved. To save such
document you have to right click on it in the resources tree view and save it to the datastore.

3.7.2 Running PRs Conditionally on Document Features

The ‘Conditional Pipeline’ and ‘Conditional Corpus Pipeline’ application types are condi-
tional versions of the pipelines mentioned in Section 3.7 and allow processing resources to
be run or not according to the value of a feature on the document. In terms of graphical
interface, the only addition brought by the conditional versions of the applications is a box
situated underneath the lists of available and selected resources which allows the user to

http://gate.ac.uk/demos/movies.html#loadPRs

Using GATE Developer 57

choose whether the currently selected processing resource will run always, never or only on
the documents that have a particular value for a named feature.

If the Yes option is selected then the corresponding resource will be run on all the documents
processed by the application as in the case of non-conditional applications. If the No option
is selected then the corresponding resource will never be run; the application will simply
ignore its presence. This option can be used to temporarily and quickly disable an application
component, for debugging purposes for example.

The If value of feature option permits running specific application components conditionally
on document features. When selected, this option enables two text input fields that are used
to enter the name of a feature and the value of that feature for which the corresponding
processing resource will be run. When a conditional application is run over a document, for
each component that has an associated condition, the value of the named feature is checked
on the document and the component will only be used if the value entered by the user
matches the one contained in the document features.

3.7.3 Doing Information Extraction with ANNIE

This section describes how to load and run ANNIE (see Chapter 6) from GATE Devel-
oper. ANNIE is a good place to start because it provides a complete information extraction
application, that you can run on any corpus. You can then view the effects.

From the File menu, select ‘Load ANNIE System’. To run it in its default state, choose
‘with Defaults’. This will automatically load all the ANNIE resources, and create a corpus
pipeline called ANNIE with the correct resources selected in the right order, and the default
input and output annotation sets.

If ‘without Defaults’ is selected, the same processing resources will be loaded, but a popup
window will appear for each resource, which enables the user to specify a name, location
and other parameters for the resource. This is exactly the same procedure as for loading a
processing resource individually, the difference being that the system automatically selects
those resources contained within ANNIE. When the resources have been loaded, a corpus
pipeline called ANNIE will be created as before.

The next step is to add a corpus (see Section 3.3), and select this corpus from the drop-
down corpus menu in the Serial Application editor. Finally click on ‘Run’ from the Serial
Application editor, or by right clicking on the application name in the resources pane and
selecting ‘Run’. (Many people prefer to switch to the messages tab, then run their application
by right-clicking on it in the resources pane, because then it is possible to monitor any
messages that appear whilst the application is running.)

To view the results, double click on one of the document contained in the corpus processed in
the left hand tree view. No annotation sets nor annotations will be shown until annotations
are selected in the annotation sets; the ‘Default’ set is indicated only with an unlabelled

o8 Using GATE Developer

right-arrowhead which must be selected in order to make visible the available annotations.
Open the default annotation set and select some of the annotations to see what the ANNIE
application has done.

See also the movie for loading and running ANNIE.

3.7.4 Modifying ANNIE

You will find the ANNIE resources in gate/plugins/ANNIE /resources. Simply locate the
existing resources you want to modify, make a copy with a new name, edit them, and load
the new resources into GATE as new Processing Resources (see Section 3.6).

3.8 Saving Applications and Language Resources

In this section, we will describe how applications and language resources can be saved for
use outside of GATE and for use with GATE at a later time. Section 3.8.1 talks about
saving documents to file. Section 3.8.2 outlines how to use datastores. Section 3.8.3 talks
about saving application states (resource parameter states), and Section 3.8.4 talks about
exporting applications together with referenced files and resources to a ZIP file.

3.8.1 Saving Documents to File
There are three main ways to save annotated documents:

1. preserving the original markup, with optional added annotations;

2. in GATE’s own XML serialisation format (including all the annotations on the docu-
ment);

3. by writing your own dump algorithm as a processing resource.

This section describes how to use the first two options.

Both types of data export are available in the popup menu triggered by right-clicking on a
document in the resources tree (see Section 3.1): type 1 is called ‘Save Preserving Format’
and type 2 is called ‘Save as XML’. In addition, all documents in a corpus can be saved as
individual XML files into a directory by right-clicking on the corpus in the resources tree
and choosing the option ‘Save as XML-.

Selecting the save as XML option leads to a file open dialogue; give the name of the file you
want to create, and the whole document and all its data will be exported to that file. If you

http://gate.ac.uk/demos/movies.html#annie

Using GATE Developer 59

later create a document from that file, the state will be restored. (Note: because GATE’s
annotation model is richer than that of XML, and because our XML dump implementation
sometimes cuts corners?, the state may not be identical after restoration. If your intention
is to store the state for later use, use a DataStore instead.)

The ‘Save Preserving Format’ option also leads to a file dialogue; give a name and the data
you require will be dumped into the file. The action can be used for documents that were
created from files using the XML or HTML format. It will save all the original tags as well
as the document annotations that are currently displayed in the ‘Annotations List’ view.
This option is useful for selectively saving only some annotation types.

The annotations are saved as normal document tags, using the annotation type as the tag
name. If the advanced option ‘Include annotation features for “Save Preserving Format”’ (see
Section 2.4) is set to true, then the annotation features will also be saved as tag attributes.

Using this operation for GATE documents that were not created from an HTML or XML
file results in a plain text file, with in-line tags for the saved annotations.

Note that GATE’s model of annotation allows graph structures, which are difficult to repre-
sent in XML (XML is a tree-structured representation format). During the dump process,
annotations that cross each other in ways that cannot be represented in legal XML will be
discarded, and a warning message printed.

3.8.2 Saving and Restoring LRs in Datastores

Where corpora are large, the memory available may not be sufficient to have all documents
open simultaneously. The datastore functionality provides the option to save documents to
disk and open them only one at a time for processing. This means that much larger corpora
can be used. A datastore can also be useful for saving documents in an efficient and lossless
way.

To save a text in a datastore, a new datastore must first be created if one does not already
exist. Create a datastore by right clicking on Datastore in the left hand pane, and select the
option ‘Create Datastore’. Select the data store type you wish to use. Create a directory to
be used as the datastore (note that the datastore is a directory and not a file).

You can either save a whole corpus to the datastore (in which case the structure of the corpus
will be preserved) or you can save individual documents. The recommended method is to
save the whole corpus. To save a corpus, right click on the corpus name and select the ‘Save
to...” option (giving the name of the datastore created earlier). To save individual documents
to the datastore, right clicking on each document name and follow the same procedure.

2Gorey details: features of annotations and documents in GATE may be any virtually any Java object;
serialising arbitrary binary data to XML is not simple; instead we serialise them as strings, and therefore
they will be re-loaded as strings.

60 Using GATE Developer

To load a document from a datastore, do not try to load it as a language resource. Instead,
open the datastore by right clicking on Datastore in the left hand pane, select ‘Open Datas-
tore” and choose the datastore to open. The datastore tree will appear in the main window.
Double click on a corpus or document in this tree to open it. To save a corpus and document
back to the same datastore, simply select the ‘Save’ option.

See also the movie for creating a datastore and the movie for loading corpus and documents
from a datastore.

3.8.3 Saving Application States to a File

Resources, and applications that are made up of them, are created based on the settings of
their parameters (see Section 3.6). It is possible to save the data used to create an application
to a file and re-load it later. To save the application to a file, right click on it in the resources
tree and select ‘Save application state’, which will give you a file creation dialogue. Choose
a file name that ends in gapp as this file dialog and the one for loading application states age
displays all files which have a name ending in gapp. A common convention is to use .gapp
as a file extension.

To restore the application later, select ‘Restore application from file’ from the ‘File’ menu.

Note that the data that is saved represents how to recreate an application — not the resources
that make up the application itself. So, for example, if your application has a resource that
initialises itself from some file (e.g. a grammar, a document) then that file must still exist
when you restore the application.

In case you don’t want to save the corpus configuration associated with the application then
you must select ‘<none>’ in the corpus list of the application before saving the application.

The file resulting from saving the application state contains the values of the initialisation
and runtime parameters for all the processing resources contained by the stored application
as well as the values of the initialisation parameters for all the language resources referenced
by those processing resources. Note that if you reference a document that has been created
with an empty URL and empty string content parameter and subsequently been manually
edited to add content, that content will not be saved. In order for document content to be
preserved, load the document from an URL, specify the content as for the string content
parameter or use a document from a datastore.

For the parameters of type URL (which are typically used to select external resources such
as grammars or rules files) a transformation is applied so that the paths are stored relative
to the location of the file used to store the state. This means that the resource files which
are not part of GATE and used by an application do not need to be in the same location
as when the application was initially created but rather in the same location relative to the
location of the application file. It also means that the resource files which are part of GATE
should be found correctly no matter where GATE is installed. This allows the creation and

http://gate.ac.uk/demos/movies.html#createDataStore
http://gate.ac.uk/demos/movies.html#loadDataStore
http://gate.ac.uk/demos/movies.html#loadDataStore

Using GATE Developer 61

deployment of portable applications by keeping the application file and the resource files
used by the application together.

If you want to save your application along with all the resources it requires you can use the
‘Export for Teamware’ option (see Section 3.8.4).

See also the movie for saving and restoring applications.

3.8.4 Saving an Application with its Resources (e.g. GATE
Teamware)

When you save an application using the ‘Save application state’ option (see Section 3.8.3),
the saved file contains references to the plugins that were loaded when the application was
saved, and to any resource files required by the application. To be able to reload the file,
these plugins and other dependencies must exist at the same locations (relative to the saved
state file). While this is fine for saving and loading applications on a single machine it
means that if you want to package your application to run it elsewhere (e.g. deploy it to a
GATE Teamware installation) then you need to be careful to include all the resource files
and plugins at the right locations in your package. The ‘Export for Teamware’ option on
the right-click menu for an application helps to automate this process.

When you export an application in this way, GATE Developer produces a ZIP file containing
the saved application state (in the same format as ‘Save application state’). Any plugins and
resource files that the application refers to are also included in the zip file, and the relative
paths in the saved state are rewritten to point to the correct locations within the package.
The resulting package is therefore self-contained and can be copied to another machine and
unpacked there, or passed to your Teamware Administrator for deployment.

As well as selecting the location where you want to save the package, the ‘Export for
Teamware’ option will also prompt you to select the annotation sets that your applica-
tion uses for input and output. For example, if your application makes use of the unpacked
XML markup in source documents and creates annotations in the default set then you would
select ‘Original markups’ as an input set and the ‘< Default annotation set>" as an output
set. GATE Developer will try to make an educated guess at the correct sets but you should
check and amend the lists as necessary.

There are a few important points to note about the export process:
e The complete contents of all the plugin directories that are loaded when you perform

the export will be included in the resulting package. Use the plugin manager to unload
any plugins your application is not using before you export it.

e If your application refers to a resource file in a directory that is not under one of the
loaded plugins, the entire contents of this directory will be recursively included in the

http://gate.ac.uk/demos/movies.html#saveAppState
http://www.gate.ac.uk/teamware/
http://www.gate.ac.uk/teamware/

62 Using GATE Developer

package. If you have a number of unrelated resources in a single directory (e.g. many
sets of large gazetteer lists) you may want to separate them into separate directories
so that only the relevant ones are included in the package.

e The packager only knows about resources that your application refers to directly in its
parameters. For example, if your application includes a multi-phase JAPE grammar
the packager will only consider the main grammar file, not any of its sub-phases. If
the sub-phases are not contained in the same directory as the main grammar you may
find they are not included. If indirect references of this kind are all to files under the
same directory as the ‘master’ file it will work OK.

If you require more flexibility than this option provides you should read Section E.2, which
describes the underlying Ant task that the exporter uses.

3.9 Keyboard Shortcuts

You can use various keyboard shortcuts for common tasks in GATE Developer. These are
listed in this section.

General (Section 3.1):

e F1 Display a help page for the selected component

e Alt+F4 Exit the application without confirmation

e Tab Put the focus on the next component or frame

e Shift+Tab Put the focus on the previous component or frame
e F6 Put the focus on the next frame

e Shift+F6 Put the focus on the previous frame

o Alt+F Show the File menu

e Alt+0O Show the Options menu

e Alt+T Show the Tools menu

e Alt+H Show the Help menu

e F10 Show the first menu

Resources tree (Section 3.1):

Using GATE Developer

Enter Show the selected resources
Ctrl+H Hide the selected resource
Ctrl+Shift+H Hide all the resources
F2 Rename the selected resource

Ctrl+F4 Close the selected resource

Document editor (Section 3.2):

Ctrl4+F Show the search dialog for the document
Ctrl+4S Save the document in a file

F3 Show/Hide the annotation sets

Shift+F3 Show the annotation sets with preselection
F4 Show/Hide the annotations list

F5 Show/Hide the coreference editor

F7 Show/Hide the text

Annotation editor (Section 3.4):

Right /Left Grow/Shrink the annotation span at its start
Alt+Right /Alt+Left Grow/Shrink the annotation span at its end
+Shift /4 Ctrl4Shift Use a span increment of 5/10 characters

Alt+Delete Delete the currently edited annotation

Annic/Lucene datastore (Chapter 9):

Alt+Enter Search the expression in the datastore
Alt+Backspace Delete the search expression
Alt4+Right Display the next page of results
Alt+Left Display the row manager

Alt+E Export the results to a file

63

64 Using GATE Developer

Annic/Lucene query text field (Chapter 9):

Ctrl4+Enter Insert a new line

Enter Search the expression

Alt+Top Select the previous result

Alt+Bottom Select the next result

3.10 Miscellaneous

3.10.1 Stopping GATE from Restoring Developer Sessions/Op-
tions

GATE can remember Developer options and the state of the resource tree when it exits. The
options are saved by default; the session state is not saved by default. This default behaviour
can be changed from the ‘Advanced’ tab of the ‘Configuration’ choice on the ‘Options’ menu.

If a problem occurs and the saved data prevents GATE Developer from starting, you can
fix this by deleting the configuration and session data files. These are stored in your home
directory, and are called gate.xml and gate.sesssion or .gate.xml and .gate.sesssion
depending on platform. On Windows your home is:

95, 98, NT: Windows Directory/profiles/username

2000, XP: Windows Drive/Documents and Settings/username

3.10.2 Working with Unicode

GATE provides various facilities for working with Unicode beyond those that come as default
with Java?:

1. a Unicode editor with input methods for many languages;

2. use of the input methods in all places where text is edited in the GUI;

3Implemented by Valentin Tablan, Mark Leisher and Markus Kramer. Initial version developed by Mark
Leisher.

CREOLE: the GATE Component Model 65

3. a development kit for implementing input methods;

4. ability to read diverse character encodings.

1 using the editor:

In GATE Developer, select ‘Unicode editor’ from the ‘Tools’ menu. This will display an
editor window, and, when a language with a custom input method is selected for input (see
next section), a virtual keyboard window with the characters of the language assigned to the
keys on the keyboard. You can enter data either by typing as normal, or with mouse clicks
on the virtual keyboard.

2 configuring input methods:

In the editor and in GATE Developer’s main window, the ‘Options’ menu has an ‘Input
methods’ choice. All supported input languages (a superset of the JDK languages) are
available here. Note that you need to use a font capable of displaying the language you
select. By default GATE Developer will choose a Unicode font if it can find one on the
platform you're running on. Otherwise, select a font manually from the ‘Options’ menu
‘Configuration’ choice.

3 using the development kit:
GUK, the GATE Unicode Kit, is documented at:
http://gate.ac.uk/gate/doc/javadoc/guk /package-summary.html.

4 reading different character encodings:

When you create a document from a URL pointing to textual data in GATE, you have to
tell the system what character encoding the text is stored in. By default, GATE will set this
parameter to be the empty string. This tells Java to use the default encoding for whatever
platform it is running on at the time — e.g. on Western versions of Windows this will be
[SO-8859-1, and Eastern ones ISO-8859-9. A popular way to store Unicode documents is
in UTF-8, which is a superset of ASCII (but can still store all Unicode data); if you get
an error message about document I/O during reading, try setting the encoding to UTF-8,
or some other locally popular encoding. (To see a list of available encodings, try opening a
document in GATE’s unicode editor — you will be prompted to select an encoding.)

http://gate.ac.uk/gate/doc/javadoc/guk/package-summary.html

66

CREOLE: the GATE Component Model

Chapter 4

CREOLE: the GATE Component
Model

...Noam Chomsky’s answer in Secrets, Lies and Democracy (David Barsamian
1994; Odonian) to ‘What do you think about the Internet?’

‘I think that there are good things about it, but there are also aspects of it that
concern and worry me. This is an intuitive response — I can’t prove it — but my
feeling is that, since people aren’t Martians or robots, direct face-to-face contact
is an extremely important part of human life. It helps develop self-understanding
and the growth of a healthy personality.

“You just have a different relationship to somebody when you’re looking at them
than you do when you're punching away at a keyboard and some symbols come
back. I suspect that extending that form of abstract and remote relationship,
instead of direct, personal contact, is going to have unpleasant effects on what
people are like. It will diminish their humanity, I think.’

Chomsky, quoted at http://photo.net/wtr/dead-trees/53015.htm.

The GATE architecture is based on components: reusable chunks of software with well-
defined interfaces that may be deployed in a variety of contexts. The design of GATE is
based on an analysis of previous work on infrastructure for LE, and of the typical types
of software entities found in the fields of NLP and CL (see in particular chapters 4-6 of
[Cunningham 00]). Our research suggested that a profitable way to support LE software
development was an architecture that breaks down such programs into components of various
types. Because LE practice varies very widely (it is, after all, predominantly a research field),
the architecture must avoid restricting the sorts of components that developers can plug into
the infrastructure. The GATE framework accomplishes this via an adapted version of the
Java Beans component framework from Sun, as described in section 4.2.

GATE components may be implemented by a variety of programming languages and
databases, but in each case they are represented to the system as a Java class. This class
67

http://photo.net/wtr/dead-trees/53015.htm

68 CREOLE: the GATE Component Model

may do nothing other than call the underlying program, or provide an access layer to a
database; on the other hand it may implement the whole component.

GATE components are one of three types:

e LanguageResources (LRs) represent entities such as lexicons, corpora or ontologies;

e ProcessingResources (PRs) represent entities that are primarily algorithmic, such as
parsers, generators or ngram modellers;

e VisualResources (VRs) represent visualisation and editing components that participate

in GUIs.

The distinction between language resources and processing resources is explored more fully in
section C.1.1. Collectively, the set of resources integrated with GATE is known as CREOLE:
a Collection of REusable Objects for Language Engineering.

In the rest of this chapter:

e Section 4.3 describes the lifecycle of GATE components;

Section 4.4 describes how Processing Resources can be grouped into applications;

Section 4.5 describes the relationship between Language Resources and their datas-
tores;

Section 4.6 summarises GATE’s set of built-in components;

Section 4.7 describes how configuration data for Resource types is supplied to GATE.

4.1 The Web and CREOLE

GATE allows resource implementations and Language Resource persistent data to be dis-
tributed over the Web, and uses Java annotations and XML for configuration of resources

(and GATE itself).

Resource implementations are grouped together as ‘plugins’, stored at a URL (when the
resources are in the local file system this can be a file:/ URL). When a plugin is loaded
into GATE it looks for a configuration file called creole.xml relative to the plugin URL and
uses the contents of this file to determine what resources this plugin declares and where to find
the classes that implement the resource types (typically these classes are stored in a JAR file
in the plugin directory). Configuration data for the resources may be stored directly in the
creole.xml file, or it may be stored as Java annotations on the resource classes themselves; in
either case GATE retrieves this configuration information and adds the resource definitions

CREOLE: the GATE Component Model 69

to the CREOLE register. When a user requests an instantiation of a resource, GATE creates
an instance of the resource class in the virtual machine.

Language resource data can be stored in binary serialised form in the local file system.

4.2 The GATE Framework

We can think of the GATE framework as a backplane into which users can plug CREOLE
components. The user gives the system a list of URLs to search when it starts up, and
components at those locations are loaded by the system.

The backplane performs these functions:

e component discovery, bootstrapping, loading and reloading;
e management and visualisation of native data structures for common information types;
e generalised data storage and process execution.
A set of components plus the framework is a deployment unit which can be embedded in
another application.
At their most basic, all GATE resources are Java Beans, the Java platform’s model of
software components. Beans are simply Java classes that obey certain interface conventions:
e beans must have no-argument constructors.
e beans have properties, defined by pairs of methods named by the convention setProp

and getProp.

GATE uses Java Beans conventions to construct and configure resources at runtime, and
defines interfaces that different component types must implement.

4.3 The Lifecycle of a CREOLE Resource

CREOLE resources exhibit a variety of forms depending on the perspective they are viewed
from. Their implementation is as a Java class plus an XML metadata file living at the
same URL. When using GATE Developer, resources can be loaded and viewed via the
resources tree (left pane) and the ‘create resource’ mechanism. When programming with
GATE Embedded, they are Java objects that are obtained by making calls to GATE’s
Factory class. These various incarnations are the phases of a CREOLE resource’s ‘lifecycle’.

70 CREOLE: the GATE Component Model

Depending on what sort of task you are using GATE for, you may use resources in any or
all of these phases. For example, you may only be interested in getting a graphical view of
what GATE’s ANNIE Information Extraction system (see Chapter 6) does; in this case you
will use GATE Developer to load the ANNIE resources, and load a document, and create
an ANNIE application and run it on the document. If, on the other hand, you want to
create your own resources, or modify the Java code of an existing resource (as opposed to
just modifying its grammar, for example), you will need to deal with all the lifecycle phases.

The various phases may be summarised as:

Creating a new resource from scratch (bootstrapping). To create the binary image
of a resource (a Java class in a JAR file), and the XML file that describes the resource
to GATE, you need to create the appropriate . java file(s), compile them and package
them as a .jar. GATE provides a bootstrap tool to start this process — see Section
7.11. Alternatively you can simply copy code from an existing resource.

Instantiating a resource in GATE Embedded. To create a resource in your own Java
code, use GATE’s Factory class (this takes care of parameterising the resource, restor-
ing it from a database where appropriate, etc. etc.). Section 7.2 describes how to do
this.

Loading a resource into GATE Developer. To load a resource into GATE Developer,
use the various ‘New ... resource’ options from the File menu and elsewhere. See
Section 3.1.

Resource configuration and implementation. GATE’s bootstrap tool will create an
empty resource that does nothing. In order to achieve the behaviour you require,
you'll need to change the configuration of the resource (by editing the creole.xml
file) and/or change the Java code that implements the resource. See section 4.7.

4.4 Processing Resources and Applications

PRs can be combined into applications. Applications model a control strategy for the exe-
cution of PRs. In GATE, applications are called ‘controllers’ accordingly.

Currently only sequential, or pipeline, execution is supported. There are two main types of

pipeline:

Simple pipelines simply group a set of PRs together in order and execute them in turn.
The implementing class is called SerialController.

CREOLE: the GATE Component Model 71

Corpus pipelines are specific for LanguageAnalysers — PRs that are applied to documents
and corpora. A corpus pipeline opens each document in the corpus in turn, sets that
document as a runtime parameter on each PR, runs all the PRs on the corpus, then
closes the document. The implementing class is called SerialAnalyserController.

Conditional versions of these controllers are also available. These allow processing resources
to be run conditionally on document features. See Section 3.7.2 for how to use these.

Controllers are themselves PRs — in particular a simple pipeline is a standard PR and a
corpus pipeline is a LanguageAnalyser — so one pipeline can be nested in another. This is
particularly useful with conditional controllers to group together a set of PRs that can all
be turned on or off as a group.

There is also a real-time version of the corpus pipeline. When creating such a controller,
a timeout parameter needs to be set which determines the maximum amount of time (in
milliseconds) allowed for the processing of a document. Documents that take longer to
process, are simply ignored and the execution moves to the next document after the timeout
interval has lapsed.

All controllers have special handling for processing resources that implement the interface
gate.creole.ControllerAwarePR. This interface provides methods that are called by the
controller at the start and end of the whole application’s execution — for a corpus pipeline,
this means before any document has been processed and after all documents in the corpus
have been processed, which is useful for PRs that need to share data structures across the
whole corpus, build aggregate statistics, etc. For full details, see the JavaDoc documentation
for ControllerAwarePR.

4.5 Language Resources and Datastores

Language Resources can be stored in Datastores. Datastores are an abstract model of disk-
based persistence, which can be implemented by various types of storage mechanism. Here
are the types implemented:

Serial Datastores are based on Java’s serialisation system, and store data directly into
files and directories.

Lucene Datastores is a full-featured annotation indexing and retrieval system. It is pro-
vided as part of an extension of the Serial Datastores. See Section 9 for more details.

http://gate.ac.uk/gate/doc/javadoc/gate/creole/ControllerAwarePR.html

72 CREOLE: the GATE Component Model

4.6 Built-in CREOLE Resources

GATE comes with various built-in components:

e Language Resources modelling Documents and Corpora, and various types of Annota-
tion Schema — see Chapter 5.

e Processing Resources that are part of the ANNIE system — see Chapter 6.
o Gazetteers — see Chapter 13.

e Ontologies — see Chapter 14.

e Machine Learning resources — see Chapter 15.

e Alignment tools — see Chapter 16.

e Parsers and taggers — see Chapter 17.

e Other miscellaneous resources — see Chapter 19.

4.7 CREOLE Resource Configuration

This section describes how to supply GATE with the configuration data it needs about a
resource, such as what its parameters are, how to display it if it has a visualisation, etc.
Several GATE resources can be grouped into a single plugin, which is a directory containing
an XML configuration file called creole.xml. Configuration data for the plugin’s resources
can be given in the creole.xml file or directly in the Java source file using Java 5 annotations.

A creole.xml file has a root element <CREOLE-DIRECTORY>, but the further contents of this
element depend on the configuration style. The following three sections discuss the different
styles — all-XML, all-annotations and a mixture of the two.

4.7.1 Configuration with XML

To configure your resources in the creole.xml file, the <CREOLE-DIRECTORY> element should
contain one <RESOURCE> element for each resource type in the plugin. The <RESOURCE> ele-
ments may optionally be contained within a <CREOLE> element (to allow a single creole.xml
file to be built up by concatenating multiple separate files). For example:

CREOLE: the GATE Component Model 73

<CREOLE-DIRECTORY>

<CREOLE>
<RESOURCE>
<NAME>Minipar Wrapper</NAME>
<JAR>MiniparWrapper.jar</JAR>
<CLASS>minipar.Minipar</CLASS>
<COMMENT>MiniPar is a shallow parser. It determines the
dependency relationships between the words of a sentence.</COMMENT>
<HELPURL>http://gate.ac.uk/cgi-bin/userguide/sec:parsers:minipar</HELPURL>
<PARAMETER NAME="document"
RUNTIME="true"
COMMENT="document to process">gate.Document</PARAMETER>
<PARAMETER NAME="miniparDataDir"
RUNTIME="true"
COMMENT="location of the Minipar data directory">
java.net.URL
</PARAMETER>
<PARAMETER NAME="miniparBinary"
RUNTIME="true"
COMMENT="Name of the Minipar command file">
java.net.URL
</PARAMETER>
<PARAMETER NAME="annotationInputSetName"
RUNTIME="true"
OPTIONAL="true"
COMMENT="Name of the input Source">
java.lang.String
</PARAMETER>
<PARAMETER NAME="annotationOutputSetName"
RUNTIME="true"
OPTIONAL="true"
COMMENT="Name of the output AnnotationSetName">
java.lang.String
</PARAMETER>
<PARAMETER NAME="annotationTypeName"
RUNTIME="false"
DEFAULT="DepTreeNode"
COMMENT="Annotations to store with this type">
java.lang.String
</PARAMETER>
</RESQURCE>
</CREOLE>
</CREOLE-DIRECTORY>

74 CREOLE: the GATE Component Model

Basic Resource-Level Data

Each resource must give a name, a Java class and the JAR file that it can be loaded from.
The above example is taken from the Parser Minipar plugin, and defines a single resource
with a number of parameters.

The full list of valid elements under <RESOURCE> is as follows:

NAME the name of the resource, as it will appear in the ‘New’” menu in GATE Developer.
If omitted, defaults to the bare name of the resource class (without a package name).

CLASS the fully qualified name of the Java class that implements this resource.

JAR names JAR files required by this resource (paths are relative to the location of
creole.xml). Typically this will be the JAR file containing the class named by the
<CLASS> element, but additional <JAR> elements can be used to name third-party JAR
files that the resource depends on.

COMMENT a descriptive comment about the resource, which will appear as the tooltip
when hovering over an instance of this resource in the resources tree in GATE Devel-
oper. If omitted, no comment is used.

HELPURL a URL to a help document on the web for this resource. It is used in the help
browser inside GATE Developer.

INTERFACE the interface type implemented by this resource, for example new types of
document would specify <INTERFACE>gate.Document</INTERFACE>.

ICON the icon used to represent this resource in GATE Developer. This is a path inside
the plugin’s JAR file, for example <ICON>/some/package/icon.png</ICON>. If the
path specified does not start with a forward slash, it is assumed to name an icon from
the GATE default set, which is located in gate.jar at gate/resources/img. If no icon
is specified, a generic language resource or processing resource icon (as appropriate) is
used.

PRIVATE if present, this resource type is hidden in the GATE Developer GUI, i.e. it is
not shown in the ‘New’ menus. This is useful for resource types that are intended to be
created internally by other resources, or for resources that have parameters of a type
that cannot be set in the GUI. <PRIVATE/> resources can still be created in Java code
using the Factory.

AUTOINSTANCE (and HIDDEN-AUTOINSTANCE) tells GATE to automati-
cally create instances of this resource when the plugin is loaded. Any number of auto
instances may be defined, GATE will create them all. Each <AUTOINSTANCE> element
may optionally contain <PARAM NAME="..." VALUE="..." /> elements giving param-
eter values to use when creating the instance. Any parameters not specified explicitly

CREOLE: the GATE Component Model 75

will take their default values. Use <HIDDEN-AUTOINSTANCE> if you want the auto in-
stances not to show up in GATE Developer — this is useful for things like document
formats where there should only ever be a single instance in GATE and that instance

should not be deleted.

TOOL if present, this resource type is considered to be a “tool”. Tools can contribute items
to the Tools menu in GATE Developer.

For visual resources, a <GUI> element should also be provided. This takes a TYPE attribute,
which can have the value LARGE or SMALL. LARGE means that the visual resource is a large
viewer and should appear in the main part of the GATE Developer window on the right
hand side, SMALL means the VR is a small viewer which appears in the space below the
resources tree in the bottom left. The <GUI> element supports the following sub-elements:

RESOURCE_DISPLAYED the type of GATE resource this VR can display. Any re-
source whose type is assignable to this type will be displayed with this viewer, so for
example a VR that can display all types of document would specify gate.Document,
whereas a VR that can only display the default GATE document implementation would
specify gate.corpora.DocumentImpl.

MAIN_VIEWER if present, GATE will consider this VR to be the ‘most important’
viewer for the given resource type, and will ensure that if several different viewers are
all applicable to this resource, this viewer will be the one that is initially visible.

For annotation viewers, you should specify an <ANNOTATION_TYPE_DISPLAYED> element giv-
ing the annotation type that the viewer can display (e.g. Sentence).

Resource Parameters

Resources may also have parameters of various types. These resources, from the GATE
distribution, illustrate the various types of parameters:

<RESOURCE>
<NAME>GATE document</NAME>
<CLASS>gate.corpora.DocumentImpl</CLASS>
<INTERFACE>gate.Document</INTERFACE>
<COMMENT>GATE transient document</COMMENT>
<0R>
<PARAMETER NAME="sourceUrl"
SUFFIXES="txt;text;xml;xhtm;xhtml;html;htm;sgml;sgm;mail;email;eml;rtf"
COMMENT="Source URL">java.net.URL</PARAMETER>
<PARAMETER NAME="stringContent"

76 CREOLE: the GATE Component Model

COMMENT="The content of the document'">java.lang.String</PARAMETER>
</0R>
<PARAMETER
COMMENT="Should the document read the original markup"
NAME="markupAware" DEFAULT="true">java.lang.Boolean</PARAMETER>
<PARAMETER NAME="encoding" OPTIONAL="true"
COMMENT="Encoding" DEFAULT="">java.lang.String</PARAMETER>
<PARAMETER NAME="sourceUrlStartOffset"
COMMENT="Start offset for documents based on ranges"
OPTIONAL="true">java.lang.Long</PARAMETER>
<PARAMETER NAME="sourceUrlEndOffset"
COMMENT="End offset for documents based on ranges"
OPTIONAL="true">java.lang.Long</PARAMETER>
<PARAMETER NAME="preserveOriginalContent"
COMMENT="Should the document preserve the original content"
DEFAULT="false">java.lang.Boolean</PARAMETER>
<PARAMETER NAME="collectRepositioningInfo"
COMMENT="Should the document collect repositioning information"
DEFAULT="false">java.lang.Boolean</PARAMETER>
<ICON>1r.gif</ICON>
</RESQURCE>

<RESOURCE>
<NAME>Document Reset PR</NAME>
<CLASS>gate.creole.annotdelete.AnnotationDeletePR</CLASS>
<COMMENT>Document cleaner</COMMENT>
<PARAMETER NAME="document" RUNTIME="true">gate.Document</PARAMETER>
<PARAMETER NAME="annotationTypes" RUNTIME="true"

OPTIONAL="true">java.util.ArrayList</PARAMETER>
</RESOQURCE>

Parameters may be optional, and may have default values (and may have comments to
describe their purpose, which is displayed by GATE Developer during interactive parameter
setting).

Some PR parameters are execution time (RUNTIME), some are initialisation time. E.g. at
execution time a doc is supplied to a language analyser; at initialisation time a grammar
may be supplied to a language analyser.

The <PARAMETER> tag takes the following attributes:

NAME: name of the JavaBean property that the parameter refers to, i.e. for a parameter
named ‘someParam’ the class must have setSomeParam and getSomeParam methods.!

!The JavaBeans spec allows is instead of get for properties of the primitive type boolean, but GATE

CREOLE: the GATE Component Model 7

DEFAULT: default value (see below).

RUNTIME: doesn’t need setting at initialisation time, but must be set before calling
execute (). Only meaningful for PRs

OPTIONAL: not required
COMMENT: for display purposes

ITEM_CLASS NAME: (only applies to parameters whose type is java.util.Collection
or a type that implements or extends this) this specifies the type of elements the col-
lection contains, so GATE can use the right type when parameters are set. If omitted,
GATE will pass in the elements as Strings.

SUFFIXES: (only applies to parameters of type java.net.URL) a semicolon-separated list
of file suffixes that this parameter typically accepts, used as a filter in the file chooser
provided by GATE Developer to select a local file as the parameter value.

It is possible for two or more parameters to be mutually exclusive (i.e. a user must specify
one or the other but not both). In this case the <PARAMETER> elements should be grouped
together under an <OR> element.

The type of the parameter is specified as the text of the <PARAMETER> element, and the type
supplied must match the return type of the parameter’s get method. Any reference type
(class, interface or enum) may be used as the parameter type, including other resource types —
in this case GATE Developer will offer a list of the loaded instances of that resource as options
for the parameter value. Primitive types (char, boolean, ...) are not supported, instead you
should use the corresponding wrapper type (java.lang.Character, java.lang.Boolean,
...). If the getter returns a parameterized type (e.g. List<Integer>) you should just specify
the raw type (java.util.List) here?.

The DEFAULT string is converted to the appropriate type for the parameter -
java.lang.String parameters use the value directly, primitive wrapper types e.g.
java.lang.Integer use their respective valueOf methods, and other built-in Java types
can have defaults specified provided they have a constructor taking a String.

The type java.net.URL is treated specially: if the default string is not an absolute URL (e.g.
http://gate.ac.uk/) then it is treated as a path relative to the location of the creole.xml file.
Thus a DEFAULT of ‘resources/main.jape’ in the file file:/opt/MyPlugin/creole.xml
is treated as the absolute URL file:/opt/MyPlugin/resources/main. jape.

For Collection-valued parameters multiple values may be specified, separated by semi-
colons, e.g. ‘foo;bar;baz’; if the parameter’s type is an interface — Collection or one of

does not support parameters with primitive types. Parameters of type java.lang.Boolean (the wrapper
class) are permitted, but these have get accessors anyway.

’In this particular case, as the type is a collection, you would specify java.lang.Integer as the
ITEM_CLASS_NAME.

78 CREOLE: the GATE Component Model

its sub-interfaces (e.g. List) — a suitable concrete class (e.g. ArrayList, HashSet) will be
chosen automatically for the default value.

For parameters of type gate.FeatureMap multiple name=value pairs can be specified, e.g.
‘kind=word;orth=upperInitial’. For enum-valued parameters the default string is taken
as the name of the enum constant to use. Finally, if no DEFAULT attribute is specified, the
default value is null.

4.7.2 Configuring Resources using Annotations

As an alternative to the XML configuration style, GATE provides Java 5 annotation types
to embed the configuration data directly in the Java source code. @CreoleResource is
used to mark a class as a GATE resource, and parameter information is provided through
annotations on the JavaBean set methods. At runtime these annotations are read and
mapped into the equivalent entries in creole.xml before parsing. The metadata annotation
types are all marked @Documented so the CREOLE configuration data will be visible in the
generated JavaDoc documentation.

For more detailed information, see the JavaDoc documentation for gate.creole.metadata.

To use annotation-driven configuration a creole.xml file is still required but it need only
contain the following:

<CREOLE-DIRECTORY>
<JAR SCAN="true">myPlugin.jar</JAR>
<JAR>lib/thirdPartyLib.jar</JAR>

</CREOLE-DIRECTORY>

This tells GATE to load myPlugin. jar and scan its contents looking for resource classes
annotated with @CreoleResource. Other JAR files required by the plugin can be specified
using other <JAR> elements without SCAN="true".

Basic Resource-Level Data

To mark a class as a CREOLE resource, simply use the @CreoleResource annotation (in
the gate.creole.metadata package), for example:

import gate.creole.AbstractlLanguageAnalyser;
import gate.creole.metadata.*;

@CreoleResource (name = "GATE Tokeniser",
comment = "Splits text into tokens and spaces")
public class Tokeniser extends AbstractlLanguageAnalyser {

~ (=] ot - W N —

http://gate.ac.uk/gate/doc/javadoc/gate/creole/metadata/package-summary.html

CREOLE: the GATE Component Model 79

The @CreoleResource annotation provides slots for all the values that can be specified under
<RESOURCE> in creole.xml, except <CLASS> (inferred from the name of the annotated class)
and <JAR> (taken to be the JAR containing the class):

name (String) the name of the resource, as it will appear in the ‘New’ menu in GATE
Developer. If omitted, defaults to the bare name of the resource class (without a
package name). (XML equivalent <NAME>)

comment (String) a descriptive comment about the resource, which will appear as the
tooltip when hovering over an instance of this resource in the resources tree in GATE
Developer. If omitted, no comment is used. (XML equivalent <COMMENT>)

helpURL (String) a URL to a help document on the web for this resource. It is used in
the help browser inside GATE Developer. (XML equivalent <HELPURL>)

isPrivate (boolean) should this resource type be hidden from the GATE Developer GUI, so
it does not appear in the ‘New’ menus? If omitted, defaults to false (i.e. not hidden).
(XML equivalent <PRIVATE/>)

icon (String) the icon to use to represent the resource in GATE Developer. If omitted, a
generic language resource or processing resource icon is used. (XML equivalent <ICON>,
see the description above for details)

interfaceName (String) the interface type implemented by this resource, for example
a new type of document would specify "gate.Document" here. (XML equivalent
<INTERFACE>)

autolnstances (array of @AutoInstance annotations) definitions for any instances of this
resource that should be created automatically when the plugin is loaded. If omitted, no
auto-instances are created by default. (XML equivalent, one or more <AUTOINSTANCE>
and/or <HIDDEN-AUTOINSTANCE> elements, see the description above for details)

tool (boolean) is this resource type a tool?
For visual resources only, the following elements are also available:

guiType (GuiType enum) the type of GUI this resource defines. (XML equivalent
<GUI TYPE="LARGE|SMALL" >)

resourceDisplayed (String) the class name of the resource type that this VR displays, e.g.
"gate.Corpus". (XML equivalent <RESOURCE_DISPLAYED>)

mainViewer (boolean) is this VR the ‘most important’ viewer for its displayed resource
type? (XML equivalent <MAIN_VIEWER/>, see above for details)

For annotation viewers, you should specify an annotationTypeDisplayed element giving
the annotation type that the viewer can display (e.g. Sentence).

80 CREOLE: the GATE Component Model

Resource Parameters

Parameters are declared by placing annotations on their JavaBean set methods. To mark
a setter method as a parameter, use the @CreoleParameter annotation, for example:

@CreoleParameter (comment = "The location of the list of abbreviations")
public void setAbbrListUrl(URL 1istUrl) {

GATE will infer the parameter’s name from the name of the JavaBean property in the usual
way (i.e. strip off the leading set and convert the following character to lower case, so in
this example the name is abbrListUrl). The parameter name is not taken from the name
of the method parameter. The parameter’s type is inferred from the type of the method
parameter (java.net.URL in this case).

The annotation elements of @CreoleParameter correspond to the attributes of the
<PARAMETER> tag in the XML configuration style:

comment (String) an optional descriptive comment about the parameter. (XML equivalent
COMMENT)

defaultValue (String) the optional default value for this parameter. The value is specified
as a string but is converted to the relevant type by GATE according to the conversions
described in the previous section. Note that relative path default values for URL-valued
parameters are still relative to the location of the creole.xml file, not the annotated
class. (XML equivalent DEFAULT)

suffixes (String) for URL-valued parameters, a semicolon-separated list of default file suf-
fixes that this parameter accepts. (XML equivalent SUFFIXES)

collectionElementType (Class) for Collection-valued parameters, the type of the ele-
ments in the collection. This can usually be inferred from the generic type informa-
tion, for example public void setIndices(List<Integer> indices), but must be
specified if the set method’s parameter has a raw (non-parameterized) type. (XML
equivalent ITEM_CLASS_NAME)

Mutually-exclusive parameters (such as would be grouped in an <OR> in creole.xml) are
handled by adding a disjunction="[label" to the @CreoleParameter annotation — all pa-
rameters that share the same label are grouped in the same disjunction.

Optional and runtime parameters are marked using extra annotations, for example:

@0ptional

QRunTime

@CreoleParameter

public void setAnnotationSetName (String asName) {

TR W N =

CREOLE: the GATE Component Model 81

Inheritance

Unlike with pure XML configuration, when using annotations a resource will inherit any
configuration data that was not explicitly specified from annotations on its parent class
and on any interfaces it implements. Specifically, if you do not specify a comment, inter-
faceName, icon, annotationTypeDisplayed or the GUI-related elements (guiType and re-
sourceDisplayed) on your @CreoleResource annotation then GATE will look up the class
tree for other @CreoleResource annotations, first on the superclass, its superclass, etc.,
then at any implemented interfaces, and use the first value it finds. This is useful if you are
defining a family of related resources that inherit from a common base class.

The resource name and the isPrivate and mainViewer flags are not inherited.

Parameter definitions are inherited in a similar way. This is one of the big advantages of
annotation configuration over pure XML — if one resource class extends another then with
pure XML configuration all the parent class’s parameter definitions must be duplicated in
the subclass’s creole.xml definition. With annotations, parameters are inherited from the
parent class (and its parent, etc.) as well as from any interfaces implemented. For exam-
ple, the gate.LanguageAnalyser interface provides two parameter definitions via annotated
set methods, for the corpus and document parameters. Any @CreoleResource annotated
class that implements LanguageAnalyser, directly or indirectly, will get these parameters
automatically.

Of course, there are some cases where this behaviour is not desirable, for example if a subclass
calculates a value for a superclass parameter rather than having the user set it directly. In
this case you can hide the parameter by overriding the set method in the subclass and using
a marker annotation:

@HiddenCreoleParameter

public void setSomeParam(String someParam) {
super .setSomeParam(someParam) ;

}

N N

The overriding method will typically just call the superclass one, as its only purpose is to
provide a place to put the @HiddenCreoleParameter annotation.

Alternatively, you may want to override some of the configuration for a parameter but inherit
the rest from the superclass. Again, this is handled by trivially overriding the set method
and re-annotating it:
// superclass
@CreoleParameter (comment = "Location of the grammar file",

suffixes = "jape")
public void setGrammarUrl (URL grammarLocation) {

}

@0ptional
@RunTime

© W N s W N

82 CREOLE: the GATE Component Model

10 @CreoleParameter (comment = "Feature to set on success'")
1 public void setSuccessFeature(String name) {

12

13 }

Y

2 // subclass

3

4 // override the default wvalue, inherit everything else
5 @CreoleParameter (defaultValue = "resources/defaultGrammar.jape")
6 public void setGrammarUrl (URL url) {

7 super.setGrammarUrl (url);

8 }

9

// we want the parameter to be required in the subclass

@Optional (false)

@CreoleParameter

public void setSuccessFeature(String name) {
super.setSuccessFeature (name);

}

e e
Tk W N = O

Note that for backwards compatibility, data is only inherited from superclass annotations
if the subclass is itself annotated with @CreoleResource. If the subclass is not annotated
then GATE assumes that all its configuration is contained in creole.xml in the usual way.

4.7.3 Mixing the Configuration Styles

It is possible and often useful to mix and match the XML and annotation-driven configu-
ration styles. The rule is always that anything specified in the XML takes priority over the
annotations. The following examples show what this allows.

Overriding Configuration for a Third-Party Resource

Suppose you have a plugin from some third party that uses annotation-driven configuration.
You don’t have the source code but you would like to override the default value for one of
the parameters of one of the plugin’s resources. You can do this in the creole.xml:

<CREOLE-DIRECTORY>
<JAR SCAN="true">acmePlugin-1.0.jar</JAR>

<!-- Add the following to override the annotations —-—>
<RESOURCE>
<CLASS>com.acme.plugin.Useful PR</CLASS>
<PARAMETER NAME="1listUrl"
DEFAULT="resources/myList.txt">java.net.URL</PARAMETER>

CREOLE: the GATE Component Model 83

</RESOURCE>
</CREOLE-DIRECTORY>

The default value for the 1istUrl parameter in the annotated class will be replaced by your
value.

External AUTOINSTANCESs

For resources like document formats, where there should always and only be one in-
stance in GATE at any time, it makes sense to put the auto-instance definitions in the
@CreoleResource annotation. But if the automatically created instances are a convenience
rather than a necessity it may be better to define them in XML so other users can disable
them without re-compiling the class:

<CREOLE-DIRECTORY>
<JAR SCAN="true">myPlugin.jar</JAR>

<RESOURCE>
<CLASS>com.acme . AutoPR</CLASS>
<AUTOINSTANCE>
<PARAM NAME="type" VALUE="Sentence" />
</AUTOINSTANCE>
<AUTOINSTANCE>
<PARAM NAME="type" VALUE="Paragraph" />
</AUTOINSTANCE>
</RESQURCE>
</CREOLE-DIRECTORY>

Inheriting Parameters

If you would prefer to use XML configuration for your own resources, but would like to benefit
from the parameter inheritance features of the annotation-driven approach, you can write a
normal creole.xml file with all your configuration and just add a blank @CreoleResource
annotation to your class. For example:

package com.acme;

import gate.x*;

import gate.creole.metadata.CreoleResource;

@CreoleResource
public class MyPR implements LanguageAnalyser {

o N O s W N =

¥

84 CREOLE: the GATE Component Model

<l-- creole.xml -->
<CREOLE-DIRECTORY>
<CREOLE>
<RESOURCE>
<NAME>My Processing Resource</NAME>
<CLASS>com.acme . MyPR</CLASS>
<COMMENT>. . .</COMMENT>
<PARAMETER NAME="annotationSetName"
RUNTIME="true" OPTIONAL="true">java.lang.String</PARAMETER>
<!--
don’t need to declare document and corpus parameters, they
are inherited from LanguageAnalyser
-—>
</RESQURCE>
</CREOLE>
</CREOLE-DIRECTORY>

N.B. Without the @CreoleResource the parameters would not be inherited.

4.8 Tools: How to Add Utilities to GATE Developer

Visual Resources allow a developer to provide a GUI to interact with a particular resource
type (PR or LR), but sometimes it is useful to provide general utilities for use in the GATE
Developer GUI that are not tied to any specific resource type. Examples include the an-
notation diff tool and the Groovy console (provided by the Groovy plugin), both of which
are self-contained tools that display in their own top-level window. To support this, the
CREOLE model has the concept of a tool.

A resource type is marked as a tool by using the <TOOL/> element in its creole.xml
definition, or by setting tool = true if using the @CreoleResource annotation config-
uration style. If a resource is declared to be a tool, and written to implement the
gate.gui.ActionsPublisher interface, then whenever an instance of the resource is created
its published actions will be added to the “Tools” menu in GATE Developer.

Since the published actions of every instance of the resource will be added to the tools menu,
it is best not to use this mechanism on resource types that can be instantiated by the user.
The “tool” marker is best used in combination with the “private” flag (to hide the resource
from the list of available types in the GUI) and one or more hidden autoinstance definitions
to create a limited number of instances of the resource when its defining plugin is loaded.
See the GroovySupport resource in the Groovy plugin for an example of this.

Language Resources: Corpora, Documents and Annotations 85

4.8.1 Putting your tools in a sub-menu

If your plugin provides a number of tools (or a number of actions from the same tool) you
may wish to organise your actions into one or more sub-menus, rather than placing them
all on the single top-level tools menu. To do this, you need to put a special value into the
actions returned by the tool’s getActions() method:

1 action.putValue(GateConstants.MENU_PATH_KEY,
2 new String[] {"Acme toolkit", "Statistics"});

The key must be GateConstants.MENU_PATH_KEY and the value must be an array of strings. Each
string in the array represents the name of one level of sub-menus. Thus in the example above
the action would be placed under “Tools — Acme toolkit — Statistics”. If no MENU_PATH_KEY
value is provided the action will be placed directly on the Tools menu.

86

Language Resources: Corpora, Documents and Annotations

Chapter 5

Language Resources: Corpora,
Documents and Annotations

Sometimes in life you’ve got to dance like nobody’s watching.

I think they should introduce ‘sleeping’ to the Olympics. It would be an excellent
field event, in which the ‘athletes’ (for want of a better word) all lay down in
beds, just beyond where the javelins land, and the first one to fall asleep and
not wake up for three hours would win gold. I, for one, would be interested
in seeing what kind of personality would be suited to sleeping in a competitive
environment.

Life is a mystery to be lived, not a problem to be solved.
Round Ireland with a Fridge, Tony Hawks, 1998 (pp. 119, 147, 179).

This chapter documents GATE’s model of corpora, documents and annotations on docu-
ments. Section 5.1 describes the simple attribute/value data model that corpora, documents
and annotations all share. Section 5.2, Section 5.3 and Section 5.4 describe corpora, doc-
uments and annotations on documents respectively. Section 5.5 describes GATE’s support
for diverse document formats, and Section 5.5.2 describes facilities for XML input /output.

5.1 Features: Simple Attribute/Value Data

GATE has a single model for information that describes documents, collections of documents
(corpora), and annotations on documents, based on attribute/value pairs. Attribute names
are strings; values can be any Java object. The API for accessing this feature data is Java’s
Map interface (part of the Collections API).

87

88 Language Resources: Corpora, Documents and Annotations

5.2 Corpora: Sets of Documents plus Features

A Corpus in GATE is a Java Set whose members are Documents. Both Corpora and Docu-
ments are types of LanguageResource (LR); all LRs have a FeatureMap (a Java Map) asso-
ciated with them that stored attribute/value information about the resource. FeatureMaps
are also used to associate arbitrary information with ranges of documents (e.g. pieces of
text) via the annotation model (see below).

Documents have a DocumentContent which is a text at present (future versions may add
support for audiovisual content) and one or more AnnotationSets which are Java Sets.

5.3 Documents: Content plus Annotations plus Fea-
tures

Documents are modelled as content plus annotations (see Section 5.4) plus features (see
Section 5.1). The content of a document can be any subclass of DocumentContent.

5.4 Annotations: Directed Acyclic Graphs

Annotations are organised in graphs, which are modelled as Java sets of Annotation. An-
notations may be considered as the arcs in the graph; they have a start Node and an end
Node, an ID, a type and a FeatureMap. Nodes have pointers into the sources document, e.g.
character offsets.

5.4.1 Annotation Schemas

Annotation schemas provide a means to define types of annotations in GATE.
GATE wuses the XML Schema language supported by W3C for these definitions.
When using GATE Developer to create/edit annotations, a component is available
(gate.gui.SchemaAnnotationEditor) which is driven by an annotation schema file. This
component will constrain the data entry process to ensure that only annotations that corre-
spond to a particular schema are created. (Another component allows unrestricted annota-
tions to be created.)

Schemas are resources just like other GATE components. Below we give some examples of
such schemas. Section 3.4.6 describes how to create new schemas.

Language Resources: Corpora, Documents and Annotations

Date Schema

<?xml version="1.0"7>

<schema
xmlns="http://www.w3.0rg/2000/10/XMLSchema">
<!-- XSchema deffinition for Date—->
<element name="Date">
<complexType>

<attribute name="kind" use="optional">
<simpleType>
<restriction base="string">
<enumeration value="date"/>
<enumeration value="time"/>
<enumeration value="dateTime"/>
</restriction>
</simpleType>
</attribute>
</complexType>
</element>
</schema>

Person Schema

<?xml version="1.0"7>

<schema

xmlns="http://www.w3.0rg/2000/10/XMLSchema">
<!-- XSchema definition for Person—-->
<element name="Person" />

</schema>

Address Schema

<?xml version="1.0"7> <schema
xmlns="http://www.w3.0rg/2000/10/XMLSchema">

<!I-- XSchema deffinition for Address-->
<element name="Address">
<complexType>
<attribute name="kind" use="optional">
<simpleType>

<restriction base="string">
<enumeration value="email"/>
<enumeration value="url"/>
<enumeration value="phone"/>
<enumeration value="ip"/>

89

90 Language Resources: Corpora, Documents and Annotations

<enumeration value="street"/>
<enumeration value="postcode"/>
<enumeration value="country"/>
<enumeration value="complete"/>
</restriction>
</simpleType>
</attribute>
</complexType>
</element>
</schema>

5.4.2 Examples of Annotated Documents

This section shows some simple examples of annotated documents.

This material is adapted from [Grishman 97|, the TIPSTER Architecture Design document
upon which GATE version 1 was based. Version 2 has a similar model, although annotations
are now graphs, and instead of multiple spans per annotation each annotation now has a sin-
gle start/end node pair. The current model is largely compatible with [Bird & Liberman 99],
and roughly isomorphic with "stand-off markup" as latterly adopted by the SGML/XML
community.

Each example is shown in the form of a table. At the top of the table is the document being
annotated; immediately below the line with the document is a ruler showing the position
(byte offset) of each character (see TIPSTER Architecture Design Document).

Underneath this appear the annotations, one annotation per line. For each annotation is
shown its Id, Type, Span (start/end offsets derived from the start/end nodes), and Features.
Integers are used as the annotation Ids. The features are shown in the form name = value.

The first example shows a single sentence and the result of three annotation procedures: to-
kenization with part-of-speech assignment, name recognition, and sentence boundary recog-
nition. Each token has a single feature, its part of speech (pos), using the tag set from the
University of Pennsylvania Tree Bank; each name also has a single feature, indicating the
type of name: person, company, etc.

Annotations will typically be organized to describe a hierarchical decomposition of a text.
A simple illustration would be the decomposition of a sentence into tokens. A more complex
case would be a full syntactic analysis, in which a sentence is decomposed into a noun phrase
and a verb phrase, a verb phrase into a verb and its complement, etc. down to the level of
individual tokens. Such decompositions can be represented by annotations on nested sets
of spans. Both of these are illustrated in the second example, which is an elaboration of
our first example to include parse information. Each non-terminal node in the parse tree is
represented by an annotation of type parse.

http://www.itl.nist.gov/iaui/894.02/related_projects/tipster/

Language Resources: Corpora, Documents and Annotations

Text
Cyndi savored the soup.
"0...75...710..715..720
Annotations

Id | Type SpanStart | Span End | Features
1 | token 0 5 pos=NP
2 | token 6 13 pos=VBD
3 | token 14 17 pos=DT
4 | token 18 22 pos=NN
5 | token 22 23
6 | name 0 5) name_type=person
7 | sentence | 0 23

Table 5.1: Result of annotation on a single sentence

Text
Cyndi savored the soup.
“0...75...710..715..720
Annotations
Id | Type SpanStart | Span End | Features
1 | token 0) pos=NP
2 | token 6 13 pos=VBD
3 | token 14 17 pos=DT
4 | token 18 22 pos=NN
5 | token 22 23
6 | name 0 5 name_type=person
7 | sentence | 0 23 constituents=[1],[2],[3].[4],[5]

Table 5.2: Result of annotations including parse information

91

92 Language Resources: Corpora, Documents and Annotations

Text
To: All Barnyard Animals
~0...75...710..715..720.
From: Chicken Little
725..730..735..740..

Date: November 10,1194
...750..75656..760..765.
Subject: Descending Firmament
.770..775..780..785..790..795
Priority: Urgent
.7100.7105.7110.

The sky is falling. The sky is falling.
....7120.7125.7130.7135.7140.7145.7150.

Annotations
Id | Type SpanStart | Span End | Features
1 | Addressee | 4 24
2 | Source 31 45
3 | Date 53 69 ddmmyy=101194
4 | Subject 78 98
5 | Priority 109 115
6 | Body 116 155
7 | Sentence | 116 135
8 | Sentence | 136 155

Table 5.3: Annotation showing overall document structure

In most cases, the hierarchical structure could be recovered from the spans. However, it may
be desirable to record this structure directly through a constituents feature whose value is
a sequence of annotations representing the immediate constituents of the initial annotation.
For the annotations of type parse, the constituents are either non-terminals (other annota-
tions in the parse group) or tokens. For the sentence annotation, the constituents feature
points to the constituent tokens. A reference to another annotation is represented in the
table as "[Annotation Id]"; for example, "[3]" represents a reference to annotation 3. Where
the value of an feature is a sequence of items, these items are separated by commas. No
special operations are provided in the current architecture for manipulating constituents. At
a less esoteric level, annotations can be used to record the overall structure of documents,
including in particular documents which have structured headers, as is shown in the third
example (Table 5.3).

If the Addressee, Source, ... annotations are recorded when the document is indexed for
retrieval, it will be possible to perform retrieval selectively on information in particular
fields. Our final example (Table 5.4) involves an annotation which effectively modifies the
document. The current architecture does not make any specific provision for the modification

Language Resources: Corpora, Documents and Annotations

Text

Topster tackles 2 terrorbytes.

“0...75...710..715..720..725..
Annotations

Id | Type | SpanStart | Span End | Features
1 | token | O 7 pos=NP correction=TIPSTER
2 | token | 8 15 pos=VBZ
3 | token | 16 17 pos=CD
4 | token | 18 29 pos=NNS correction=terabytes
5 | token | 29 30

Table 5.4: Annotation modifying the document

93

of the original text. However, some allowance must be made for processes such as spelling
correction. This information will be recorded as a correction feature on token annotations

and possibly on name annotations:

5.4.3 Creating, Viewing and Editing Diverse Annotation Types

Note that annotation types should consist of a single word with no spaces. Otherwise they
may not be recognised by other components such as JAPE transducers, and may create
problems when annotations are saved as inline (‘Save Preserving Format’ in the context
menu).

To view and edit annotation types, see Section 3.4. To add annotations of a new type, see
Section 3.4.5. To add a new annotation schema, see Section 3.4.6.

5.5 Document Formats

The following document formats are supported by GATE:

e Plain Text

HTML
SGML
XML
RTF

Email

94 Language Resources: Corpora, Documents and Annotations

e PDF (some documents)

e Microsoft Word (some documents)

By default GATE will try and identify the type of the document, then strip and convert
any markup into GATE’s annotation format. To disable this process, set the markupAware
parameter on the document to false.

When reading a document of one of these types, GATE extracts the text between tags (where
such exist) and create a GATE annotation filled as follows:

The name of the tag will constitute the annotation’s type, all the tags attributes will mate-
rialize in the annotation’s features and the annotation will span over the text covered by the
tag. A few exceptions of this rule apply for the RTF, Email and Plain Text formats, which
will be described later in the input section of these formats.

The text between tags is extracted and appended to the GATE document’s content and all
annotations created from tags will be placed into a GATE annotation set named ‘Original
markups’.

Ezample:

If the markup is like this:

<aTagName attribl="valuel" attrib2="value2" attrib3="value3"> A
piece of text</aTagName>

then the annotation created by GATE will look like:

annotation.type = "aTagName";

annotation.fm = {attribl=valuel;atrtrib2=value2;attrib3=value3};
annotation.start = startNode;

annotation.end = endNode;

The startNode and endNode are created from offsets referring the beginning and the end of
‘A piece of text’ in the document’s content.

The documents supported by GATE have to be in one of the encodings accepted by Java.
The most popular is the ‘UTF-8" encoding which is also the most storage efficient one for
UNICODE. If, when loading a document in GATE the encoding parameter is set to “’(the
empty string), then the default encoding of the platform will be used.

Language Resources: Corpora, Documents and Annotations 95

5.5.1 Detecting the Right Reader

In order to successfully apply the document creation algorithm described above, GATE
needs to detect the proper reader to use for each document format. If the user knows in
advance what kind of document they are loading then they can specify the MIME type (e.g.
text/html) using the init parameter mimeType, and GATE will respect this. If an explicit type
is not given, GATE attempts to determine the type by other means, taking into consideration
(where possible) the information provided by three sources:

e Document’s extension
e The web server’s content type

e Magic numbers detection

The first represents the extension of a file like (xml htm,html, txt,sgm,rtf, etc), the second
represents the HT'TP information sent by a web server regarding the content type of the
document being send by it (text/html; text/xml, etc), and the third one represents certain
sequences of chars which are ultimately number sequences. GATE is capable of supporting
multimedia documents, if the right reader is added to the framework. Sometimes, multimedia
documents are identified by a signature consisting in a sequence of numbers. Inside GATE
they are called magic numbers. For textual documents, certain char sequences form such
magic numbers. Examples of magic numbers sequences will be provided in the Input section
of each format supported by GATE.

All those tests are applied to each document read, and after that, a voting mechanism decides
what is the best reader to associate with the document. There is a degree of priority for all
those tests. The document’s extension test has the highest priority. If the system is in doubt
which reader to choose, then the one associated with document’s extension will be selected.
The next higher priority is given to the web server’s content type and the third one is given
to the magic numbers detection. However, any two tests that identify the same mime type,
will have the highest priority in deciding the reader that will be used. The web server test is
not always successful as there might be documents that are loaded from a local file system,
and the magic number detection test is not always applicable. In the next paragraphs we
will se how those tests are performed and what is the general mechanism behind reader
detection.

The method that detects the proper reader is a static one, and it belongs to the
gate.DocumentFormat class. It uses the information stored in the maps filled by the init()
method of each reader. This method comes with three signatures:

static public DocumentFormat getDocumentFormat(gate.Document
aGateDocument , URL url)

static public DocumentFormat getDocumentFormat (gate.Document
aGateDocument , String fileSuffix)

gt W N

96 Language Resources: Corpora, Documents and Annotations

6
7 static public DocumentFormat getDocumentFormat (gate.Document
s aGateDocument, MimeType mimeType)

The first two methods try to detect the right MimeType for the GATE document, and after
that, they call the third one to return the reader associate with a MimeType. Of course, if an
explicit mimeType parameter was specified, GATE calls the third form of the method directly,
passing the specified type. GATE uses the implementation from ‘http://jigsaw.w3.org’ for
mime types.

The magic numbers test is performed using the information form

magic2mimeTypeMap map. Each key from this map, is searched in the first bufferSize (the
default value is 2048) chars of text. The method that does this is called

runMagicNumbers (InputStreamReader aReader) and it belongs to DocumentFormat class.
More details about it can be found in the GATE API documentation.

In order to activate a reader to perform the unpacking, the creole definition of a GATE
document defines a parameter called ‘markupAware’ initialized with a default value of true.
This parameter, forces GATE to detect a proper reader for the document being read. If no
reader is found, the document’s content is load and presented to the user, just like any other
text editor (this for textual documents).

The next subsections investigates particularities for each format and will describe the file
extensions registered with each document format.

5.5.2 XML

Input

GATE permits the processing of any XML document and offers support for XML namespaces.
It benefits the power of Apache’s Xerces parser and also makes use of Sun’s JAXP layer.
Changing the XML parser in GATE can be achieved by simply replacing the value of a Java
system property (‘javax.xml.parsers.SAXParserFactory’).

GATE will accept any well formed XML document as input. Although it has the possibility
to validate XML documents against DTDs it does not do so because the validating procedure
is time consuming and in many cases it issues messages that are annoying for the user.

There is an open problem with the general approach of reading XML, HTML and SGML
documents in GATE. As we previously said, the text covered by tags/elements is appended
to the GATE document content and a GATE annotation refers to this particular span of
text. When appending, in cases such as ‘end.</P><P>Start’ it might happen that the ending
word of the previous annotation is concatenated with the beginning phrase of the annotation
currently being created, resulting in a garbage input for GATE processing resources that

Language Resources: Corpora, Documents and Annotations 97

operate at the text surface.
Let’s take another example in order to better understand the problem:

<title>This is a title</title><p>This is a paragraph</p>Here is an useful link

When the markup is transformed to annotations, it is likely that the text from the document’s
content will be as follows:
This is a titleThis is a paragraphHere is an useful link

The annotations created will refer the right parts of the texts but for the GATE’s processing
resources like (tokenizer, gazetter, etc) which work on this text, this will be a major disaster.
Therefore, in order to prevent this problem from happening, GATE checks if it’s likely to
join words and if this happens then it inserts a space between those words. So, the text will
look like this after loaded in GATE Developer:

This is a title This is a paragraph Here is an useful link

There are cases when these words are meant to be joined, but they are rare. This is why it’s
an open problem.

The extensions associate with the XML reader are:

e xml
e xhtm

e xhtml

The web server content type associate with xml documents is: text/zml.

The magic numbers test searches inside the document for the XML(<?xml version="1.0")
signature. It is also able to detect if the XML document uses the semantics described in the
GATE document format DTD (see 5.5.2 below) or uses other semantics.

Output

GATE is capable of ensuring persistence for its resources. The types of persistent storage
used for Language Resources are:

e Java serialization;

e XML serialization.

98 Language Resources: Corpora, Documents and Annotations

We describe the latter case here.

XML persistence doesn’t necessarily preserve all the objects belonging to the annotations,
documents or corpora. Their features can be of all kinds of objects, with various layers of
nesting. For example, lists containing lists containing maps, etc. Serializing these arbitrary
data types in XML is not a simple task; GATE does the best it can, and supports native Java
types such as Integers and Booleans, but where complex data types are used, information
may be lost(the types will be converted into Strings). GATE provides a full serialization of
certain types of features such as collections, strings and numbers. It is possible to serialize
only those collections containing strings or numbers. The rest of other features are serialized
using their string representation and when read back, they will be all strings instead of being
the original objects. Consequences of this might be observed when performing evaluations
(see Chapter 10).

When GATE outputs an XML document it may do so in one of two ways:

e When the original document that was imported into GATE was an XML document,
GATE can dump that document back into XML (possibly with additional markup
added);

e For all document formats, GATE can dump its internal representation of the document
into XML.

In the former case, the XML output will be close to the original document. In the latter
case, the format is a GATE-specific one which can be read back by the system to recreate
all the information that GATE held internally for the document.

In order to understand why there are two types of XML serialization, one needs to understand
the structure of a GATE document. GATE allows a graph of annotations that refer to
parts of the text. Those annotations are grouped under annotation sets. Because of this
structure, sometimes it is impossible to save a document as XML using tags that surround
the text referred to by the annotation, because tags crossover situations could appear (XML
is essentially a tree-based model of information, whereas GATE uses graphs). Therefore, in
order to preserve all annotations in a GATE document, a custom type of XML document
was developed.

The problem of crossover tags appears with GATE’s second option (the preserve format
one), which is implemented at the cost of losing certain annotations. The way it is applied
in GATE is that it tries to restore the original markup and where it is possible, to add in
the same manner annotations produced by GATE.

How to Access and Use the Two Forms of XML Serialization

Language Resources: Corpora, Documents and Annotations 99

Save as XML Option This option is available in GATE Developer in the pop-up menu
associated with each language resource (document or corpus). Saving a corpus as XML
is done by calling ‘Save as XML’ on each document of the corpus. This option saves all
the annotations of a document together their features(applying the restrictions previously
discussed), using the GateDocument.dtd :

<!'ELEMENT GateDocument (GateDocumentFeatures,
TextWithNodes, (AnnotationSet+))>

<!ELEMENT GateDocumentFeatures (Feature+)>

<IELEMENT Feature (Name, Value)>

<!ELEMENT Name (\#PCDATA)>

<VELEMENT Value (\#PCDATA)>

<V'ELEMENT TextWithNodes (\#PCDATA | Node)*>

<!ELEMENT AnnotationSet (Annotationx)>

<V'ATTLIST AnnotationSet Name CDATA \#IMPLIED>

<!ELEMENT Annotation (Featurex)>

<V'ATTLIST Annotation Type CDATA \#REQUIRED
StartNode CDATA \#REQUIRED
EndNode CDATA \#REQUIRED>

<!ELEMENT Node EMPTY>

<VATTLIST Node id CDATA \#REQUIRED>

The document is saved under a name chosen by the user and it may have any extension.
However, the recommended extension would be ‘xml’.

Using GATE Embedded, this option is available by calling gate.Document’s toXml()
method. This method returns a string which is the XML representation of the document on
which the method was called.

Note: It is recommended that the string representation to be saved on the file sys-
tem using the UTF-8 encoding, as the first line of the string is : <?xml version="1.0"
encoding="UTF-8"7>

Example of such a GATE format document:

<?xml version="1.0" encoding="UTF-8" 7>
<GateDocument>

<!-- The document’s features—->

<GateDocumentFeatures>
<Feature>
<Name className="java.lang.String">MimeType</Name>
<Value className="java.lang.String">text/plain</Value>
</Feature>

100 Language Resources: Corpora, Documents and Annotations

<Feature>

<Name className="java.lang.String">gate.SourceURL</Name>

<Value className="java.lang.String">file:/G:/tmp/example.txt</Value>
</Feature>
</GateDocumentFeatures>

<!-- The document content area with serialized nodes -->

<TextWithNodes>

<Node id="0"/>A TEENAGER <Node

id="11"/>yesterday<Node id="20"/> accused his parents of cruelty
by feeding him a daily diet of chips which sent his weight
ballooning to 22st at the age of 12<Node id="146"/>.<Node
id="147"/>

</TextWithNodes>

<!-- The default annotation set -->

<AnnotationSet>
<Annotation Type="Date" StartNode="11"
EndNode="20">
<Feature>

<Name className="java.lang.String">rule2</Name>

<Value className="java.lang.String">DateOnlyFinal</Value>
</Feature> <Feature>

<Name className="java.lang.String">rulel</Name>

<Value className="java.lang.String">GazDateWords</Value>
</Feature> <Feature>

<Name className="java.lang.String">kind</Name>

<Value className="java.lang.String">date</Value>
</Feature> </Annotation> <Annotation Type="Sentence" StartNode="0"
EndNode="147"> </Annotation> <Annotation Type="Split"
StartNode="146" EndNode="147"> <Feature>

<Name className="java.lang.String">kind</Name>

<Value className="java.lang.String">internal</Value>
</Feature> </Annotation> <Annotation Type="Lookup" StartNode="11"
EndNode="20"> <Feature>

<Name className="java.lang.String">majorType</Name>

<Value className="java.lang.String">date_key</Value>
</Feature> </Annotation>
</AnnotationSet>

<!-- Named annotation set -->
<AnnotationSet Name="Original markups" >

<Annotation
Type="paragraph" StartNode="0" EndNode="147"> </Annotation>

Language Resources: Corpora, Documents and Annotations 101

</AnnotationSet>
</GateDocument>

Note: One must know that all features that are not collections containing numbers or strings
or that are not numbers or strings are discarded. With this option, GATE does not preserve
those features it cannot restore back.

The Preserve Format Option This option is available in GATE Developer from the
popup menu of the annotations table. If no annotation in this table is selected, then the
option will restore the document’s original markup. If certain annotations are selected, then
the option will attempt to restore the original markup and insert all the selected ones. When
an annotation violates the crossed over condition, that annotation is discarded and a message
is issued.

This option makes it possible to generate an XML document with tags surrounding the an-
notation’s referenced text and features saved as attributes. All features which are collections,
strings or numbers are saved, and the others are discarded. However, when read back, only
the attributes under the GATE namespace (see below) are reconstructed back differently to
the others. That is because GATE does not store in the XML document the information
about the features class and for collections the class of the items. So, when read back, all
features will become strings, except those under the GATE namespace.

One will notice that all generated tags have an attribute called ‘gateld” under the names-
pace ‘http://www.gate.ac.uk’. The attribute is used when the document is read back in
GATE, in order to restore the annotation’s old ID. This feature is needed because it works
in close cooperation with another attribute under the same namespace, called ‘matches’.
This attribute indicates annotations/tags that refer the same entity!. They are under this
namespace because GATE is sensitive to them and treats them differently to all other ele-
ments with their attributes which fall under the general reading algorithm described at the
beginning of this section.

The ‘gateld” under GATE namespace is used to create an annotation which has as ID the
value indicated by this attribute. The ‘matches’ attribute is used to create an ArrayList in
which the items will be Integers, representing the ID of annotations that the current one
matches.

Ezxample:
If the text being processed is as follows:
<Person gate:gateld="23">John</Person> and <Person

gate:gateId="25" gate:matches="23;25;30">John Major</Person> are
the same person.

Tt’s not an XML entity but a information extraction named entity

102 Language Resources: Corpora, Documents and Annotations

What GATE does when it parses this text is it creates two annotations:

al.type = "Person"

al.ID = Integer(23)

al.start = <the start offset of
John>

al.end = <the end offset of John>
al.featureMap = {}

a2.type = "Person"

a2.ID = Integer(25)

a2.start = <the start offset

of John Major>

a2.end = <the end offset of John Major>

a2.featureMap = {matches=[Integer(23); Integer(25); Integer(30)]1}

Under GATE Embedded, this option is available by calling gate.Document’s toXml(Set
aSetContainingAnnotations) method. This method returns a string which is the XML
representation of the document on which the method was called. If called with null as
a parameter, then the method will attempt to restore only the original markup. If the
parameter is a set that contains annotations, then each annotation is tested against the

crossover restriction, and for those found to violate it, a warning will be issued and they will
be discarded.

In the next subsections we will show how this option applies to the other formats supported
by GATE.

5.5.3 HTML
Input

HTML documents are parsed by GATE using the NekoHTML parser. The documents are
read and created in GATE the same way as the XML documents.

The extensions associate with the HITTML reader are:

e htm

e html

The web server content type associate with html documents is: text/html.

http://people.apache.org/~andyc/neko/doc/html/

Language Resources: Corpora, Documents and Annotations 103

The magic numbers test searches inside the document for the HTML(<html) signature.There
are certain HTML documents that do not contain the HTML tag, so the magical numbers
test might not hold.

There is a certain degree of customization for HTML documents in that GATE introduces
new lines into the document’s text content in order to obtain a readable form. The annota-
tions will refer the pieces of text as described in the original document but there will be a
few extra new line characters inserted.

After reading H1, H2, H3, H4, H5, H6, TR, CENTER, LI, BR and DIV tags, GATE will
introduce a new line (NL) char into the text. After a TITLE tag it will introduce two NLs.
With P tags, GATE will introduce one NL at the beginning of the paragraph and one at
the end of the paragraph. All newly added NLs are not considered to be part of the text
contained by the tag.

Output

The ‘Save as XML’ option works exactly the same for all GATE’s documents so there is no
particular observation to be made for the HTML formats.

When attempting to preserve the original markup formatting, GATE will generate the doc-
ument in xhtml. The html document will look the same with any browser after processed
by GATE but it will be in another syntax.

5.5.4 SGML

Input

The SGML support in GATE is fairly light as there is no freely available Java SGML parser.
GATE uses a light converter attempting to transform the input SGML file into a well formed
XML. Because it does not make use of a DTD, the conversion might not be always good.
It is advisable to perform a SGML2XML conversion outside the system(using some other
specialized tools) before using the SGML document inside GATE.

The extensions associate with the SGML reader are:

e sgm

e sgml

The web server content type associate with xml documents is : text/sgmi.

There is no magic numbers test for SGML.

104 Language Resources: Corpora, Documents and Annotations

Output

When attempting to preserve the original markup formatting, GATE will generate the doc-
ument as XML because the real input of a SGML document inside GATE is an XML one.

5.5.5 Plain text

Input

When reading a plain text document, GATE attempts to detect its paragraphs and add
‘paragraph’ annotations to the document’s ‘Original markups’ annotation set. It does that
by detecting two consecutive NLs. The procedure works for both UNIX like or DOS like
text files.

Ezxample:

If the plain text read is as follows:

Paragraph 1. This text belongs to the first paragraph.

Paragraph 2. This text belongs to the second paragraph

then two ‘paragraph’ type annotation will be created in the ‘Original markups’ annotation
set (referring the first and second paragraphs) with an empty feature map.

The extensions associate with the plain text reader are:

e txt

o text

The web server content type associate with plain text documents is: text/plain.

There is no magic numbers test for plain text.

Output

When attempting to preserve the original markup formatting, GATE will dump XML
markup that surrounds the text refereed.

The procedure described above applies both for plain text and RTF documents.

Language Resources: Corpora, Documents and Annotations 105

5.5.6 RTF
Input

Accessing RTF documents is performed by using the Java’s RTF editor kit. It only extracts
the document’s text content from the RTF document.

The extension associate with the RTF reader is ‘rtf"”.
The web server content type associate with xml documents is : text/rtf.

The magic numbers test searches for {\\rtf1.

Output

Same as the plain tex output.

5.5.7 Email
Input

GATE is able to read email messages packed in one document (UNIX mailbox format). It
detects multiple messages inside such documents and for each message it creates annotations
for all the fields composing an e-mail, like date, from, to, subject, etc. The message’s body
is analyzed and a paragraph detection is performed (just like in the plain text case) . All
annotation created have as type the name of the e-mail’s fields and they are placed in the
Original markup annotation set.

Ezxample:

From someone@zzz.zzz.zzz Wed Sep 6 10:35:50 2000

Date: Wed, 6 Sep2000 10:35:49 +0100 (BST)

From: forenamel surname2 <someonel@yyy.yyy.xxx>

To: forename2 surname2 <someone2@ddd.dddd.dd.dd>

Subject: A subject

Message-ID: <Pine.SOL.3.91.1000906103251.26010A-100000@servername>

MIME-Version: 1.0
Content-Type: TEXT/PLAIN; charset=US-ASCII

106 Language Resources: Corpora, Documents and Annotations

This text belongs to the e-mail body....
This is a paragraph in the body of the e-mail

This is another paragraph.

GATE attempts to detect lines such as ‘ From someone@zzz.zzz.2zz Wed Sep 6 10:35:50 2000°
in the e-mail text. Those lines separate e-mail messages contained in one file. After that,
for each field in the e-mail message annotations are created as follows:

The annotation type will be the name of the field, the feature map will be empty and the
annotation will span from the end of the field until the end of the line containing the e-mail

field.

Ezxample:

al.type = "date" al spans between the two = ~. Date:” Wed,
6Sep2000 10:35:49 +0100 (BST)"

a2.type = "from"; a2 spans between the two = ~. From:~ forenamel
surname2 <someonel@yyy.yyy.xXxx>"

The extensions associated with the email reader are:

e cml
e cmail

e mail

The web server content type associate with plain text documents is: text/email.

The magic numbers test searches for keywords like Subject:,etc.

Output

Same as plain text output.

ANNIE: a Nearly-New Information Extraction System 107

5.6 XML Input/Output

Support for input from and output to XML is described in Section 5.5.2. In short:

e GATE will read any well-formed XML document (it does not attempt to validate XML
documents). Markup will by default be converted into native GATE format.

e GATE will write back into XML in one of two ways:

1. Preserving the original format and adding selected markup (for example to add
the results of some language analysis process to the document).

2. In GATE’s own XML serialisation format, which encodes all the data in a GATE
Document (as far as this is possible within a tree-structured paradigm — for 100%
non-lossy data storage use GATE’s RDBMS or binary serialisation facilities — see
Section 4.5).

When using GATE Embedded, object representations of XML documents such as DOM or
jDOM, or query and transformation languages such as X-Path or XSLT, may be used in parallel
with GATE’s own Document representation (gate.Document) without conflicts.

108 ANNIE: a Nearly-New Information Extraction System

Chapter 6

ANNIE: a Nearly-New Information
Extraction System

And so the time had passed predictably and soberly enough in work and routine
chores, and the events of the previous night from first to last had faded; and only
now that both their days’ work was over, the child asleep and no further distur-
bance anticipated, did the shadowy figures from the masked ball, the melancholy
stranger and the dominoes in red, revive; and those trivial encounters became
magically and painfully interfused with the treacherous illusion of missed oppor-
tunities. Innocent yet ominous questions and vague ambiguous answers passed
to and fro between them; and, as neither of them doubted the other’s absolute
candour, both felt the need for mild revenge. They exaggerated the extent to
which their masked partners had attracted them, made fun of the jealous stir-
rings the other revealed, and lied dismissively about their own. Yet this light
banter about the trivial adventures of the previous night led to more serious dis-
cussion of those hidden, scarcely admitted desires which are apt to raise dark and
perilous storms even in the purest, most transparent soul; and they talked about
those secret regions for which they felt hardly any longing, yet towards which the
irrational wings of fate might one day drive them, if only in their dreams. For
however much they might belong to one another heart and soul, they knew last
night was not the first time they had been stirred by a whiff of freedom, danger
and adventure.

Dream Story, Arthur Schnitzler, 1926 (pp. 4-5).

GATE was originally developed in the context of Information Extraction (IE) R&D, and IE
systems in many languages and shapes and sizes have been created using GATE with the
IE components that have been distributed with it (see [Maynard et al. 00] for descriptions
of some of these projects).!

!The principal architects of the IE systems in GATE version 1 were Robert Gaizauskas and Kevin
Humphreys. This work lives on in the LaSIE system. (A derivative of LaSIE was distributed with GATE

109

http://gate.ac.uk/ie/
http://www.dcs.shef.ac.uk/~robertg
http://nlp.shef.ac.uk/projects.html

110 ANNIE: a Nearly-New Information Extraction System

GATE is distributed with an IE system called ANNIE, A Nearly-New IE system (devel-
oped by Hamish Cunningham, Valentin Tablan, Diana Maynard, Kalina Bontcheva, Marin
Dimitrov and others). ANNIE relies on finite state algorithms and the JAPE language (see
Chapter 8).

ANNIE components form a pipeline which appears in figure 6.1. ANNIE components are

[(XML, PEI);ISEH ?él&im atnaﬂ,)} ANNIE, LabIE
IE modules

Input:
UEL or text

JAPE NE

. Character Setnattic FAFTHTEAT
Umco_de Class Sequence Tagger P
Lot Sexp l Cascade

Flex Lezical Mame NOTE: square boxes are

. ex Lexic unded ones are
Lemmmat : processes, 1o

e Analysis Grammar] Iatcher data.

F3 Gazetteer Liste Buchart ; AV Prolog
Lookup Parser Gratrimar

I 1

HKl/Prolog
Sent_enc:e JAPE Zentence Dislnt - W
Splitter Patterns Estraction Rules

I

. '

HipHep Brill Rules L’ GATE Docurment

Tagger Lexicon s WL dueap of
utpt. | NE/TE/TR/ST Annotations

Figure 6.1: ANNIE and LaSIE

included with GATE (though the linguistic resources they rely on are generally more simple
than the ones we use in-house). The rest of this chapter describes these components.

6.1 Document Reset

The document reset resource enables the document to be reset to its original state, by remov-
ing all the annotation sets and their contents, apart from the one containing the document
format analysis (Original Markups). An optional parameter, keepOriginalMarkupsAS, al-
lows users to decide whether to keep the Original Markups AS or not while reseting the
document. The parameter annotationTypes can be used to specify a list of annotation
types to remove from all the sets instead of the whole sets.

version 1 under the name VIE, a Vanilla IE system.)

ANNIE: a Nearly-New Information Extraction System 111

Alternatively, if the parameter setsToRemove is not empty, the other parameters except
annotationTypes are ignored and only the annotation sets specified in this list will be
removed. If annotationTypes is also specified, only those annotation types in the specified
sets are removed. In order to specify that you want to reset the default annotation set, just
click the ”Add” button without entering a name — this will add <null> which denotes the
default annotation set. This resource is normally added to the beginning of an application,
so that a document is reset before an application is rerun on that document.

6.2 Tokeniser

The tokeniser splits the text into very simple tokens such as numbers, punctuation and words
of different types. For example, we distinguish between words in uppercase and lowercase,
and between certain types of punctuation. The aim is to limit the work of the tokeniser
to maximise efficiency, and enable greater flexibility by placing the burden on the grammar
rules, which are more adaptable.

6.2.1 Tokeniser Rules

A rule has a left hand side (LHS) and a right hand side (RHS). The LHS is a regular
expression which has to be matched on the input; the RHS describes the annotations to be
added to the AnnotationSet. The LHS is separated from the RHS by ‘>’. The following
operators can be used on the LHS:

| (or)

* (0 or more occurrences)
? (0 or 1 occurrences)

+ (1 or more occurrences)

The RHS uses ;" as a separator, and has the following format:

{LHS} > {Annotation typel};{attributel}={valuel};...;{attribute
n}t={value n}

Details about the primitive constructs available are given in the tokeniser file (DefaultTo-
keniser.Rules).

The following tokeniser rule is for a word beginning with a single capital letter:

‘UPPERCASE_LETTER’ ‘LOWERCASE_LETTER’* >
Token;orth=upperInitial;kind=word;

112 ANNIE: a Nearly-New Information Extraction System

It states that the sequence must begin with an uppercase letter, followed by zero or more
lowercase letters. This sequence will then be annotated as type ‘Token’. The attribute ‘orth’
(orthography) has the value ‘upperlnitial’; the attribute ‘kind’ has the value ‘word’.

6.2.2 Token Types

In the default set of rules, the following kinds of Token and SpaceToken are possible:

Word

A word is defined as any set of contiguous upper or lowercase letters, including a hyphen
(but no other forms of punctuation). A word also has the attribute ‘orth’, for which four
values are defined:

e upperlnitial - initial letter is uppercase, rest are lowercase
e allCaps - all uppercase letters
e lowerCase - all lowercase letters

e mixedCaps - any mixture of upper and lowercase letters not included in the above
categories

Number

A number is defined as any combination of consecutive digits. There are no subdivisions of
numbers.

Symbol

Two types of symbol are defined: currency symbol (e.g. ‘$’, ‘£) and symbol (e.g. ‘&’, ‘™).
These are represented by any number of consecutive currency or other symbols (respectively).

Punctuation

Three types of punctuation are defined: start_punctuation (e.g. ‘(’), end_punctuation (e.g.
‘)’), and other punctuation (e.g. ‘:"). Each punctuation symbol is a separate token.

ANNIE: a Nearly-New Information Extraction System 113

SpaceToken

White spaces are divided into two types of SpaceToken - space and control - according to
whether they are pure space characters or control characters. Any contiguous (and homoge-
neous) set of space or control characters is defined as a SpaceToken.

The above description applies to the default tokeniser. However, alternative tokenisers can
be created if necessary. The choice of tokeniser is then determined at the time of text
processing.

6.2.3 English Tokeniser

The English Tokeniser is a processing resource that comprises a normal tokeniser and a JAPE
transducer (see Chapter 8). The transducer has the role of adapting the generic output of
the tokeniser to the requirements of the English part-of-speech tagger. One such adaptation
is the joining together in one token of constructs like “ ’30s”, “ 'Cause”, “ 'em”, “ 'N”, *
S gt T, 0, <, 'm”, ¢ re”, “Otil”, ¢ ve”, ete. Another task of the JAPE
transducer is to convert negative constructs like “don’t” from three tokens (“don”, “’ “ and
“t”) into two tokens (“do” and “n’t”).

The English Tokeniser should always be used on English texts that need to be processed
afterwards by the POS Tagger.

6.3 Gazetteer

The role of the gazetteer is to identify entity names in the text based on lists. The ANNIE
gazetteer is described here, and also covered in Chapter 13 in Section 13.2.

The gazetteer lists used are plain text files, with one entry per line. Each list represents a
set of names, such as names of cities, organisations, days of the week, etc.

Below is a small section of the list for units of currency:

Ecu

European Currency Units
FFr

Fr

German mark

German marks

New Taiwan dollar

New Taiwan dollars

NT dollar

114 ANNIE: a Nearly-New Information Extraction System

NT dollars

An index file (lists.def) is used to access these lists; for each list, a major type is specified
and, optionally, a minor type 2. In the example below, the first column refers to the list
name, the second column to the major type, and the third to the minor type. These lists are
compiled into finite state machines. Any text tokens that are matched by these machines
will be annotated with features specifying the major and minor types. Grammar rules then
specify the types to be identified in particular circumstances. Each gazetteer list should
reside in the same directory as the index file.

currency_prefix.lst:currency_unit:pre_amount
currency_unit.lst:currency_unit:post_amount
date.lst:date:specific

day.lst:date:day

So, for example, if a specific day needs to be identified, the minor type ‘day’ should be
specified in the grammar, in order to match only information about specific days; if any kind
of date needs to be identified,the major type ‘date’ should be specified, to enable tokens
annotated with any information about dates to be identified. More information about this
can be found in the following section.

In addition, the gazetteer allows arbitrary feature values to be associated with particular
entries in a single list. ANNIE does not use this capability, but to enable it for your own
gazetteers, set the optional gazetteerFeatureSeparator parameter to a single character
(or an escape sequence such as \t or \uNNNN) when creating a gazetteer. In this mode, each
line in a .1st file can have feature values specified, for example, with the following entry in
the index file:

software_company.lst:company:software
the following software_company.1lst:

Red Hat&stockSymbol=RHAT
Apple Computer&abbrev=Apple&stockSymbol=AAPL
Microsoft&abbrev=MS&stockSymbol=MSFT

and gazetteerFeatureSeparator set to &, the gazetteer will annotate Red Hat as a Lookup
with features majorType=company, minorType=software and stockSymbol=RHAT. Note that
you do not have to provide the same features for every line in the file, in particular it is
possible to provide extra features for some lines in the list but not others.

2it is also possible to include a language in the same way, where lists for different languages are used,
though ANNIE is only concerned with monolingual recognition

ANNIE: a Nearly-New Information Extraction System 115

Here is a full list of the parameters used by the Default Gazetteer:

Init-time parameters

listsURL A URL pointing to the index file (usually lists.def) that contains the list of pattern
lists.

encoding The character encoding to be used while reading the pattern lists.

gazetteerFeatureSeparator The character used to add arbitrary features to gazetteer
entries. See above for an example.

caseSensitive Should the gazetteer be case sensitive during matching.
Run-time parameters

document The document to be processed.

annotationSetName The name for annotation set where the resulting Lookup annotations
will be created.

wholeWordsOnly Should the gazetteer only match whole words? If set to true, a string
segment in the input document will only be matched if it is bordered by characters
that are not letters, non spacing marks, or combining spacing marks (as identified by
the Unicode standard).

longestMatchOnly Should the gazetteer only match the longest possible string starting
from any position. This parameter is only relevant when the list of lookups contains
proper prefixes of other entries (e.g when both ‘Dell” and ‘Dell Europe’ are in the lists).
The default behaviour (when this parameter is set to true) is to only match the longest
entry, ‘Dell Europe’ in this example. This is the default GATE gazetteer behaviour
since version 2.0. Setting this parameter to false will cause the gazetteer to match
all possible prefixes.

6.4 Sentence Splitter

The sentence splitter is a cascade of finite-state transducers which segments the text into
sentences. This module is required for the tagger. The splitter uses a gazetteer list of
abbreviations to help distinguish sentence-marking full stops from other kinds.

Each sentence is annotated with the type Sentence. Each sentence break (such as a full stop)

[N4

is also given a ‘Split’ annotation. This has several possible types: ‘., ‘punctuation’, ‘CR’ (a
line break) or ‘multi’ (a series of punctuation marks such as ‘717!’

116 ANNIE: a Nearly-New Information Extraction System

The sentence splitter is domain and application-independent.

There is an alternative ruleset for the Sentence Splitter which considers newlines and carriage
returns differently. In general this version should be used when a new line on the page
indicates a new sentence). To use this alternative version, simply load the main-single-
nl.jape from the default location instead of main.jape (the default file) when asked to select
the location of the grammar file to be used.

6.5 RegEx Sentence Splitter

The RegEx sentence splitter is an alternative to the standard ANNIE Sentence Splitter.
Its main aim is to address some performance issues identified in the JAPE-based splitter,
mainly do to with improving the execution time and robustness, especially when faced with
irregular input.

As its name suggests, the RegEx splitter is based on regular expressions, using the default
Java implementation.

The new splitter is configured by three files containing (Java style, see http://
java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html) regular expres-
sions, one regex per line. The three different files encode patterns for:

internal splits sentence splits that are part of the sentence, such as sentence ending punc-
tuation;

external splits sentence splits that are NOT part of the sentence, such as 2 consecutive
new lines;

non splits text fragments that might be seen as splits but they should be ignored (such as

full stops occurring inside abbreviations).

The new splitter comes with an initial set of patterns that try to emulate the behaviour of
the original splitter (apart from the situations where the original one was obviously wrong,
like not allowing sentences to start with a number).

Here is a full list of the parameters used by the RegEx Sentence Splitter:

Init-time parameters

encoding The character encoding to be used while reading the pattern lists.
externalSplitListURL URL for the file containing the list of external split patterns;

internalSplitListURL URL for the file containing the list of internal split patterns;

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

ANNIE: a Nearly-New Information Extraction System 117

nonSplitListURL URL for the file containing the list of non split patterns;
Run-time parameters

document The document to be processed.

outputASName The name for annotation set where the resulting Split and Sentence
annotations will be created.

6.6 Part of Speech Tagger

The tagger [Hepple 00] is a modified version of the Brill tagger, which produces a part-
of-speech tag as an annotation on each word or symbol. The list of tags used is given in
Appendix G. The tagger uses a default lexicon and ruleset (the result of training on a large
corpus taken from the Wall Street Journal). Both of these can be modified manually if
necessary. Two additional lexicons exist - one for texts in all uppercase (lexicon_cap), and
one for texts in all lowercase (lexicon_lower). To use these, the default lexicon should be
replaced with the appropriate lexicon at load time. The default ruleset should still be used
in this case.

The ANNIE Part-of-Speech tagger requires the following parameters.

e encoding - encoding to be used for reading rules and lexicons (init-time)
e lexiconURL - The URL for the lexicon file (init-time)

e rulesURL - The URL for the ruleset file (init-time)

e document - The document to be processed (run-time)

e inputASName - The name of the annotation set used for input (run-time)

e outputASName - The name of the annotation set used for output (run-time). This is
an optional parameter. If user does not provide any value, new annotations are created
under the default annotation set.

e baseTokenAnnotationType - The name of the annotation type that refers to Tokens in
a document (run-time, default = Token)

e baseSentenceAnnotationType - The name of the annotation type that refers to Sen-
tences in a document (run-time, default = Sentences)

e outputAnnotationType - POS tags are added as category features on the annotations
of type ‘outputAnnotationType’ (run-time, default = Token)

118 ANNIE: a Nearly-New Information Extraction System

e failOnMissingInput Annotations - if set to false, the PR will not fail with an Execu-
tionException if no input Annotations are found and instead only log a single warning
message per session and a debug message per document that has no input annotations
(run-time, default = true).

If - (inputASName == outputASName) AND (outputAnnotationType == baseTokenAn-
notationType)

then - New features are added on existing annotations of type ‘baseTokenAnnotationType’.

otherwise - Tagger searches for the annotation of type ‘outputAnnotationType’ under the
‘outputASName’ annotation set that has the same offsets as that of the annotation with
type ‘baseTokenAnnotationType’. If it succeeds, it adds new feature on a found annota-
tion, and otherwise, it creates a new annotation of type ‘outputAnnotationType’ under the
‘outputASName’ annotation set.

6.7 Semantic Tagger

ANNIE’s semantic tagger is based on the JAPE language — see Chapter 8. It contains rules
which act on annotations assigned in earlier phases, in order to produce outputs of annotated
entities.

6.8 Orthographic Coreference (OrthoMatcher)

(Note: this component was previously known as a ‘NameMatcher’.)

The Orthomatcher module adds identity relations between named entities found by the
semantic tagger, in order to perform coreference. It does not find new named entities as
such, but it may assign a type to an unclassified proper name, using the type of a matching
name.

The matching rules are only invoked if the names being compared are both of the same type,
i.e. both already tagged as (say) organisations, or if one of them is classified as ‘unknown’.
This prevents a previously classified name from being recategorised.

6.8.1 GATE Interface

Input — entity annotations, with an id attribute.

Output — matches attributes added to the existing entity annotations.

ANNIE: a Nearly-New Information Extraction System 119

6.8.2 Resources

A lookup table of aliases is used to record non-matching strings which represent the same
entity, e.g. ‘IBM’ and ‘Big Blue’, ‘Coca-Cola’” and ‘Coke’. There is also a table of spurious
matches, i.e. matching strings which do not represent the same entity, e.g. ‘BT Wireless” and
‘BT Cellnet’ (which are two different organizations). The list of tables to be used is a load
time parameter of the orthomatcher: a default list is set but can be changed as necessary.

6.8.3 Processing

The wrapper builds an array of the strings, types and IDs of all name annotations, which is
then passed to a string comparison function for pairwise comparisons of all entries.

6.9 Pronominal Coreference

The pronominal coreference module performs anaphora resolution using the JAPE grammar
formalism. Note that this module is not automatically loaded with the other ANNIE mod-
ules, but can be loaded separately as a Processing Resource. The main module consists of
three submodules:

e quoted text module

e pleonastic it module

e pronominal resolution module
The first two modules are helper submodules for the pronominal one, because they do not
perform anything related to coreference resolution except the location of quoted fragments

and pleonastic it occurrences in text. They generate temporary annotations which are used
by the pronominal submodule (such temporary annotations are removed later).

The main coreference module can operate successfully only if all ANNIE modules were
already executed. The module depends on the following annotations created from the re-
spective ANNIE modules:

Token (English Tokenizer)

Sentence (Sentence Splitter)

Split (Sentence Splitter)

Location (NE Transducer, OrthoMatcher)

120 ANNIE: a Nearly-New Information Extraction System

e Person (NE Transducer, OrthoMatcher)

e Organization (NE Transducer, OrthoMatcher)

For each pronoun (anaphor) the coreference module generates an annotation of type ‘Coref-
erence’ containing two features:

e antecedent offset - this is the offset of the starting node for the annotation (entity)
which is proposed as the antecedent, or null if no antecedent can be proposed.

e matches - this is a list of annotation IDs that comprise the coreference chain comprising
this anaphor/antecedent pair.

6.9.1 Quoted Speech Submodule

The quoted speech submodule identifies quoted fragments in the text being analysed. The
identified fragments are used by the pronominal coreference submodule for the proper res-
olution of pronouns such as I, me, my, etc. which appear in quoted speech fragments. The
module produces ‘Quoted Text’ annotations.

The submodule itself is a JAPE transducer which loads a JAPE grammar and builds an
FSM over it. The FSM is intended to match the quoted fragments and generate appropriate
annotations that will be used later by the pronominal module.

The JAPE grammar consists of only four rules, which create temporary annotations for all
punctuation marks that may enclose quoted speech, such as ”, 7, *, etc. These rules then
try to identify fragments enclosed by such punctuation. Finally all temporary annotations
generated during the processing, except the ones of type ‘Quoted Text’, are removed (because

no other module will need them later).

6.9.2 Pleonastic It Submodule

The pleonastic it submodule matches pleonastic occurrences of ‘it’. Similar to the quoted
speech submodule, it is a JAPE transducer operating with a grammar containing patterns
that match the most commonly observed pleonastic it constructs.

6.9.3 Pronominal Resolution Submodule

The main functionality of the coreference resolution module is in the pronominal resolution
submodule. This uses the result from the execution of the quoted speech and pleonastic it
submodules. The module works according to the following algorithm:

ANNIE: a Nearly-New Information Extraction System 121

e Preprocess the current document. This step locates the annotations that the submod-
ule need (such as Sentence, Token, Person, etc.) and prepares the appropriate data
structures for them.

e For each pronoun do the following:

— inspect the proper appropriate context for all candidate antecedents for this kind
of pronoun;

— choose the best antecedent (if any);

e Create the coreference chains from the individual anaphor/antecedent pairs and the
coreference information supplied by the OrthoMatcher (this step is performed from the
main coreference module).

6.9.4 Detailed Description of the Algorithm

Full details of the pronominal coreference algorithm are as follows.

Preprocessing
The preprocessing task includes the following subtasks:

e Identifying the sentences in the document being processed. The sentences are identified
with the help of the Sentence annotations generated from the Sentence Splitter. For
each sentence a data structure is prepared that contains three lists. The lists contain
the annotations for the person/organization/location named entities appearing in the
sentence. The named entities in the sentence are identified with the help of the Person,
Location and Organization annotations that are already generated from the Named
Entity Transducer and the OrthoMatcher.

e The gender of each person in the sentence is identified and stored in a global data
structure. It is possible that the gender information is missing for some entities - for
example if only the person family name is observed then the Named Entity transducer
will be unable to deduce the gender. In such cases the list with the matching entities
generated by the OrhtoMatcher is inspected and if some of the orthographic matches
contains gender information it is assigned to the entity being processed.

e The identified pleonastic it occurrences are stored in a separate list. The ‘Pleonastic
It’ annotations generated from the pleonastic submodule are used for the task.

e For each quoted text fragment, identified by the quoted text submodule, a special
structure is created that contains the persons and the 3rd person singular pronouns
such as ‘he’ and ‘she’ that appear in the sentence containing the quoted text, but not
in the quoted text span (i.e. the ones preceding and succeeding the quote).

122 ANNIE: a Nearly-New Information Extraction System

Pronoun Resolution

This task includes the following subtasks:

Retrieving all the pronouns in the document. Pronouns are represented as annotations of
type ‘Token’ with feature ‘category’ having value ‘PRP$” or ‘PRP’. The former classifies
possessive adjectives such as my, your, etc. and the latter classifies personal, reflexive etc.
pronouns. The two types of pronouns are combined in one list and sorted according to their
offset in the text.

For each pronoun in the list the following actions are performed:

4

e If the pronoun is ‘it’, then the module performs a check to determine if this is a
pleonastic occurrence. If it is, then no further attempt for resolution is made.

e The proper context is determined. The context size is expressed in the number of
sentences it will contain. The context always includes the current sentence (the one
containing the pronoun), the preceding sentence and zero or more preceding sentences.

e Depending on the type of pronoun, a set of candidate antecedents is proposed. The
candidate set includes the named entities that are compatible with this pronoun. For
example if the current pronoun is she then only the Person annotations with ‘gender’
feature equal to ‘female’ or ‘unknown’ will be considered as candidates.

e From all candidates, one is chosen according to evaluation criteria specific for the
pronoun.

Coreference Chain Generation

This step is actually performed by the main module. After executing each of the submodules
on the current document, the coreference module follows the steps:

e Retrieves the anaphor/antecedent pairs generated from them.

e For each pair, the orthographic matches (if any) of the antecedent entity is retrieved
and then extended with the anaphor of the pair (i.e. the pronoun). The result is
the coreference chain for the entity. The coreference chain contains the IDs of the
annotations (entities) that co-refer.

e A new Coreference annotation is created for each chain. The annotation contains a
single feature ‘matches’ whose value is the coreference chain (the list with IDs). The
annotations are exported in a pre-specified annotation set.

ANNIE: a Nearly-New Information Extraction System 123

The resolution of she, her, her$, he, him, his, herself and himself are similar because an
analysis of a corpus showed that these pronouns are related to their antecedents in a similar
manner. The characteristics of the resolution process are:

e Context inspected is not very big - cases where the antecedent is found more than 3
sentences back from the anaphor are rare.

e Recency factor is heavily used - the candidate antecedents that appear closer to the
anaphor in the text are scored better.

e Anaphora have higher priority than cataphora. If there is an anaphoric candidate and
a cataphoric one, then the anaphoric one is preferred, even if the recency factor scores
the cataphoric candidate better.

The resolution process performs the following steps:

e Inspect the context of the anaphor for candidate antecedents. Every Person annotation
is consider to be a candidate. Cases where she/her refers to inanimate entity (ship for
example) are not handled.

e For each candidate perform a gender compatibility check - only candidates having
‘gender’ feature equal to ‘unknown’ or compatible with the pronoun are considered for
further evaluation.

e Evaluate each candidate with the best candidate so far. If the two candidates are
anaphoric for the pronoun then choose the one that appears closer. The same holds
for the case where the two candidates are cataphoric relative to the pronoun. If one is
anaphoric and the other is cataphoric then choose the former, even if the latter appears
closer to the pronoun.

Resolution of ‘it’, ‘its’, ‘itself’

This set of pronouns also shares many common characteristics. The resolution process con-
tains certain differences with the one for the previous set of pronouns. Successful resolution
for it, its, itself is more difficult because of the following factors:

e There is no gender compatibility restriction. In the case in which there are several
candidates in the context, the gender compatibility restriction is very useful for re-
jecting some of the candidates. When no such restriction exists, and with the lack of
any syntactic or ontological information about the entities in the context, the recency
factor plays the major role in choosing the best antecedent.

e The number of nominal antecedents (i.e. entities that are not referred by name) is
much higher compared to the number of such antecedents for she, he, etc. In this case
trying to find an antecedent only amongst named entities degrades the precision a lot.

124

ANNIE: a Nearly-New Information Extraction System

Resolution of ‘I’, ‘me’, ‘my’, ‘myself’

Resolution of these pronouns is dependent on the work of the quoted speech submodule.
One important difference from the resolution process of other pronouns is that the context
is not measured in sentences but depends solely on the quote span. Another difference is
that the context is not contiguous - the quoted fragment itself is excluded from the context,
because it is unlikely that an antecedent for I, me, etc. appears there. The context itself
consists of:

the part of the sentence where the quoted fragment originates, that is not contained
in the quote - i.e. the text prior to the quote;

the part of the sentence where the quoted fragment ends, that is not contained in the
quote - i.e. the text following the quote;

the part of the sentence preceding the sentence where the quote originates, which is
not included in other quote.

It is worth noting that contrary to other pronouns, the antecedent for I, me, my and myself is
most often cataphoric or if anaphoric it is not in the same sentence with the quoted fragment.

The resolution algorithm consists of the following steps:

Locate the quoted fragment description that contains the pronoun. If the pronoun is
not contained in any fragment then return without proposing an antecedent.

Inspect the context for the quoted fragment (as defined above) for candidate an-
tecedents. Candidates are considered annotations of type Pronoun or annotations
of type Token with features category = ‘PRP’, string = ‘she’ or category = ‘PRP’,
string = ‘he’.

Try to locate a candidate in the text succeeding the quoted fragment (first pattern).
If more than one candidate is present, choose the closest to the end of the quote. If a
candidate is found then propose it as antecedent and exit.

Try to locate a candidate in the text preceding the quoted fragment (third pattern).
Choose the closest one to the beginning of the quote. If found then set as antecedent
and exit.

Try to locate antecedents in the unquoted part of the sentence preceding the sentence
where the quote starts (second pattern). Give preference to the one closest to the end
of the quote (if any) in the preceding sentence or closest to the sentence beginning.

ANNIE: a Nearly-New Information Extraction System 125

6.10 A Walk-Through Example

Let us take an example of a 3-stage procedure using the tokeniser, gazetteer and named-
entity grammar. Suppose we wish to recognise the phrase ‘800,000 US dollars’ as an entity
of type ‘Number’, with the feature ‘money’.

First of all, we give an example of a grammar rule (and corresponding macros) for money,
which would recognise this type of pattern.

Macro: MILLION_BILLION

({Token.string == "m"}|
{Token.string == "million"}|
{Token.string == "b"}|
{Token.string == "billion"}
)
Macro: AMOUNT_NUMBER
({Token.kind == number}
(({Token.string == ","}|
{Token.string == "."})

{Token.kind == number})*
(({SpaceToken.kind == space})?
(MILLION_BILLION)?)

)

Rule: Moneyl
// e.g. 30 pounds

(
(AMOUNT _NUMBER)
(SpaceToken.kind == space)?
({Lookup.majorType == currency_unit})

)

:money -—->

:money.Number = {kind = "money", rule = "Moneyl"}

6.10.1 Step 1 - Tokenisation

The tokeniser separates this phrase into the following tokens. In general, a word is comprised
of any number of letters of either case, including a hyphen, but nothing else; a number is
composed of any sequence of digits; punctuation is recognised individually (each character
is a separate token), and any number of consecutive spaces and/or control characters are
recognised as a single spacetoken.

126 ANNIE: a Nearly-New Information Extraction System

Token, string ‘800°, kind = number, length = 3

Token, string “,”, kind = punctuation, length = 1

Token, string ‘000’, kind = number, length = 3

SpaceToken, string = ¢ ’, kind = space, length =1

Token, string = ‘US’, kind = word, length = 2, orth = allCaps
SpaceToken, string = ¢ ’, kind = space, length = 1

Token, string = ‘dollars’, kind = word, length = 7, orth = lowercase

6.10.2 Step 2 - List Lookup

The gazetteer lists are then searched to find all occurrences of matching words in the text.
It finds the following match for the string ‘US dollars’:

Lookup, minorType = post_amount, majorType = currency_unit

6.10.3 Step 3 - Grammar Rules

The grammar rule for money is then invoked. The macro MILLION_BILLION recognises
any of the strings ‘m’, ‘million’; ‘b’ ‘billion’. Since none of these exist in the text, it passes
onto the next macro. The AMOUNT_NUMBER macro recognises a number, optionally
followed by any number of sequences of the form‘dot or comma plus number’, followed
by an optional space and an optional MILLION_BILLION. In this case, ‘800,000” will be
recognised. Finally, the rule Moneyl is invoked. This recognises the string identified by the
AMOUNT_NUMBER macro, followed by an optional space, followed by a unit of currency
(as determined by the gazetteer). In this case, ‘US dollars’ has been identified as a currency
unit, so the rule Money1 recognises the entire string ‘800,000 US dollars’. Following the rule,
it will be annotated as a Number entity of type Money:

Number, kind = money, rule = Moneyl

Part 11

GATE for Advanced Users

127

Chapter 7

GATE Embedded

7.1 Quick Start with GATE Embedded

Embedding GATE-based language processing in other applications using GATE Embedded
(the GATE API) is straightforward:

e add $GATE_HOME/bin/gate.jar and the JAR files in $GATE_HOME/1ib to the Java
CLASSPATH ($GATE_HOME is the GATE root directory)

e tell Java that the GATE Unicode Kit is an extension:
-Djava.ext.dirs=$GATE_HOME/1lib/ext
N.B. This is only necessary for GUI applications that need to support Unicode text

input; other applications such as command line or web applications don’t generally
need GUK.

e initialise GATE with gate.Gate.init();

e program to the framework API.

For example, this code will create the ANNIE extraction system:

// initialise the GATE library
Gate.init ();

// load ANNIE as an application from a gapp file
SerialAnalyserController controller = (SerialAnalyserController)
PersistenceManager.loadObjectFromFile (new File(new File(
Gate.getPluginsHome (), ANNIEConstants.PLUGIN_DIR),
ANNIEConstants .DEFAULT_FILE));

129

oo ~ o v - W [V -

130 GATE Embedded

If you want to use resources from any plugins, you need to load the plugins before calling
createResource:

1 Gate.init ();

2

3 // meed Tools plugin for the Morphological analyser
4 Gate.getCreoleRegister (). registerDirectories(

5 new File(Gate.getPluginsHome (), "Tools").toURL ()
6)

7

8

9

10 ProcessingResource morpher = (ProcessingResource)

Factory.createResource("gate.creole.morph.Morph");

o
[,

Instead of creating your processing resources individually using the Factory, you can create
your application in GATE Developer, save it using the ‘save application state’ option (see
Section 3.8.3), and then load the saved state from your code. This will automatically reload
any plugins that were loaded when the state was saved, you do not need to load them
manually.

Gate.init ();

CorpusController controller = (CorpusController)
PersistenceManager.loadObjectFromFile (new File("savedState.xgapp"));

U e W N =

// loadObjectFromUrl is also available
There are many examples of using GATE Embedded available at http://gate.ac.uk /wiki/code-

repository/.

7.2 Resource Management in GATE Embedded

As outlined earlier, GATE defines three different types of resources:

Language Resources : (LRs) entities that hold linguistic data.
Processing Resources : (PRs) entities that process data.

Visual Resources : (VRs) components used for building graphical interfaces.

These resources are collectively named CREOLE! resources.

All CREOLE resources have some associated meta-data in the form of an entry in a special
XML file named creole.xml. The most important role of that meta-data is to specify the set

LCREOLE stands for Collection of REusable Objects for Language Engineering

http://gate.ac.uk/wiki/code-repository/
http://gate.ac.uk/wiki/code-repository/

GATE Embedded 131

of parameters that a resource understands, which of them are required and which not, if they
have default values and what those are. The valid parameters for a resource are described
in the resource’s section of its creole.xml file or in Java annotations on the resource class
— see Section 4.7.

All resource types have creation-time parameters that are used during the initialisation
phase. Processing Resources also have run-time parameters that get used during execution
(see Section 7.5 for more details).

Controllers are used to define GATE applications and have the role of controlling the
execution flow (see Section 7.6 for more details).

This section describes how to create and delete CREOLE resources as objects in a running
Java virtual machine. This process involves using GATE’s Factory class?, and, in the case
of LRs, may also involve using a DataStore.

CREOLE resources are Java Beans; creation of a resource object involves using a default
constructor, then setting parameters on the bean, then calling an init() method. The
Factory takes care of all this, makes sure that the GATE Developer GUI is told about what
is happening (when GUI components exist at runtime), and also takes care of restoring LRs
from DataStores. A programmer using GATE Embedded should never call the
constructor of a resource: always use the Factory!

Creating a resource involves providing the following information:

fully qualified class name for the resource. This is the only required value. For
all the rest, defaults will be used if actual values are not provided.

values for the creation time parameters.!

initial values for resource features.” For an explanation on features see Section 7.4.2.

a name for the new resource;

T Parameters and features need to be provided in the form of a GATE Feature Map which is
essentially a java Map (java.util.Map) implementation, see Section 7.4.2 for more details
on Feature Maps.

Creating a resource via the Factory involves passing values for any create-time parameters
that require setting to the Factory’s createResource method. If no parameters are passed,
the defaults are used. So, for example, the following code creates a default ANNIE part-of-
speech tagger:

1 Gate.getCreoleRegister (). registerDirectories(new File(

2 Gate.getPluginsHome (), ANNIEConstants.PLUGIN_DIR).toURI().toURL());
3 FeatureMap params = Factory.newFeatureMap(); //empty map:default params

2Fully qualified name: gate.Factory

132 GATE Embedded

4 ProcessingResource tagger = (ProcessingResource)
5 Factory.createResource ("gate.creole.P0STagger", params);

Note that if the resource created here had any parameters that were both mandatory and
had no default value, the createResource call would throw an exception. In this case, all
the information needed to create a tagger is available in default values given in the tagger’s
XML definition (in plugins/ANNIE/creole.xml):

<RESOURCE>
<NAME>ANNIE POS Tagger</NAME>
<COMMENT>Mark Hepple’s Brill-style POS tagger</COMMENT>
<CLASS>gate.creole.P0STagger</CLASS>
<PARAMETER NAME="document"
COMMENT="The document to be processed"
RUNTIME="true">gate.Document</PARAMETER>

<PARAMETER NAME="rulesURL" DEFAULT="resources/heptag/ruleset"
COMMENT="The URL for the ruleset file"
OPTIONAL="true">java.net.URL</PARAMETER>
</RESQURCE>

Here the two parameters shown are either ‘runtime’ parameters, which are set before a PR is
executed, or have a default value (in this case the default rules file is distributed with GATE
itself).

When creating a Document, however, the URL of the source for the document must be
provided?. For example:

1 URL u = new URL("http://gate.ac.uk/hamish/");

2 FeatureMap params = Factory.newFeatureMap();
3 params.put ("sourceUrl", u);
4
5

Document doc = (Document)
Factory.createResource("gate.corpora.DocumentImpl", params);

Note that the document created here is transient: when you quit the JVM the document
will no longer exist. If you want the document to be persistent, you need to store it in a
DataStore (see Section 7.4.5).

Apart from createResource() methods with different signatures, Factory also provides
some shortcuts for common operations, listed in table 7.1.

GATE maintains various data structures that allow the retrieval of loaded resources. When a
resource is no longer required, it needs to be removed from those structures in order to remove
all references to it, thus making it a candidate for garbage collection. This is achieved using

3 Alternatively a string giving the document source may be provided.

GATE Embedded 133

Method Purpose

newFeatureMap () Creates a new Feature Map (as used
in the example above).
newDocument (String content) | Creates a new GATE Document
starting from a String value that will
be used to generate the document
content.

newDocument (URL sourceUrl) Creates a new GATE Document us-
ing the text pointed by an URL to
generate the document content.

newDocument (URL sourceUrl, Same as above but allows the spec-

String encoding) ification of an encoding to be used
while downloading the document
content.

newCorpus(String name) creates a new GATE Corpus with a

specified name.

Table 7.1: Factory Operations

the
deleteResource(Resource res) method on Factory.

Simply removing all references to a resource from the user code will NOT be enough to make
the resource collect-able. Not calling
Factory.deleteResource() will lead to memory leaks!

7.3 Using CREOLE Plugins

As shown in the examples above, in order to use a CREOLE resource the relevant CREOLE
plugin must be loaded. Processing Resources, Visual Resources and Language Resources
other than Document, Corpus and DataStore all require that the appropriate plugin is first
loaded. When using Document, Corpus or DataStore, you do not need to first load a plugin.
The following API calls listed in table 7.2 are relevant to working with CREOLE plugins.

7.4 Language Resources

This section describes the implementation of documents and corpora in GATE.

134

GATE Embedded

Class gate.Gate

Method

Purpose

public static void addKnown-
Plugin (URL pluginURL)

adds the plugin to the list of known
plugins.

public static void remove-
KnownPlugin (URL pluginURL)

tells the system to ‘forget’ about one
previously known directory. If the
specified directory was loaded, it will
be unloaded as well - i.e. all the
metadata relating to resources de-
fined by this directory will be re-
moved from memory.

public static void addAu-
toloadPlugin (URL pluginUrl)

adds a new directory to the list of
plugins that are loaded automatically
at start-up.

public static void removeAu-
toloadPlugin (URL pluginURL)

tells the system to remove a plugin
URL from the list of plugins that
are loaded automatically at system
start-up. This will be reflected in the
user’s configuration data file.

Class gate.CreoleRegister

public void registerDirecto-
ries (URL directoryUrl)

loads a new CREOLE directory. The
new plugin is added to the list of
known plugins if not already there.

public void removeDirec-
tory (URL directory)

unloads a loaded CREOLE plugin.

Table 7.2: Calls Relevant to CREOLE Plugins

GATE Embedded 135

7.4.1 GATE Documents

Documents are modelled as content plus annotations (see Section 7.4.4) plus features (see
Section 7.4.2).

The content of a document can be any implementation of the
gate.DocumentContent interface; the features are <attribute, value> pairs stored a Feature
Map. Attributes are String values while the values can be any Java object.

The annotations are grouped in sets (see section 7.4.3). A document has a default (anony-
mous) annotations set and any number of named annotations sets.

Documents are defined by the gate.Document interface and there is also a provided imple-
mentation:

gate.corpora.DocumentImpl : transient document. Can be stored persistently through
Java serialisation.

Main Document functions are presented in table 7.3.

7.4.2 Feature Maps

All CREOLE resources as well as the Controllers and the annotations can have attached
meta-data in the form of Feature Maps.

A Feature Map is a Java Map (i.e. it implements the java.util.Map interface) and holds
<attribute-name, attribute-value> pairs. The attribute names are Strings while the values
can be any Java Objects.

The use of non-Serialisable objects as values is strongly discouraged.
Feature Maps are created using the gate.Factory.newFeatureMap() method.

The actual implementation for FeatureMaps is provided by the
gate.util.SimpleFeatureMapImpl class.

Objects that have features in GATE implement the gate.util.FeatureBearer inter-
face which has only the two accessor methods for the object features: FeatureMap
getFeatures() and void setFeatures(FeatureMap features).

136

GATE Embedded

Content Manipulation

Method

Purpose

DocumentContent getContent ()

Gets the Document content.

void edit(Long start,
Long end, DocumentContent
replacement)

Modifies the Document content.

void setCon-
tent (DocumentContent
newContent)

Replaces the entire content.

Annotations Manipulation

Method

Purpose

public AnnotationSet getAnno-
tations ()

Returns the default annotation set.

public AnnotationSet getAnno-
tations(String name)

Returns a named annotation set.

public Map getNamedAnnota-
tionSets ()

Returns «all the named annotation
sets.

void removeAnnotation-
Set (String name)

Removes a named annotation set.

Input Output

String toXml()

Serialises the Document in XML for-
mat.

String toXml(Set
aSourceAnnotationSet, boolean
includeFeatures)

Generates XML from a set of anno-
tations only, trying to preserve the
original format of the file used to cre-
ate the document.

Table 7.3: gate.Document methods.

GATE Embedded 137

Getting a particular feature from an object

1 Object obj;

2 String featureName = "length";

3 if (obj instanceof FeatureBearer){

4 FeatureMap features = ((FeatureBearer)obj).getFeatures();

5 Object value = (features == null) 7 null

6 features.get (featureName);
7}

7.4.3 Annotation Sets

A GATE document can have one or more annotation layers — an anonymous one, (also
called default), and as many named ones as necessary.

An annotation layer is organised as a Directed Acyclic Graph (DAG) on which the nodes
are particular locations —anchors— in the document content and the arcs are made out of
annotations reaching from the location indicated by the start node to the one pointed by the
end node (see Figure 7.1 for an illustration). Because of the graph metaphor, the annotation
layers are also called annotation graphs. In terms of Java objects, the annotation layers are
represented using the Set paradigm as defined by the collections library and they are hence
named annotation sets. The terms of annotation layer, graph and set are interchangeable
and refer to the same concept when used in this book.

Ly Mlo

3 T 6 3

4 9
1
* * o e
Node Annotation description Annotation
(type & features)

Figure 7.1: The Annotation Graph model.

An annotation set holds a number of annotations and maintains a series of indices in order
to provide fast access to the contained annotations.

The GATE Annotation Sets are defined by the gate.AnnotationSet interface and there is
a default implementation provided:

gate.annotation.AnnotationSetImpl annotation set implementation used by transient
documents.

The annotation sets are created by the document as required. The first time a particular
annotation set is requested from a document it will be transparently created if it doesn’t
exist.

138

GATE Embedded

Annotations Manipulation

Method

Purpose

Integer add(Long start, Long
end, String type, FeatureMap
features)

Creates a new annotation between
two offsets, adds it to this set and
returns its id.

Integer add(Node start, Node
end, String type, FeatureMap
features)

Creates a new annotation between
two nodes, adds it to this set and re-
turns its id.

boolean remove(Object o)

Removes an annotation from this set.

No

des

Method

Purpose

Node firstNode()

Gets the node with the smallest off-
set.

Node lastNode()

Gets the node with the largest offset.

Node nextNode(Node node)

Get the first node that is relevant for
this annotation set and which has the
offset larger than the one of the node
provided.

Set implementation

Iterator iterator()

int size()

Table 7.4: gate.AnnotationS

et methods (general purpose).

GATE Embedded

Searching

AnnotationSet get(Long offset)

Select annotations by offset. This re-
turns the set of annotations whose
start node is the least such that it is
less than or equal to offset. If a po-
sitional index doesn’t exist it is cre-
ated. If there are no nodes at or be-
yond the offset parameter then it will
return null.

AnnotationSet get(Long
startOffset, Long endOffset)

Select annotations by offset. This
returns the set of annotations that
overlap totally or partially with the
interval defined by the two provided
offsets. The result will include all the
annotations that either:

e start before the start offset and
end strictly after it

e start at a position between the
start and the end offsets

AnnotationSet get(String type)

Returns all annotations of the speci-
fied type.

AnnotationSet get(Set types)

Returns all annotations of the speci-
fied types.

AnnotationSet get(String type,
FeatureMap constraints)

Selects annotations by type and fea-
tures.

Set getAllTypes()

Gets a set of java.lang.String objects
representing all the annotation types
present in this annotation set.

Table 7.5: gate.AnnotationSet methods (searching).

139

140 GATE Embedded

Tables 7.4 and 7.5 list the most used Annotation Set functions.

Iterating from left to right over all annotations of a given type

1 AnnotationSet annSet = ...;

2 String type = "Person'";

3 //Get all person annotations

4 AnnotationSet persSet = annSet.get(type);

5 //Sort the annotations

6 List persList = new ArraylList (persSet);

7 Collections.sort(perslList, new gate.util.OffsetComparator ());
s //Iterate

9 Iterator persIter = persList.iterator();

while (persIter.hasNext ()){

=
= o

}

[
N

7.4.4 Annotations

An annotation, is a form of meta-data attached to a particular section of document content.
The connection between the annotation and the content it refers to is made by means of two
pointers that represent the start and end locations of the covered content. An annotation
must also have a type (or a name) which is used to create classes of similar annotations,
usually linked together by their semantics.

An Annotation is defined by:

start node a location in the document content defined by an offset.
end node a location in the document content defined by an offset.
type a String value.

features (see Section 7.4.2).

ID an Integer value. All annotations IDs are unique inside an annotation set.
In GATE Embedded, annotations are defined by the gate.Annotation interface and imple-
mented by the gate.annotation.AnnotationImpl class. Annotations exist only as members

of annotation sets (see Section 7.4.3) and they should not be directly created by means of a
constructor. Their creation should always be delegated to the containing annotation set.

7.4.5 GATE Corpora

A corpus in GATE is a Java List (i.e. an implementation of java.util.List) of documents.
GATE corpora are defined by the gate.Corpus interface and the following implementations

GATE Embedded 141

are available:

gate.corpora.CorpusImpl used for transient corpora.

gate.corpora.SerialCorpusImpl used for persistent corpora that are stored in a serial
datastore (i.e. as a directory in a file system).

Apart from implementation for the standard List methods, a Corpus also implements the

methods in table 7.6.

Method Purpose
String getDocumentName(int | Gets the name of a document in this
index) corpus.

List getDocumentNames()

Gets the names of all the documents
in this corpus.

void populate(URL directory,
FileFilter filter,

String encoding, boolean
recurseDirectories)

Fills this corpus with documents
created on the fly from selected files
in a directory. Uses a FileFilter
to select which files will be used and

which will be ignored. A simple
file filter based on extensions is
provided in the Gate distribution
(gate.util.ExtensionFileFilter).

Table 7.6: gate.Corpus methods.

Creating a corpus from all XML files in a directory

Corpus corpus = Factory.newCorpus ("My XML Files");

File directory = ...;

ExtensionFileFilter filter = new ExtensionFileFilter ("XML files",
URL url = directory.toURL();

5 corpus.populate(url, filter, null, false);

" Xmlll) ;

B W N =

Using a DataStore

Assuming that you have a DataStore already open called myDataStore, this code will ask
the datastore to take over persistence of your document, and to synchronise the memory
representation of the document with the disk storage:

Document persistentDoc = myDataStore.adopt(doc, mySecurity);
myDataStore.sync(persistentDoc) ;

When you want to restore a document (or other LR) from a datastore, you make the same
createResource call to the Factory as for the creation of a transient resource, but this time
you tell it the datastore the resource came from, and the ID of the resource in that datastore:

142 GATE Embedded

1 URL u =; // URL of a serial datastore directory

2 SerialDataStore sds = new SerialDataStore(u.toString());

3 sds.open () ;

4

5 // getLrlds returns a list of LR Ids, so we get the first one
6 Object 1lrId = sds.getLrIds("gate.corpora.DocumentImpl").get (0);
7

8 // we need to tell the factory about the LR’s ID in the data
9 // store, and about which datastore it is in — we do this

10 // via a feature map:

11 FeatureMap features = Factory.newFeatureMap();

-
[

features.put(DataStore.LR_ID_FEATURE_NAME, 1rId);
features.put(DataStore.DATASTORE_FEATURE_NAME, sds);

= o
- W

15 // read the document back
16 Document doc = (Document)
17 Factory.createResource("gate.corpora.DocumentImpl", features);

7.5 Processing Resources

Processing Resources (PRs) represent entities that are primarily algorithmic, such as parsers,
generators or ngram modellers.

They are created using the GATE Factory in manner similar the Language Resources. Be-
sides the creation-time parameters they also have a set of run-time parameters that are set
by the system just before executing them.

Analysers are a particular type of processing resources in the sense that they always have a
document and a corpus among their run-time parameters.

The most used methods for Processing Resources are presented in table 7.7

7.6 Controllers

Controllers are used to create GATE applications. A Controller handles a set of Processing
Resources and can execute them following a particular strategy. GATE provides a series of
serial controllers (i.e. controllers that run their PRs in sequence):

gate.creole.SerialController: a serial controller that takes any kind of PRs.

gate.creole.SerialAnalyserController: a serial controller that only accepts Language
Analysers as member PRs.

GATE Embedded

Method

Purpose

void setParameterValue(String
paramaterName, Object
parameterValue)

Sets the value for a specified pa-
rameter. method
gate.Resource

inherited from

void setParameterVal-
ues (FeatureMap parameters)

Sets the values for more parameters
in one step. method inherited from
gate.Resource

Object getParameter-
Value(String paramaterName)

Gets the value of a named parame-
ter of this resource. method inherited
from gate.Resource

Resource init()

Initialise this resource, and return it.
method inherited from gate.Resource

void relnit()

Reinitialises the processing resource.
After calling this method the re-
source should be in the state it is af-
ter calling init. If the resource de-
pends on external resources (such as
rules files) then the resource will re-
read those resources. If the data used
to create the resource has changed
since the resource has been created
then the resource will change too af-
ter calling relnit().

void execute()

Starts the execution of this Process-
ing Resource.

void interrupt ()

Notifies this PR that it should stop
its execution as soon as possible.

boolean isInterrupted()

Checks whether this PR has been in-
terrupted since the last time its Exe-
cutable.execute() method was called.

Table 7.7: gate.ProcessingResource methods.

143

144 GATE Embedded

gate.creole.ConditionalSerialController: a serial controller that accepts all types of
PRs and that allows the inclusion or exclusion of member PRs from the execution
chain according to certain run-time conditions (currently features on the document
being processed are used).

gate.creole.ConditionalSerialAnalyserController: a serial controller that only ac-
cepts Language Analysers and that allows the conditional run of member PRs.

Creating an ANNIE application and running it over a corpus

// load the ANNIE plugin
Gate.getCreoleRegister () .registerDirectories(new File(
Gate.getPluginsHome (), "ANNIE").toURI().toURL());

// create a serial analyser controller to run ANNIE with
SerialAnalyserController annieController =
(SerialAnalyserController) Factory.createResource(
"gate.creole.SerialAnalyserController",
Factory.newFeatureMap (),
Factory.newFeatureMap (), "ANNIE");

© 0 N 3 ks W N

==
~= o

// load each PR as defined in ANNIEConstants

for(int 1 = 0; i < ANNIEConstants.PR_NAMES.length; i++) {
// use default parameters
FeatureMap params = Factory.newFeatureMap();
ProcessingResource pr = (ProcessingResource)

Factory.createResource (ANNIEConstants.PR_NAMES[i],
params) ;

// add the PR to the pipeline controller
annieController.add(pr);

Y // for each ANNIE PR

I N N e e e
N~ O © 0 N O oA W N

// Tell ANNIE’s controller about the corpus you want to run on
Corpus corpus = ...;

annieController.setCorpus (corpus);

// Run ANNIE

annieController.execute();

NONN NN
N o o s W

7.7 Duplicating a Resource

Sometimes, particularly in a multi-threaded application, it is useful to be able to create an
independent copy of an existing PR, controller or LR. The obvious way to do this is to call
createResource again, passing the same class name, parameters, features and name, and
for many resources this will do the right thing. However there are some resources for which
this may be insufficient (e.g. controllers, which also need to duplicate their PRs), unsafe
(if a PR uses temporary files, for instance), or simply inefficient. For example for a large
gazetteer this would involve loading a second copy of the lists into memory and compiling
them into a second identical state machine representation, but a much more efficient way to

GATE Embedded 145

achieve the same behaviour would be to use a SharedDefaultGazetteer (see section 13.11),
which can re-use the existing state machine.

The GATE Factory provides a duplicate method which takes an existing resource instance
and creates and returns an independent copy of the resource. By default it uses the algorithm
described above, extracting the parameter values from the template resource and calling
createResource to create a duplicate. However, if a particular resource type knows of a
better way to duplicate itself it can implement the CustomDuplication interface, and provide
its own duplicate method which the factory will use instead of performing the default
duplication algorithm. A caller who needs to duplicate an existing resource can simply call
Factory.duplicate to obtain a copy, which will be constructed in the appropriate way
depending on the resource type.

Note that the duplicate object returned by Factory.duplicate will not necessarily be of the
same class as the original object. However the contract of Factory.duplicate specifies that
where the original object implements any of a list of core GATE interfaces, the duplicate
can be assumed to implement the same ones — if you duplicate a DefaultGazetteer the
result may not be an instance of DefaultGazetteer but it is guaranteed to implement the
Gazetteer interface.

Full details of how to implement a custom duplicate method in your own resource type
can be found in the JavaDoc documentation for the CustomDuplication interface and the
Factory.duplicate method.

7.8 Persistent Applications

GATE Embedded allows the persistent storage of applications in a format based on XML
serialisation. This is particularly useful for applications management and distribution. A
developer can save the state of an application when he/she stops working on its design and
continue developing it in a next session. When the application reaches maturity it can be
deployed to the client site using the same method.

When an application (i.e. a Controller) is saved, GATE will actually only save the values for
the parameters used to create the Processing Resources that are contained in the application.
When the application is reloaded, all the PRs will be re-created using the saved parameters.

Many PRs use external resources (files) to define their behaviour and, in most cases, these
files are identified using URLs. During the saving process, all the URLs are converted relative
URLs based on the location of the application file. This way, if the resources are packaged
together with the application file, the entire application can be reliably moved to a different
location.

API access to application saving and loading is provided by means of two static methods on
the gate.util.persistence.PersistenceManager class, listed in table 7.8.

http://gate.ac.uk/gate/doc/javadoc/gate/creole/CustomDuplication.html
http://gate.ac.uk/gate/doc/javadoc/gate/Factory.html#duplicate(gate.Resource)

146 GATE Embedded

Method Purpose

public static void saveOb- Saves the data needed to re-create
jectToFile(Object obj, File the provided GATE object to the
file) specified file. The Object provided

can be any type of Language or
Processing Resource or a Controller.
The procedures may work for other
types of objects as well (e.g. it sup-
ports most Collection types).
public static Object loadOb- Parses the file specified (which needs
jectFromFile(File file) to be a file created by the above
method) and creates the necessary
object(s) as specified by the data in
the file. Returns the root of the ob-
ject tree.

Table 7.8: Application Saving and Loading

Saving and loading a GATE application

//Where to save the application?
File file = ...;
//What to save?
Controller theApplication = ...;

//save

gate.util.persistence.PersistenceManager.
saveObjectToFile (theApplication, file);

//delete the application

Factory.deleteResource (theApplication);

theApplication = null;

© 0 N 3 s W N

= e
No= O

3 [...]
14 //load the application back
15 theApplication = gate.util.persistence.PersistenceManager.

loadObjectFromFile(file);

-
(=]

7.9 Ontologies

Starting from GATE version 3.1, support for ontologies has been added. Ontologies are
nominally Language Resources but are quite different from documents and corpora and are
detailed in chapter 14.

Classes related to ontologies are to be found in the gate.creole.ontology package and its
sub-packages. The top level package defines an abstract API for working with ontologies
while the sub-packages contain concrete implementations. A client program should only use

GATE Embedded 147

the classes and methods defined in the API and never any of the classes or methods from
the implementation packages.

The entry point to the ontology API is the gate.creole.ontology.0Ontology interface
which is the base interface for all concrete implementations. It provides methods for accessing
the class hierarchy, listing the instances and the properties.

Ontology implementations are available through plugins. Before an ontology language re-
source can be created using the gate.Factory and before any of the classes and methods in
the API can be used, one of the implementing ontology plugins must be loaded. For details
see chapter 14.

7.10 Creating a New Annotation Schema

An annotation schema (see Section 3.4.6) can be brought inside GATE through the creole.xml
file. By using the AUTOINSTANCE element, one can create instances of resources defined
in creole.xml. The gate.creole.AnnotationSchema (which is the Java representation of an
annotation schema file) initializes with some predefined annotation definitions (annotation
schemas) as specified by the GATE team.

Example from GATE'’s internal creole.xml (in src/gate/resources/creole):

<!-- Annotation schema -->
<RESOURCE>
<NAME>Annotation schema</NAME>
<CLASS>gate.creole.AnnotationSchema</CLASS>
<COMMENT>An annotation type and its features</COMMENT>
<PARAMETER NAME="xmlFileUrl" COMMENT="The url to the definition file"
SUFFIXES="xml;xsd">java.net.URL</PARAMETER>
<AUTOINSTANCE>
<PARAM NAME ="xmlFileUrl" VALUE="schema/AddressSchema.xml" />
</AUTOINSTANCE>
<AUTOINSTANCE>
<PARAM NAME ="xmlFileUrl" VALUE="schema/DateSchema.xml" />
</AUTOINSTANCE>
<AUTOINSTANCE>
<PARAM NAME ="xmlFileUrl" VALUE="schema/FacilitySchema.xml" />
</AUTOINSTANCE>
<l-- etc. ——>
</RESOURCE>

In order to create a gate.creole. AnnotationSchema object from a schema annotation file, one
must use the gate.Factory class;

148 GATE Embedded

FeatureMap params = new FeatureMap ();\\

param.put ("xmlFileUrl" ,annotSchemaFile.toURL ());\\
AnnotationSchema annotSchema = \\
Factory.createResurce("gate.creole.AnnotationSchema", params);

=W N =

Note: All the elements and their values must be written in lower case, as XML is defined as
case sensitive and the parser used for XML Schema inside GATE searches is case sensitive.

In order to be able to write XML Schema definitions, the ones defined in GATE
(resources/creole/schema) can be used as a model, or the user can have a look at
hitp:/ /www.w3.org/2000/10/XMLSchema for a proper description of the semantics of the
elements used.

Some examples of annotation schemas are given in Section 5.4.1.

7.11 Creating a New CREOLE Resource

To create a new resource you need to:

write a Java class that implements GATE’s beans model;

compile the class, and any others that it uses, into a Java Archive (JAR) file;

write some XML configuration data for the new resource;

tell GATE the URL of the new JAR and XML files.

GATE Developer helps you with this process by creating a set of directories and files that
implement a basic resource, including a Java code file and a Makefile. This process is called
‘bootstrapping’.

For example, let’s create a new component called GoldFish, which will be a Processing
Resource that looks for all instances of the word ‘fish’ in a document and adds an annotation
of type ‘GoldFish’.

First start GATE Developer (see Section 2.2). From the ‘Tools’ menu select ‘BootStrap
Wizard’, which will pop up the dialogue in figure 7.2. The meaning of the data entry fields:

GATE Embedded 149

B3 BootSirap Wizard E3 I

Fezource nams, 2.0. mytdomph
|GoldFish

Fesource package, e.d. shemeld creale momh
|shetiield.creale example

Resaurce pe
|Frl:n:es singFResoume j

Implementing class name, e.g Morpher
|[coldFish

Irtaraces implemented
|gE|tE.F'm|:eagingHE3uur|:e

Create in falder ...

|IZI='|ITI|!4 Erowse “

Finizh Cancel |

Figure 7.2: BootStrap Wizard Dialogue

e The ‘resource name’ will be displayed when GATE Developer loads the resource, and
will be the name of the directory the resource lives in. For our example: GoldFish.

e ‘Resource package’ is the Java package that the class representing the resource will be
created in. For our example: sheffield.creole.example.

e ‘Resource type’ must be one of Language, Processing or Visual Resource. In this
case we're going to process documents (and add annotations to them), so we select
ProcessingResource.

e ‘Implementing class name’ is the name of the Java class that represents the resource.
For our example: GoldFish.

e The ‘interfaces implemented’ field allows you to add other interfaces (e.g.
gate.creole.ControllerAwarePR?) that you would like your new resource to im-
plement. In this case we just leave the default (which is to implement the
gate.ProcessingResource interface).

e The last field selects the directory that you want the new resource created in. For our
example: z:/tmp.

4See Section 4.4.

http://gate.ac.uk/gate/doc/javadoc/gate/creole/ControllerAwarePR.html

150 GATE Embedded

Now we need to compile the class and package it into a JAR file. The bootstrap wizard
creates an Ant build file that makes this very easy — so long as you have Ant set up properly,
you can simply run

ant jar

This will compile the Java source code and package the resulting classes into GoldFish. jar.
If you don’t have your own copy of Ant, you can use the one bundled with GATE
- suppose your GATE is installed at /opt/gate-5.0-snapshot, then you can use
/opt/gate-5.0-snapshot/bin/ant jar to build.

You can now load this resource into GATE; see Section 3.6. The default Java code that was
created for our GoldFish resource looks like this:

1/

2 ¥ GoldFish.java

3 *

4 ¥ You should probably put a copyright mnotice here. Why not use the
5 + GNU licence? (See http://www.gnu.org/.)

6 *

7 % hamish, 26/9/2001

8 *

o « $Id: howto.tex,v 1.130 2006/10/23 12:56:37 ian Ezp §

0 x/

==
[S

package sheffield.creole.example;

==
- W

import java.util.x*;
import gate.*;

import gate.creole.*;
import gate.util.x*;

e e
© N o

19/

20 # This class is the implementation of the resource GOLDFISH.
21 */

22 @CreoleResource(name = "GoldFish",

comment = "Add a descriptive comment about this resource")
public class GoldFish extends AbstractProcessingResource
implements ProcessingResource {

NN N NN
N O o0 kW

Y // class GoldFish

[
oo

The default XML configuration for GoldFish looks like this:

<!-- creole.xml GoldFish -->
<!-- hamish, 26/9/2001 -—>
<!-- $Id: howto.tex,v 1.130 2006/10/23 12:56:37 ian Exp $ -->

<CREOLE-DIRECTORY>

http://ant.apache.org

GATE Embedded 151

<JAR SCAN="true">GoldFish.jar</JAR>
</CREOLE-DIRECTORY>

The directory structure containing these files is shown in figure 7.3. GoldFish. java lives

v | GoldFish
| build.properties

P

| build.xml
» [0 classes

| creole.xml
» | doc

2 GoldFish.jar
» [7 lib

% README
» |7 resources
v [src

v [sheffield
v [crecle
v [example
li| GoldFish.java

Figure 7.3: BootStrap directory tree

in the src/sheffield/creole/example directory. creole.xml and build.xml are in the
top GoldFish directory. The 1lib directory is for libraries; the classes directory is where
Java class files are placed; the doc directory is for documentation. These last two, plus
GoldFish. jar are created by Ant.

This process has the advantage that it creates a complete source tree and build structure
for the component, and the disadvantage that it creates a complete source tree and build
structure for the component. If you already have a source tree, you will need to chop out the
bits you need from the new tree (in this case GoldFish. java and creole.xml) and copy it
into your existing one.

See the example code at http://gate.ac.uk/wiki/code-repository/.

http://gate.ac.uk/wiki/code-repository/

152 GATE Embedded

7.12 Adding Support for a New Document Format

In order to add a new document format, one needs to extend the gate.DocumentFormat
class and to implement an abstract method called:

1 public void unpackMarkup (Document doc) throws
2 DocumentFormatException

This method is supposed to implement the functionality of each format reader and to create
annotations on the document. Finally the document’s old content will be replaced with a
new one containing only the text between markups.

If one needs to add a new textual reader will extend the gate.corpora.TextualDocumentFormat
and override the unpackMarkup (doc) method.

This class needs to be implemented under the Java bean specifications because it will be
instantiated by GATE using Factory.createResource () method.

The init () method that one needs to add and implement is very important because in here
the reader defines its means to be selected successfully by GATE. What one needs to do is
to add some specific information into certain static maps defined in DocumentFormat class,
that will be used at reader detection time.

After that, a definition of the reader will be placed into the one’s creole.xml file and the
reader will be available to GATE.

We present for the rest of the section a complete three step example of adding such a reader.
The reader we describe in here is an XML reader.

Step 1

Create a new class called Xm1DocumentFormat that extends
gate.corpora.TextualDocumentFormat.

Step 2

Implement the unpackMarkup (Document doc) which performs the required functionality for
the reader. Add XML detection means in init() method:

1 public Resource init() throws ResourcelnstantiationException{

2 // Register XML mime type

3 MimeType mime = new MimeType("text","xml");

4 // Register the class handler for this mime type

5 mimeString2ClassHandlerMap.put (mime.getType ()+ "/" + mime.getSubtype(),
6 this);

7 // Register the mime type with mine string

8 mimeString2mimeTypeMap.put (mime.getType() + "/" + mime.getSubtype (),

9 mime) ;

10 // Register file suffizes for this mime type
11 suffixes2mimeTypeMap.put ("xml" ,mime) ;

GATE Embedded 153

12 suffixes2mimeTypeMap.put ("xhtm" ,mime);

13 suffixes2mimeTypeMap.put ("xhtml" ,mime);

14 // Register magic numbers for this mime type

15 magic2mimeTypeMap.put ("<?7xml" ,mime) ;

16 // Set the mimeType for this language resource
17 setMimeType (mime) ;

18 return this;

v Y// init()

More details about the information from those maps can be found in Section 5.5.1
Step 3

Add the following creole definition in the creole.xml document.

<RESOURCE>
<NAME>My XML Document Format</NAME>
<CLASS>mypackage . Xm1DocumentFormat</CLASS>
<AUTOINSTANCE/>
<PRIVATE/>

</RESOURCE>

More information on the operation of GATE’s document format analysers may be found in
Section 5.5.

7.13 Using GATE Embedded in a Multithreaded En-
vironment

GATE Embedded can be used in multithreaded applications, so long as you observe a few
restrictions. First, you must initialise GATE by calling Gate.init () exactly once in your ap-
plication, typically in the application startup phase before any concurrent processing threads
are started.

Secondly, you must not make calls that affect the global state of GATE (e.g. loading or
unloading plugins) in more than one thread at a time. Again, you would typically load all
the plugins your application requires at initialisation time. It is safe to create instances of
resources in multiple threads concurrently.

Thirdly, it is important to note that individual GATE processing resources, language re-
sources and controllers are by design not thread safe — it is not possible to use a single
instance of a controller/PR/LR in multiple threads at the same time — but for a well written
resource it should be possible to use several different instances of the same resource at once,
each in a different thread. When writing your own resource classes you should bear the
following in mind, to ensure that your resource will be useable in this way.

154

GATE Embedded

Avoid static data. Where possible, you should avoid using static fields in your class,
and you should try and take all configuration data via the CREOLE parameters you
declare in your creole.xml file. System properties may be appropriate for truly static
configuration, such as the location of an external executable, but even then it is gen-
erally better to stick to CREOLE parameters — a user may wish to use two different
instances of your PR, each talking to a different executable.

Read parameters at the correct time. Init-time parameters should be read in the init ()
(and reInit()) method, and for processing resources runtime parameters should be
read at each execute().

Use temporary files correctly. If your resource makes use of external temporary files
you should create them using File.createTempFile() at init or execute time, as
appropriate. Do not use hardcoded file names for temporary files.

If there are objects that can be shared between different instances of your resource,
make sure these objects are accessed either read-only, or in a thread-safe way. In
particular you must be very careful if your resource can take other resource instances
as init or runtime parameters (e.g. the Flexible Gazetteer, Section 13.7).

Of course, if you are writing a PR that is simply a wrapper around an external library that
imposes these kinds of limitations there is only so much you can do. If your resource cannot
be made safe you should document this fact clearly.

All the standard ANNIE PRs are safe when independent instances are used in different
threads concurrently, as are the standard transient document, transient corpus and controller
classes. A typical pattern of development for a multithreaded GATE-based application is:

Develop your GATE processing pipeline in GATE Developer.
Save your pipeline as a .gapp file.

In your application’s initialisation phase, load n copies of the pipeline using
PersistenceManager.loadObjectFromFile () (see the Javadoc documentation for de-
tails), or load the pipeline once and then make copies of it using Factory.duplicate
as described in section 7.7, and either give one copy to each thread or store them in a
pool (e.g. a LinkedList).

When you need to process a text, get one copy of the pipeline from the pool, and
return it to the pool when you have finished processing.

Alternatively you can use the Spring Framework as described in the next section to handle
the pooling for you.

GATE Embedded 155

7.14 Using GATE Embedded within a Spring Applica-
tion

GATE Embedded provides helper classes to allow GATE resources to be created and man-
aged by the Spring framework. For Spring 2.0 or later, GATE Embedded provides a custom
namespace handler that makes them extremely easy to use. To use this namespace, put the
following declarations in your bean definition file:

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:gate="http://gate.ac.uk/ns/spring"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://gate.ac.uk/ns/spring
http://gate.ac.uk/ns/spring.xsd">

You can have Spring initialise GATE:

<gate:init gate-home="WEB-INF" user-config-file="WEB-INF/user.xml">
<gate:preload-plugins>
<value>WEB-INF/ANNIE</value>
<value>http://example.org/gate-plugin</value>
</gate:preload-plugins>
</gate:init>

To create a GATE resource, use the <gate:resource> element.

<gate:resource id="sharedOntology" scope="singleton"
resource—-class="gate.creole.ontology.owlim.OWLIMOntologyLR">
<gate:parameters>
<entry key="rdfXmlURL">
<value type='"org.springframework.core.io.Resource"
>WEB-INF/ontology.rdf</value>
</entry>
</gate:parameters>
</gate:resource>

If you are familiar with Spring you will see that <gate:parameters> uses the same format as
the standard <map> element, but values whose type is a Spring Resource will be converted
to URLSs before being passed to the GATE resource.

You can load a GATE saved application with

http://www.springframework.org

156 GATE Embedded

<gate:saved-application location="WEB-INF/application.gapp" scope="prototype">
<gate:customisers>
<gate:set-parameter pr-name="custom transducer" name="ontology"
ref="sharedOntology" />
</gate:customisers>
</gate:saved-application>

‘Customisers’ are used to customise the application after it is loaded. In the example above,
we load a singleton copy of an ontology which is then shared between all the separate
instances of the (prototype) application. The <gate:set-parameter> customiser accepts
all the same ways to provide a value as the standard Spring <property> element (a ”value”
or "ref” attribute, or a sub-element - <value>, <list>, <bean>, <gate:resource> ...).

The <gate:add-pr> customiser provides support for the case where most of the application
is in a saved state, but we want to create one or two extra PRs with Spring (maybe to inject
other Spring beans as init parameters) and add them to the pipeline.

<gate:saved-application ...>
<gate:customisers>
<gate:add-pr add-before="OrthoMatcher" ref="myPr" />
</gate:customisers>
</gate:saved-application>

By default, the <gate:add-pr> customiser adds the target PR at the end of the pipeline,
but an add-before or add-after attribute can be used to specify the name of a PR before
(or after) which this PR should be placed. Alternatively, an index attribute places the PR
at a specific (0-based) index into the pipeline. The PR to add can be specified either as a
‘ref’” attribute, or with a nested <bean> or <gate:resource> element.

7.14.1 Duplication in Spring

The above example defines the <gate:application> as a prototype-scoped bean, which
means the saved application state will be loaded afresh each time the bean is fetched from the
bean factory (either explicitly using getBean or implicitly when it is injected as a dependency
of another bean). However in many cases it is better to load the application once and then
duplicate it as required (as described in section 7.7), as this allows resources to optimise
their memory usage, for example by sharing a single in-memory representation of a large
gazetteer list between several instances of the gazetteer PR. This approach is supported by
the <gate:duplicate> tag.

<gate:duplicate id="theApp">
<gate:saved-application location="/WEB-INF/application.xgapp" />
</gate:duplicate>

GATE Embedded 157

The <gate:duplicate> tag acts like a prototype bean definition, in that each time it is
fetched or injected it will call Factory.duplicate to create a new duplicate of its template
resource (declared as a nested element or referenced by the template-ref attribute). How-
ever the tag also keeps track of all the duplicate instances it has returned over its lifetime,
and will ensure they are released (using Factory.deleteResource) when the Spring context
is shut down.

The <gate:duplicate> tag also supports customisers, which will be applied to the newly-
created duplicate resource before it is returned. This is subtly different from applying the
customisers to the template resource itself, which would cause them to be applied once to
the original resource before it is first duplicated.

Finally, <gate:duplicate> takes an optional boolean attribute return-template. If set to
false (or omitted, as this is the default behaviour), the tag always returns a duplicate — the
original template resource is used only as a template and is not made available for use. If set
to true, the first time the bean defined by the tag is injected or fetched, the original template
resource is returned. Subsequent uses of the tag will return duplicates. Generally speaking,
it is only safe to set return-template="true" when there are no customisers, and when
the duplicates will all be created up-front before any of them are used. If the duplicates will
be created asynchronously (e.g. with a dynamically expanding pool, see below) then it is
possible that, for example, a template application may be duplicated in one thread whilst it
is being executed by another thread, which may lead to unpredictable behaviour.

7.14.2 Spring pooling

In a multithreaded application it is vital that individual GATE resources are not used in
more than one thread at the same time. Because of this, multithreaded applications that use
GATE Embedded often need to use some form of pooling to provided thread-safe access to
GATE components. This can be managed by hand, but the Spring framework has built-in
tools to support transparent pooling of Spring-managed beans. Spring can create a pool of
identical objects, then expose a single “proxy” object (offering the same interface) for use
by clients. Each method call on the proxy object will be routed to an available member of
the pool in such a way as to guarantee that each member of the pool is accessed by no more
than one thread at a time.

Since the pooling is handled at the level of method calls, this approach is not used to create a
pool of GATE resources directly — making use of a GATE PR typically involves a sequence
of method calls (at least setDocument (doc), execute () and setDocument (null)), and cre-
ating a pooling proxy for the resource may result in these calls going to different members
of the pool. Instead the typical use of this technique is to define a helper object with a sin-
gle method that internally calls the GATE API methods in the correct sequence, and then
create a pool of these helpers. The interface gate.util.DocumentProcessor and its associ-
ated implementation gate.util.LanguageAnalyserDocumentProcessor are useful for this.
The DocumentProcessor interface defines a processDocument method that takes a GATE

158 GATE Embedded

document and performs some processing on it. LanguageAnalyserDocumentProcessor im-
plements this interface using a GATE LanguageAnalyser (such as a saved “corpus pipeline”
application) to do the processing. A pool of LanguageAnalyserDocumentProcessor in-
stances can be exposed through a proxy which can then be called from several threads.

The machinery to implement this is all built into Spring, but the configuration typically
required to enable it is quite fiddly, involving at least three co-operating bean definitions.
Since the technique is so useful with GATE Embedded, GATE provides a special syntax to
configure pooling in a simple way. Given the <gate:duplicate id="theApp"> definition
from the previous section we can create a DocumentProcessor proxy that can handle up to
five concurrent requests as follows:

<bean id="processor"
class="gate.util.LanguageAnalyserDocumentProcessor">
<property name="analyser" ref="theApp" />
<gate:pooled-proxy max-size="5" />
</bean>

The <gate:pooled-proxy> element decorates a singleton bean definition. It converts the
original definition to prototype scope and replaces it with a singleton proxy delegating to a
pool of instances of the prototype bean. The pool parameters are controlled by attributes
of the <gate:pooled-proxy> element, the most important ones being:

max-size The maximum size of the pool. If more than this number of threads try to call
methods on the proxy at the same time, the others will (by default) block until an
object is returned to the pool.

initial-size The default behaviour of Spring’s pooling tools is to create instances in the
pool on demand (up to the max-size). This attribute instead causes initial-size
instances to be created up-front and added to the pool when it is first created.

when-exhausted-action-name What to do when the pool is exhausted (i.e. there are
already max-size concurrent calls in progress and another one arrives). Should be set
to one of WHEN_EXHAUSTED_BLOCK (the default, meaning block the excess requests until
an object becomes free), WHEN_EXHAUSTED_GROW (create a new object anyway, even
though this pushes the pool beyond max-size) or WHEN_EXHAUSTED_FAIL (cause the
excess calls to fail with an exception).

Many more options are available, corresponding to the properties of the Spring Common-
sPoolTargetSource class. These allow you, for example, to configure a pool that dynamically
grows and shrinks as necessary, releasing objects that have been idle for a set amount of time.
See the JavaDoc documentation of CommonsPoolTargetSource (and the documentation for
Apache commons-pool) for full details.

http://static.springsource.org/spring/docs/2.0.x/api/org/springframework/aop/target/CommonsPoolTargetSource.html

GATE Embedded 159

Note that the <gate:pooled-proxy> technique is not tied to GATE in any way, it is simply
an easy way to configure standard Spring beans and can be used with any bean that needs
to be pooled, not just objects that make use of GATE.

7.14.3 Further reading

These custom elements all define various factory beans. For full details, see the JavaDocs for
gate.util.spring (the factory beans) and gate.util.spring.xml (the gate: namespace
handler). The main Spring framework API documentation is the best place to look for more
detail on the pooling facilities provided by Spring AOP.

Note: the former approach using factory methods of the gate.util.spring.SpringFactory
class will still work, but should be considered deprecated in favour of the new factory beans.

7.15 Using GATE Embedded within a Tomcat Web
Application

Embedding GATE in a Tomcat web application involves several steps.

1. Put the necessary JAR files (gate.jar and all or most of the jars in gate/1ib) in your
webapp/WEB-INF/1ib.

2. Put the plugins that your application depends on in a suitable location (e.g.
webapp/WEB-INF/plugins).

3. Create suitable gate.xml configuration files for your environment.

4. Set the appropriate paths in your application before calling Gate.init ().

This process is detailed in the following sections.

7.15.1 Recommended Directory Structure

You will need to create a number of other files in your web application to allow GATE to
work:

e Site and user gate.xml config files - we highly recommend defining these specifically for
the web application, rather than relying on the default files on your application server.

e The plugins your application requires.

http://gate.ac.uk/gate/doc/javadoc/gate/util/spring/package-summary.html
http://gate.ac.uk/gate/doc/javadoc/gate/util/spring/xml/package-summary.html

160 GATE Embedded

In this guide, we assume the following layout:

webapp/

WEB-INF/
gate.xml
user-gate.xml
plugins/

ANNIE/
etc.

7.15.2 Configuration Files

Your gate.xml (the ‘site-wide configuration file’) should be as simple as possible:

<?xml version="1.0" encoding="UTF-8" 7>
<GATE>
<GATECONFIG Save_options_on_exit="false"
Save_session_on_exit="false" />
</GATE>

Similarly, keep the user-gate.xml (the ‘user config file’) simple:

<?xml version="1.0" encoding="UTF-8" 7>

<GATE>
<GATECONFIG Known_plugin_path=";"
Load_plugin_path=";" />
</GATE>

This way, you can control exactly which plugins are loaded in your webapp code.

7.15.3 Initialization Code

Given the directory structure shown above, you can initialize GATE in your web application

like this:

// imports

public class MyServlet extends HttpServlet {
private static boolean gatelInited = false;

public void init () throws ServletException {
if (!gateInited) {

~ (=] ot - W [—

GATE Embedded 161

8 try {

9 ServletContext ctx = getServletContext ();

10

11 // use /path/to/your/webapp/WEB-INF as gate.home

12 File gateHome = new File(ctx.getRealPath("/WEB-INF"));

13

14 Gate.setGateHome (gateHome) ;

15 // thus webapp/WEB-INF/plugins is the plugins directory , and
16 // webapp /WEB-INF/qgate.xzml is the site config file.

17

18 // Use webapp /WEB-INF/user—gate.xzml as the user config file
19 // to avoid confusion with your own user config.

20 Gate.setUserConfigFile(new File(gateHome, "user-gate.xml"));
21

22 Gate.init ();

23 // load plugins, for example. ..

24 Gate.getCreoleRegister().registerDirectories(

25 ctx.getResource ("/WEB-INF/plugins/ANNIE"));

26

27 gateInited = true;

28 }

29 catch(Exception ex) {

30 throw new ServletException("Exception initialising GATE",

31 ex);

32 }

33 }

34 }

35 }

Once initialized, you can create GATE resources using the Factory in the usual way (for
example, see Section 7.1 for an example of how to create an ANNIE application). You should
also read Section 7.13 for important notes on using GATE Embedded in a multithreaded
application.

Instead of an initialization servlet you could also consider doing your initialization in a
ServletContextListener, or using Spring (see Section 7.14).

7.16 Groovy for GATE

Groovy is a dynamic programming language based on Java. Groovy is not used in the
core GATE distribution, so to enable the Groovy features in GATE you must first load the
Groovy plugin. Loading this plugin:

e provides access to the Groovy scripting console (configured with some extensions for
GATE) from the GATE Developer “Tools” menu.

e provides a PR to run a Groovy script over documents.

162 GATE Embedded

e enhances a number of core GATE classes with additional convenience methods that can
be used from any Groovy code including the console, the script PR, and any Groovy
class that uses the GATE Embedded API.

This section describes these features in detail, but assumes that the reader already
has some knowledge of the Groovy language. If you are not already familiar with
Groovy you should read this section in conjunction with Groovy’s own documentation at
http://groovy.codehaus.org/.

7.16.1 Groovy Scripting Console for GATE

Loading the Groovy plugin in GATE Developer will provide a “Groovy Console” item in
the Tools/Groovy Tools menu. This menu item opens the standard Groovy console window
(http://groovy.codehaus.org/Groovy+Console).

To help scripting GATE in Groovy, the console is pre-configured to import all classes from
the gate, gate.annotation, gate.util, gate. jape and gate.creole.ontology packages
of the core GATE API°. This means you can refer to classes and interfaces such as Factory,
AnnotationSet, Gate, etc. without needing to prefix them with a package name. In addition,
the following (read-only) variable bindings are pre-defined in the Groovy Console.

e corpora: a list of loaded corpora LRs (Corpus)
e docs: a list of all loaded document LRs (DocumentImpl)
e prs: a list of all loaded PRs

e apps: a list of all loaded Applications (AbstractController)

These variables are automatically updated as resources are created and deleted in GATE.

Here’s an example script. It finds all documents with a feature “annotator” set to “fred”,
and puts them in a new corpus called “fredsDocs”.

1 Factory.newCorpus ("fredsDocs").addAll(
2 docs.findA11{

3 it.features.annotator == "fred"

4 }

50)

You can find other examples (and add your own) in the Groovy script repository on the
GATE Wiki: http://gate.ac.uk/wiki/groovy-recipes/.

®These are the same classes that are imported by default for use in Java code on the right hand side of
JAPE rules.

http://groovy.codehaus.org/
http://groovy.codehaus.org/Groovy+Console
http://gate.ac.uk/wiki/groovy-recipes/

GATE Embedded 163

Why won’t the ‘Groovy executing’ dialog go away? Sometimes, when you execute a
Groovy script through the console, a dialog will appear, saying “Groovy is executing. Please
wait”. The dialog fails to go away even when the script has ended, and cannot be closed by
clicking the “Interrupt” button. You can, however, continue to use the Groovy Console, and
the dialog will usually go away next time you run a script. This is not a GATE problem: it
is a Groovy problem.

7.16.2 Groovy scripting PR

The Groovy scripting PR enables you to load and execute Groovy scripts as part of a GATE
application pipeline. The Groovy scripting PR is made available when you load the Groovy
plugin via the plugin manager.

Parameters

The Groovy scripting PR has a single initialisation parameter
e scriptURL: the path to a valid Groovy script
It has three runtime parameters

e inputASName: an optional annotation set intended to be used as input by the PR
(but note that the PR has access to all annotation sets)

e outputASName: an optional annotation set intended to be used as output by the
PR (but note that the PR has access to all annotation sets)

e scriptParams: optional parameters for the script. In a creole.xml file, these should
be specified as key=value pairs, each pair separated by a comma. For example:
‘name=fred,type=person’ . In the GATE GUI, these are specified via a dialog.

Script bindings

As with the Groovy console described above, and with JAPE right-hand-side Java code,
Groovy scripts run by the scripting PR implicitly import all classes from the gate,
gate.annotation, gate.util, gate. jape and gate.creole.ontology packages of the core
GATE API. The Groovy scripting PR also makes available the following bindings, which you
can use in your scripts:

e doc: the current document (DocumentImpl)

164 GATE Embedded

e content: the string content of the current document
e inputAS: the annotation set specified by inputASName in the PRs runtime parameters

e outputAS: the annotation set specified by outputASName in the PRs runtime pa-
rameters

Note that inputAS and outputAS are intended to be used as input and output Annotation-
Sets. This is, however, a convention: there is nothing to stop a script writing to or reading
from any AnnotationSet.

Passing parameters to the script

In addition to the above bindings, one further binding is available to the script:

e scriptParams: a FeatureMap with keys and values as specified by the scriptParams
runtime parameter

For example, if you were to create a scriptParams runtime parameter for your PR, with the
keys and values: 'name=fred,type=person’, then the values could be retrieved in your script
via scriptParams.name and scriptParams.type

Examples

The plugin directory Groovy /resources/scripts contains some example scripts. Below is the
code for a naive regular expression PR.

matcher = content =" scriptParams.regex
while (matcher.find ())
outputAS.add(matcher.start (),
matcher.end (),
scriptParams.type,
Factory.newFeatureMap ())

N o g s W N =

The script needs to have the runtime parameter scriptParams set with keys and values as
follows:

e regex: the Groovy regular expression that you want to match e.g. ["\s]*ing

e type: the type of the annotation to create for each regex match, e.g. regexMatch

GATE Embedded 165

When the PR is run over a document, the script will first make a matcher over the document
content for the regular expression given by the regex parameter. It will iterate over all
matches for this regular expression, adding a new annotation for each, with a type as given
by the type parameter.

7.16.3 Utility methods

Loading the Groovy plugin adds some additional methods to several of the core GATE API
classes and interfaces using the Groovy “mixin” mechanism. Any Groovy code that runs
after the plugin has been loaded can make use of these additional methods, including snippets
run in the Groovy console, scripts run using the Script PR, and any other Groovy code that

uses the GATE Embedded API.

The methods that are injected come from two classes. The gate.Utils class (part of the core
GATE API in gate.jar) defines a number of static methods that can be used to simplify
common tasks such as getting the string covered by an annotation or annotation set, finding
the start or end offset of an annotation (or set), etc. These methods do not use any Groovy-
specific types, so they are usable from pure Java code in the usual way as well as being mixed
in for use in Groovy. Additionally, the class gate.groovy.GateGroovyMethods (part of the
Groovy plugin) provides methods that use Groovy types such as closures and ranges.

The added methods include:

e Unified access to the start and end offsets of an Annotation, AnnotationSet or
Document: e.g. someAnnotation.start() or anAnnotationSet.end()

e Simple access to the DocumentContent or string covered by an annotation or annota-
tion set: document.stringFor (anAnnotation), document.contentFor (annotationSet)

e Simple access to the length of an annotation or document, either as an int
(annotation.length()) or a long (annotation.lengthLong()).

e A method to construct a FeatureMap from any map, to support constructions like def
params = [sourceUrl:’http://gate.ac.uk’, encoding:’UTF-8’].toFeatureMap()

e A method to convert an annotation set into a List of annotations in the
order they appear in the document, for iteration in a predictable order:
annSet.inDocumentOrder () .collect { it.type }

e The each, eachWithIndex and collect methods for a corpus have been redefined to
properly load and unload documents if the corpus is stored in a datastore.

e Various getAt methods to support constructions like annotationSet["Token"] (get
all Token annotations from the set), annotationSet[15..20] (get all annotations be-
tween offsets 15 and 20), documentContent [0. .10] (get the document content between
offsets 0 and 10).

http://gate.ac.uk/gate/doc/javadoc/gate/Utils.html

166 GATE Embedded

e A withResource method for any resource, which calls a closure with the resource
passed as a parameter, and ensures that the resource is properly deleted when the clo-
sure completes (analagous to the default Groovy method InputStream.withStream).

For full details, see the source code or javadoc documentation for these two classes.

7.17 Saving Config Data to gate.xml

Arbitrary feature/value data items can be saved to the user’s gate.xml file via the following
API calls:

To get the config data: Map configData = Gate.getUserConfig().

To add config data simply put pairs into the map: configData.put("my new config key",
"value") ;.

To write the config data back to the XML file: Gate.writeUserConfig() ;.

Note that new config data will simply override old values, where the keys are the same. In
this way defaults can be set up by putting their values in the main gate.xml file, or the site
gate.xml file; they can then be overridden by the user’s gate.xml file.

7.18 Annotation merging through the API

If we have annotations about the same subject on the same document from different an-
notators, we may need to merge those annotations to form a unified annotation. Two
approaches for merging annotations are implemented in the API, via static methods in the
class gate.util. AnnotationMerging.

The two methods have very similar input and output parameters. Each of the methods
takes an array of annotation sets, which should be the same annotation type on the same
document from different annotators, as input. A single feature can also be specified as a
parameter (or given asnull if no feature is to be specified).

The output is a map, the key of which is one merged annotation and the value of which
represents the annotators (in terms of the indices of the array of annotation sets) who sup-
port the annotation. The methods also have a boolean input parameter to indicate whether
or not the annotations from different annotators are based on the same set of instances,
which can be determined by the static method public boolean isSamelnstancesForAnnota-
tors(AnnotationSet[] annsA) in the class gate.util.IaaCalculation. One instance corre-
sponds to all the annotations with the same span. If the annotation sets are based on the

JAPE: Regular Expressions over Annotations 167

same set of instances, the merging methods will ensure that the merged annotations are on
the same set of instances.

The two methods corresponding to those described for the Annotation Merging plugin de-
scribed in Section 19.11. They are:

e The Method public static void mergeAnnogation(AnnotationSet[] annsArr, String
nameleat,
HashMap< Annotation,String>mergeAnns, int numMinK, boolean isTheSameln-
stances) merges the annotations stored in the array annsArr. The merged annotation is
put into the map mergeAnns, with a key of the merged annotation and value of a string
containing the indices of elements in the annotation set array annsArr which contain
that annotation. NumMinK specifies the minimal number of the annotators support-
ing one merged annotation. The boolean parameter isTheSamelnstances indicate if or
not those annotation sets for merging are based on the same instances.

e Method public static void mergeAnnogationMagjority(AnnotationSet[] annsArr, String
nameFeat, HashMap<Annotation, String>mergeAnns, boolean isTheSamelnstances)
selects the annotations which the majority of the annotators agree on. The meanings
of parameters are the same as those in the above method.

168 JAPE: Regular Expressions over Annotations

Chapter 8

JAPE: Regular Expressions over
Annotations

If Osama bin Laden did not exist, it would be necessary to invent him. For the
past four years, his name has been invoked whenever a US president has sought
to increase the defence budget or wriggle out of arms control treaties. He has
been used to justify even President Bush’s missile defence programme, though
neither he nor his associates are known to possess anything approaching ballistic
missile technology. Now he has become the personification of evil required to
launch a crusade for good: the face behind the faceless terror.

The closer you look, the weaker the case against Bin Laden becomes. While
the terrorists who inflicted Tuesday’s dreadful wound may have been inspired by
him, there is, as yet, no evidence that they were instructed by him. Bin Laden’s
presumed guilt appears to rest on the supposition that he is the sort of man who
would have done it. But his culpability is irrelevant: his usefulness to western
governments lies in his power to terrify. When billions of pounds of military
spending are at stake, rogue states and terrorist warlords become assets precisely
because they are liabilities.

The need for dissent, George Monbiot, The Guardian, Tuesday September 18,
2001.

JAPE is a Java Annotation Patterns Engine. JAPE provides finite state transduction over
annotations based on regular expressions. JAPE is a version of CPSL — Common Pattern
Specification Language!. This chapter introduces JAPE, and outlines the functionality avail-
able. (You can find an excellent tutorial here; thanks to Dhaval Thakker, Taha Osmin and
Phil Lakin).

LA good description of the original version of this language is in Doug Appelt’s TextPro manual. Doug
was a great help to us in implementing JAPE. Thanks Doug!

169

http://www.gate.ac.uk/sale/thakker-jape-tutorial/index.html
http://www.ai.sri.com/~appelt/TextPro

170 JAPE: Regular Expressions over Annotations

JAPE allows you to recognise regular expressions in annotations on documents. Hang on,
there’s something wrong here: a regular language can only describe sets of strings, not graphs,
and GATE’s model of annotations is based on graphs. Hmmm. Another way of saying this:
typically, regular expressions are applied to character strings, a simple linear sequence of
items, but here we are applying them to a much more complex data structure. The result is
that in certain cases the matching process is non-deterministic (i.e. the results are dependent
on random factors like the addresses at which data is stored in the virtual machine): when
there is structure in the graph being matched that requires more than the power of a regular
automaton to recognise, JAPE chooses an alternative arbitrarily. However, this is not the
bad news that it seems to be, as it turns out that in many useful cases the data stored in
annotation graphs in GATE (and other language processing systems) can be regarded as
simple sequences, and matched deterministically with regular expressions.

A JAPE grammar consists of a set of phases, each of which consists of a set of pattern/ac-
tion rules. The phases run sequentially and constitute a cascade of finite state transducers
over annotations. The left-hand-side (LHS) of the rules consist of an annotation pattern
description. The right-hand-side (RHS) consists of annotation manipulation statements.
Annotations matched on the LHS of a rule may be referred to on the RHS by means of
labels that are attached to pattern elements. Consider the following example:

Phase: Jobtitle
Input: Lookup
Options: control = appelt debug = true

Rule: Jobtitlel

(
{Lookup.majorType == jobtitle}
(

{Lookup.majorType == jobtitle}

)7

)

:jobtitle

-—>

:jobtitle.JobTitle = {rule = "JobTitlel"}

The LHS is the part preceding the ‘-==>" and the RHS is the part following it. The LHS spec-
ifies a pattern to be matched to the annotated GATE document, whereas the RHS specifies
what is to be done to the matched text. In this example, we have a rule entitled ‘Jobtitlel’,
which will match text annotated with a ‘Lookup’ annotation with a ‘majorType’ feature of
‘jobtitle’, followed optionally by further text annotated as a ‘Lookup’ with ‘majorType’ of
‘jobtitle’. Once this rule has matched a sequence of text, the entire sequence is allocated a

JAPE: Regular Expressions over Annotations 171

label by the rule, and in this case, the label is ‘jobtitle’. On the RHS, we refer to this span
of text using the label given in the LHS; ‘jobtitle’. We say that this text is to be given an
annotation of type ‘JobTitle” and a ‘rule’ feature set to ‘JobTitlel’.

We began the JAPE grammar by giving it a phase name, e.g. ‘Phase: Jobtitle’. JAPE
grammars can be cascaded, and so each grammar is considered to be a ‘phase’ (see Sec-
tion 8.5). The phase name makes up part of the Java class name for the compiled RHS
actions. Because of this, it must contain alphanumeric characters and underscores only, and
cannot start with a number.

We also provide a list of the annotation types we will use in the grammar. In this case,
we say ‘Input: Lookup’ because the only annotation type we use on the LHS are Lookup
annotations. If no annotations are defined, all annotations will be matched.

Then, several options are set:

e Control; in this case, ‘appelt’. This defines the method of rule matching (see Section
8.4)

e Debug. When set to true, if the grammar is running in Appelt mode and there is more
than one possible match, the conflicts will be displayed on the standard output.

A wide range of functionality can be used with JAPE, making it a very powerful system.
Section 8.1 gives an overview of some common LHS tasks. Section 8.2 talks about the various
operators available for use on the LHS. After that, Section 8.3 outlines RHS functionality.
Section 8.4 talks about priority and Section 8.5 talks about phases. Section 8.6 talks about
using Java code on the RHS, which is the main way of increasing the power of the RHS. We
conclude the chapter with some miscellaneous JAPE-related topics of interest.

8.1 The Left-Hand Side

The LHS of a JAPE grammar aims to match the text span to be annotated, whilst avoiding
undesirable matches. There are various tools available to enable you to do this. This section
outlines how you would approach various common tasks on the LHS of your JAPE grammar.

8.1.1 Matching a Simple Text String

To match a simple text string, you need to refer to a feature on an annotation that contains
the string; for example,

{Token.string == "of"}

172 JAPE: Regular Expressions over Annotations

The following grammar shows a sequence of strings being matched. Bracketing, along with
the ‘or’ operator, is used to define how the strings should come together:

Phase: UrlPre
Input: Token SpaceToken
Options: control = appelt

Rule: Urlpre

((({Token.string == "http"} |
{Token.string == "ftp"})

{Token.string == ":"}

{Token.string == "/"}
{Token.string == "/"}
) |

({Token.string == "www"}
{Token.string == "."}
)

) :urlpre

-—>

:urlpre.UrlPre = {rule = "UrlPre"}

Alternatively you could use the ‘string’ metaproperty. See Section 8.1.4 for an example of
using metaproperties.

8.1.2 Matching Entire Annotation Types

You can specify the presence of an annotation previously assigned from a gazetteer, tokeniser,
or other module. For example, the following will match a Lookup annotation:

{Lookup}

The following will match if there is not a Lookup annotation at this location:

{!Lookup}

The following rule shows several different annotation types being matched. We also see a
string being matched, and again, the use of the ‘or’ operator:

JAPE: Regular Expressions over Annotations 173

Rule:

Known

Priority: 100

(

{Location}|
{Person}|
{Date}|
{Organization}|
{Address}|
{Money} |
{Percent}|
{Token.string == "Dear"}|
{JobTitle}|
{Lookup}

) :known

-—>

{}

8.1.3 Using Attributes and Values

You can specify the attributes (and values) of an annotation to be matched. Several operators
are supported; see Section 8.2 for full details:

{Token.kind == "number"}, {Token.length != 4} - equality and inequality.

{Token.string > "aardvark"}, {Token.length < 10} - comparison operators. >=
and <= are also supported.

{Token.string =~ "[Dd]ogs"}, {Token.string !~ "(7?i)hello"} - regular expres-
sion. ==~ and !=" are also provided, for whole-string matching.

{X contains Y} and {X within Y} for checking annotations within the context of
other annotations.

In the following rule, the ‘category’ feature of the ‘Token’ annotation is used, along with the
‘equals’ operator:

Rule:

Unknown

Priority: 50

(

{Token.category == NNP}

)

:unknown

-—>

:unknown.Unknown = {kind = "PN", rule = Unknown}

174 JAPE: Regular Expressions over Annotations

8.1.4 Using Meta-Properties

In addition to referencing annotation features, JAPE allows access to other ‘meta-properties’
of an annotation. This is done by using an ‘Q’ symbol rather than a ‘. symbol after the

annotation type name. The three meta-properties that are built in are:

e length - returns the spanning length of the annotation.
e string - returns the string spanned by the annotation in the document.

e cleanString - Like string, but with extra white space stripped out. (i.e. ‘\s+’ goes to
a single space and leading or trailing white space is removed).

{X@length > "5"}:label-->:1label.New = {}
Only the value of ‘meta-property’ @string can be accessed from a non-java RHS of a rule:
{X@length > "5"}:label-->:1label.New = {somefeat = :label.X@string }

The ‘meta-properties’ @length and @cleanString are not available in the RHS but may be
added in the future.

8.1.5 Multiple Pattern/Action Pairs

It is also possible to have more than one pattern and corresponding action, as shown in the
rule below. On the LHS, each pattern is enclosed in a set of round brackets and has a unique
label; on the RHS, each label is associated with an action. In this example, the Lookup
annotation is labelled ‘jobtitle’ and is given the new annotation JobTitle; the TempPerson
annotation is labelled ‘person’ and is given the new annotation ‘Person’.

Rule: PersonJobTitle
Priority: 20

(
{Lookup.majorType == jobtitle}
) :jobtitle
(
{TempPerson}
) :person
-—>
:jobtitle.JobTitle = {rule = "PersonJobTitle"},
:person.Person = {kind = "personName", rule = "PersonJobTitle"}

JAPE: Regular Expressions over Annotations 175

Similarly, labelled patterns can be nested, as in the example below, where the whole pattern
is annotated as Person, but within the pattern, the jobtitle is annotated as JobTitle.

Rule: PersonJobTitle?2
Priority: 20

(
(
{Lookup.majorType == jobtitle}
) :jobtitle
{TempPerson}
) :person
-—>
:jobtitle.JobTitle = {rule = "PersonJobTitle"},
:person.Person = {kind = "personName", rule = "PersonJobTitle"}

8.1.6 LHS Macros

Macros allow you to create a definition that can then be used multiple times in
your JAPE rules. In the following JAPE grammar, we have a cascade of macros
used. The macro ‘AMOUNT_NUMBER’ makes use of the macros ‘MILLION_BILLION’
and ‘NUMBER_WORDS’, and the rule ‘MoneyCurrencyUnit’ then makes use of
‘AMOUNT_NUMBER

Phase: Number
Input: Token Lookup
Options: control = appelt

Macro: MILLION_BILLION

({Token.string == "m"}|
{Token.string == "million"}|
{Token.string == "b"}|
{Token.string == "billion"}|
{Token.string == "bn"}|
{Token.string == "k"}|
{Token.string == "K"}

)

Macro: NUMBER_WORDS
(
(({Lookup.majorType == number}
({Token.string == "-"})7

176 JAPE: Regular Expressions over Annotations

) *
{Lookup.majorType == number}
{Token.string == "and"}

)*

({Lookup.majorType == number}
({Token.string == "-"})7?

)*

{Lookup.majorType == number}

Macro: AMOUNT_NUMBER
(({Token.kind == number}
(({Token.string == ","}|
{Token.string == "."}
)
{Token.kind == number}
) *
|
(NUMBER_WORDS)
)
(MILLION_BILLION)?
)

Rule: MoneyCurrencyUnit
(
(AMOUNT _NUMBER)
({Lookup.majorType == currency_unit})
)
:number ——>
:number.Money = {kind = "number", rule = "MoneyCurrencyUnit"}

8.1.7 Using Context

Context can be dealt with in the grammar rules in the following way. The pattern to be
annotated is always enclosed by a set of round brackets. If preceding context is to be included
in the rule, this is placed before this set of brackets. This context is described in exactly
the same way as the pattern to be matched. If context following the pattern needs to be
included, it is placed after the label given to the annotation. Context is used where a pattern
should only be recognised if it occurs in a certain situation, but the context itself does not
form part of the pattern to be annotated.

For example, the following rule for Time (assuming an appropriate macro for ‘year’) would
mean that a year would only be recognised if it occurs preceded by the words ‘in’ or ‘by’:

JAPE: Regular Expressions over Annotations 177

Rule: YearContextl

({Token.string == "in"}|
{Token.string == "by"}
)

(YEAR)

:date -—>

:date.Timex = {kind = "date", rule = "YearContextl"}

Similarly, the following rule (assuming an appropriate macro for ‘email’) would mean that
an email address would only be recognised if it occurred inside angled brackets (which would
not themselves form part of the entity):

Rule: Emailaddressl

({Token.string == ‘<’})

(

(EMAIL)

)

:email

({Token.string == ‘>’})

-—>

:email.Address= {kind = "email", rule = "Emailaddressi"}

Also, it is possible to specify the constraint that one annotation must start at the same place
as another. For example:

Rule: SurnameStartingWithDe

(

{Token.string == "de",
Lookup.majorType == "name",
Lookup.minorType == "surname"}

) :de
-—>
:de.Surname = {prefix = "de"}

This rule would match anywhere where a Token with string ‘de’ and a Lookup with ma-
jorType ‘name’ and minorType ‘surname’ start at the same offset in the text. Both the
Lookup and Token annotations would be included in the :de binding, so the Surname anno-
tation generated would span the longer of the two. Constraints on the same annotation type
must be satisfied by a single annotation, so in this example there must be a single Lookup
matching both the major and minor types — the rule would not match if there were two
different lookups at the same location, one of them satisfying each constraint.

178 JAPE: Regular Expressions over Annotations

It is important to remember that context is consumed by the rule, so it cannot be reused in
another rule within the same phase. So, for example, right context cannot be used as left
context for another rule.

8.1.8 Multi-Constraint Statements

In the examples we have seen so far, most statements have contained only one constraint.
For example, in this statement, the ‘category’ of ‘“Token’ must equal ‘NNP’:

Rule: Unknown
Priority: 50

(

{Token.category == NNP}
)

:unknown
-—>

:unknown.Unknown = {kind = "PN", rule = Unknown}

However, it is equally acceptable to have multiple constraints in a statement. In this example,
the ‘majorType’ of ‘Lookup’ must be ‘name’ and the ‘minorType’ must be ‘surname’:

Rule: Surname

(
{Lookup.majorType == "name",
Lookup.minorType == "surname"}
) :surname
-—>

:surname.Surname = {}

As we saw in Section 8.1.7, the constraints may refer to different annotations. In this
example, in addition to the constraints on the ‘majorType’ and ‘minorType’ of ‘Lookup’, we
also have a constraint on the ‘string’ of “Token’:

Rule: SurnameStartingWithDe

(

{Token.string == "de",
Lookup.majorType == "name",
Lookup.minorType == "surname"}

) :de
-—>

:de.Surname = {prefix = "de"}

JAPE: Regular Expressions over Annotations 179

8.1.9 Negation

All the examples in the preceding sections involve constraints that require the presence of
certain annotations to match. JAPE also supports ‘negative’ constraints which specify the
absence of annotations. A negative constraint is signalled in the grammar by a ‘I’ character.

Negative constraints are generally used in combination with positive ones to constrain the
locations at which the positive constraint can match. For example:

Rule: PossibleName

(

{Token.orth == "upperInitial", !Lookup}
) :name
-—>

:name .PossibleName = {}

This rule would match any uppercase-initial Token, but only where there is no Lookup anno-
tation starting at the same location. The general rule is that a negative constraint matches
at any location where the corresponding positive constraint would not match. Negative con-
straints do not contribute any annotations to the bindings - in the example above, the :name
binding would contain only the Token annotation. The exception to this is when a negative
constraint is used alone, without any positive constraints in the combination. In this case
it binds all the annotations at the match position that do not match the constraint. Thus,
{!Lookup} would bind all the annotations starting at this location except Lookups. In most
cases, negative constraints should only be used in combination with positive ones.

Any constraint can be negated, for example:

Rule: SurnameNotStartingWithDe
(

{Surname, !Token.string ==~ "[Dd]e"}
) :name
-—>

:name.NotDe = {}

This would match any Surname annotation that does not start at the same place
as a Token with the string ‘de’ or ‘De’. Note that this is subtly different from
{Surname, Token.string !=" "[Dd]e"}, as the second form requires a Token annotation
to be present, whereas the first form (IToken...) will match if there is no Token annotation
at all at this location.?

2In the Montreal transducer, the two forms were equivalent

180 JAPE: Regular Expressions over Annotations

Although JAPE provides an operator to look for the absence of a single annotation type,
there is no support for a general negative operator to prevent a rule from firing if a particular
sequence of annotations is found. One solution to this is to create a ‘negative rule’ which
has higher priority than the matching ‘positive rule’. The style of matching must be Appelt
for this to work. To create a negative rule, simply state on the LHS of the rule the pattern
that should NOT be matched, and on the RHS do nothing. In this way, the positive rule
cannot be fired if the negative pattern matches, and vice versa, which has the same end
result as using a negative operator. A useful variation for developers is to create a dummy
annotation on the RHS of the negative rule, rather than to do nothing, and to give the
dummy annotation a rule feature. In this way, it is obvious that the negative rule has fired.
Alternatively, use Java code on the RHS to print a message when the rule fires. An example
of a matching negative and positive rule follows. Here, we want a rule which matches a
surname followed by a comma and a set of initials. But we want to specify that the initials
shouldn’t have the POS category PRP (personal pronoun). So we specify a negative rule
that will fire if the PRP category exists, thereby preventing the positive rule from firing.

Rule: NotPersonReverse

Priority: 20

// we don’t want to match ’Jones, I’
(

{Token.category == NNP}
{Token.string == ","}
{Token.category == PRP}

Rule: PersonReverse
Priority: 5
// we want to match ‘Jones, F.W.’

(
{Token.category == NNP}
{Token.string == ","}
(INITIALS)?

)

.person -—>

8.1.10 Escaping Special Characters

To specify a single or double quote as a string, precede it with a backslash, e.g.

JAPE: Regular Expressions over Annotations 181

{Token. String=="\ll "}

will match a double quote. For other special characters, such as ‘$’, enclose it in double
quotes, e.g.

{Token.category == "PRP\$"}

8.2 LHS Operators in Detail

This section gives more detail on the behaviour of the matching operators used on the left-
hand side of JAPE rules.

8.2.1 Compositional Operators

Compositional operators are used to combine matching constructions in the manner intended.
Union and Kleene operators are available, as is range notation.

Union and Kleene Operators

The following union and Kleene operators are available:

e |-or

* _ zero or more OCCUITences
e 7 - 7Zero or one occurrences

e | - one Or more occurrences
In the following example, you can see the ‘|” and ‘?” operators being used:

Rule: LocOrganization
Priority: 50

(
({Lookup.majorType == location} |
{Lookup.majorType country_adj})
{Lookup.majorType == organization}

182 JAPE: Regular Expressions over Annotations

({Lookup.majorType == organization})?
)
:orgName —->
:orgName.TempOrganization = {kind = "orgName", rule=LocOrganization}

Range Notation

A range notation can also be added. e.g.
({Token}) [1,3]

matches one to three Tokens in a row.
({Token.kind == number}) [3]

matches exactly 3 number Tokens in a row.

8.2.2 Matching Operators

Matching operators are used to specify how matching must take place between a specification
and an annotation in the document. Equality (‘=="and ‘!=") and comparison (‘<’, ‘<=,
‘>="and ‘>’) operators can be used, as can regular expression matching and contextual
operators (‘contains’ and ‘within’).

Equality Operators

The equality operators are ‘==’ and ‘!=". The basic operator in JAPE is equality.
{Lookup.majorType == "person"} matches a Lookup annotation whose majorType fea-
ture has the value ‘person’. Similarly {Lookup.majorType != "person"} would match any

Lookup whose majorType feature does not have the value ‘person’. If a feature is missing
it is treated as if it had an empty string as its value, so this would also match a Lookup
annotation that did not have a majorType feature at all.

Certain type coercions are performed:

e [f the constraint’s attribute is a string, it is compared with the annotation feature value
using string equality (String.equals()).

e If the constraint’s attribute is an integer it is treated as a java.lang.Long. If the
annotation feature value is also a Long, or is a string that can be parsed as a Long,
then it is compared using Long.equals().

JAPE: Regular Expressions over Annotations 183

o If the constraint’s attribute is a floating-point number it is treated as a
java.lang.Double. If the annotation feature value is also a Double, or is a string that
can be parsed as a Double, then it is compared using Double.equals().

e If the constraint’s attribute is true or false (without quotes) it is treated as a
java.lang.Boolean. If the annotation feature value is also a Boolean, or is a string
that can be parsed as a Boolean, then it is compared using Boolean.equals().

The !'= operator matches exactly when == doesn’t.

Comparison Operators

The comparison operators are ‘<’, ‘<=", ‘>=’ and ‘>’. Comparison operators have their
expected meanings, for example {Token.length > 3} matches a Token annotation whose
length attribute is an integer greater than 3. The behaviour of the operators depends on the
type of the constraint’s attribute:

e [f the constraint’s attribute is a string it is compared with the annotation feature value
using Unicode-lexicographic order (see String.compareTo()).

e If the constraint’s attribute is an integer it is treated as a java.lang.Long. If the
annotation feature value is also a Long, or is a string that can be parsed as a Long,
then it is compared using Long. compareTo ().

e If the constraint’s attribute is a floating-point number it is treated as a
java.lang.Double. If the annotation feature value is also a Double, or is a string that
can be parsed as a Double, then it is compared using Double.compareTo ().

Regular Expression Operators

4 YA

The regular expression operators are ‘=~’, ‘==~ ‘I~’ and ‘!=~’". These operators match
regular expressions. {Token.string =~ "[Dd]ogs"} matches a Token annotation whose
string feature contains a substring that matches the regular expression [Dd]ogs, using
" would match if the feature value does not contain a substring that matches the reg-
ular expression. The ==~ and !=" operators are like =~ and !~ respectively, but require
that the whole value match (or not match) the regular expression®. As with == miss-
ing features are treated as if they had the empty string as their value, so the constraint
{Identifier.name ==~ "(7i) [aeiou] *"} would match an Identifier annotation which does

not have a name feature, as well as any whose name contains only vowels.

3This syntax will be familiar to Groovy users.

184 JAPE: Regular Expressions over Annotations

The matching uses the standard Java regular expression library, so full details of the pattern
syntax can be found in the JavaDoc documentation for java.util.regex.Pattern. There are a
few specific points to note:

e To enable flags such as case-insensitive matching you can use the (?flags) notation.
See the Pattern JavaDocs for details.

e If you need to include a double quote character in a regular expression you must pre-
cede it with a backslash, otherwise JAPE will give a syntax error. Quoted strings in
JAPE grammars also convert the sequences \n, \r and \t to the characters newline
(U40004A), carriage return (U4000D) and tab (U+0009) respectively, but these char-
acters can match literally in regular expressions so it does not make any difference to
the result in most cases.*

Contextual Operators

The contextual Operators are ‘contains’ and ‘within’. These operators match annotations
within the context of other annotations.

e contains - Written as {X contains Y}, returns true if an annotation of type X com-
pletely contains an annotation of type Y.

e within - Written as {X within Y}, returns true if an annotation of type X is completely
covered by an annotation of type Y.

For either operator, the right-hand value (Y in the above examples) can be a full constraint
itself. For example {X contains {Y.foo==bar}} is also accepted. The operators can be
used in a multi-constraint statement (see Section 8.1.8) just like any of the traditional ones,
so {X.f1 !'= "something", X contains {Y.foo==bar}} is valid.

Custom Operators

It is possible to add additional custom operators without modifying the JAPE language.
There are new init-time parameters to Transducer so that additional annotation ‘meta-
property’ accessors and custom operators can be referenced at runtime. To add a custom
operator, write a class that implements gate.jape.constraint.ConstraintPredicate, make the
class available to GATE (either by putting the class in a JAR file in the 1ib directory or

However this does mean that it is not possible to include an n, r or t character after a backslash in a
JAPE quoted string, or to have a backslash as the last character of your regular expression. Workarounds
include placing the backslash in a character class ([\\|—) or enabling the (?x) flag, which allows you to put
whitespace between the backslash and the offending character without changing the meaning of the pattern.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

JAPE: Regular Expressions over Annotations 185

by putting the class in a plugin and loading the plugin), and then list that class name for
the Transducer’s ‘operators’ property. Similarly, to add a custom ‘meta-property’ accessor,
write a class that implements gate.jape.constraint.AnnotationAccessor, and then list that
class name in the Transducer’s ‘annotationAccessors’ property.

8.3 The Right-Hand Side

The RHS of the rule contains information about the annotation to be created/manipulated.
Information about the text span to be annotated is transferred from the LHS of the rule
using the label just described, and annotated with the entity type (which follows it). Finally,
attributes and their corresponding values are added to the annotation. Alternatively, the
RHS of the rule can contain Java code to create or manipulate annotations, see Section 8.6.

8.3.1 A Simple Example

In the simple example below, the pattern described will be awarded an annotation of type
‘Enamex’ (because it is an entity name). This annotation will have the attribute ‘kind’,
with value ‘location’; and the attribute ‘rule’; with value ‘GazLocation’. (The purpose of
the ‘rule’ attribute is simply to ease the process of manual rule validation).

Rule: GazLocation

(
{Lookup.majorType == location}
)
:location ——>
:location.Enamex = {kind="location", rule=GazLocation}

8.3.2 Copying Feature Values from the LHS to the RHS

JAPE provides limited support for copying annotation feature values from the left to the
right hand side of a rule, for example:

Rule: LocationType

(

{Lookup.majorType == location}
) :1loc
-—>
:loc.Location = {rule = "LocationType", type = :loc.Lookup.minorType}

186 JAPE: Regular Expressions over Annotations

This will set the ‘type’ feature of the generated location to the value of the ‘minorType’ fea-
ture from the ‘Lookup’ annotation bound to the loc label. If the Lookup has no minorType,
the Location will have no ‘type’ feature. The behaviour of newFeat = :bind.Type.oldFeat
is:

Find all the annotations of type Type from the left hand side binding bind.

Find one of them that has a non-null value for its oldFeat feature (if there is more
than one, which one is chosen is up to the JAPE implementation).

If such a value exists, set the newFeat feature of our newly created annotation to this
value.

If no such non-null value exists, do not set the newFeat feature at all.

Notice that the behaviour is deliberately underspecified if there is more than one Type anno-
tation in bind. If you need more control, or if you want to copy several feature values from
the same left hand side annotation, you should consider using Java code on the right hand
side of your rule (see Section 8.6).

8.3.3 RHS Macros

Macros, first introduced in the context of the left-hand side (Section 8.1.6) can also be used
on the RHS of rules. In this case, the label (which matches the label on the LHS of the rule)
should be included in the macro. Below we give an example of using a macro on the RHS:

Macro: UNDERSCORES_OKAY // separate
:match // lines
{

AnnotationSet matchedAnns = bindings.get("match");

int begOffset = matchedAnns.firstNode().getOffset().intValue();

int endOffset = matchedAnns.lastNode().getOffset().intValue();
String mydocContent = doc.getContent().toString();

String matchedString = mydocContent.substring(begOffset, endOffset);

FeatureMap newFeatures = Factory.newFeatureMap();

if (matchedString.equals("Spanish")) {
newFeatures.put ("myrule", "Lower");

}

else {

newFeatures.put ("myrule", "Upper");

JAPE: Regular Expressions over Annotations 187

newFeatures.put("quality", "1");
annotations.add(matchedAnns.firstNode(), matchedAnns.lastNode(),
"Spanish_mark", newFeatures);

Rule: Lower

(
({Token.string == "Spanish"})

:match) -->UNDERSCORES_OKAY // no label here, only macro name

Rule: Upper

(
({Token.string == "SPANISH"})
:match) -->UNDERSCORES_OKAY // no label here, only macro name

8.4 Use of Priority

Each grammar has one of 5 possible control styles: ‘brill’; ‘all’; ‘first’, ‘once’ and ‘appelt’.
This is specified at the beginning of the grammar.

The Brill style means that when more than one rule matches the same region of the document,
they are all fired. The result of this is that a segment of text could be allocated more than one
entity type, and that no priority ordering is necessary. Brill will execute all matching rules
starting from a given position and will advance and continue matching from the position in
the document where the longest match finishes.

The ‘all” style is similar to Brill, in that it will also execute all matching rules, but the
matching will continue from the next offset to the current one.

For example, where [| are annotations of type Ann
[aaa[bbbl] [ccclddd]]
then a rule matching {Ann} and creating {Ann-2} for the same spans will generate:

BRILL: [aaabbb] [cccddd]
ALL: [aaa[bbbl] [ccclddd]]

188 JAPE: Regular Expressions over Annotations

With the ‘first’ style, a rule fires for the first match that’s found. This makes it inappropriate
for rules that end in ‘4’ or ‘?” or “*’. Once a match is found the rule is fired; it does not
attempt to get a longer match (as the other two styles do).

With the ‘once’ style, once a rule has fired, the whole JAPE phase exits after the first match.
With the appelt style, only one rule can be fired for the same region of text, according to a

set of priority rules. Priority operates in the following way.

1. From all the rules that match a region of the document starting at some point X, the
one which matches the longest region is fired.

2. If more than one rule matches the same region, the one with the highest priority is
fired

3. If there is more than one rule with the same priority, the one defined earlier in the
grammar is fired.

An optional priority declaration is associated with each rule, which should be a positive inte-
ger. The higher the number, the greater the priority. By default (if the priority declaration
is missing) all rules have the priority -1 (i.e. the lowest priority).

For example, the following two rules for location could potentially match the same text.

Rule: Locationl
Priority: 25

(

({Lookup.majorType == loc_key, Lookup.minorType == pre}

{SpaceToken})?

{Lookup.majorType == location}

({SpaceToken}

{Lookup.majorType == loc_key, Lookup.minorType == postl})?
)

:locName —->

:locName.Location = {kind = "location", rule = "Locationl"}

Rule: GazLocation
Priority: 20
(
({Lookup.majorType == location}):location

)

-—> :location.Name = {kind = "location", rule=GazLocation}

JAPE: Regular Expressions over Annotations 189

Assume we have the text ‘China sea’, that ‘China’ is defined in the gazetteer as ‘location’,
and that sea is defined as a ‘loc_key’ of type ‘post’. In this case, rule Locationl would apply,
because it matches a longer region of text starting at the same point (‘China sea’, as opposed
to just ‘China’). Now assume we just have the text ‘China’. In this case, both rules could
be fired, but the priority for Locationl is highest, so it will take precedence. In this case,
since both rules produce the same annotation, so it is not so important which rule is fired,
but this is not always the case.

One important point of which to be aware is that prioritisation only operates within a
single grammar. Although we could make priority global by having all the rules in a single
grammar, this is not ideal due to other considerations. Instead, we currently combine all the
rules for each entity type in a single grammar. An index file (main.jape) is used to define
which grammars should be used, and in which order they should be fired.

Note also that depending on the control style, firing a rule may ‘consume’ that part of the
text, making it unavailable to be matched by other rules. This can be a problem for example
if one rule uses context to make it more specific, and that context is then missed by later
rules, having been consumed due to use of for example the ‘Brill” control style. ‘All’, on the
other hand, would allow it to be matched.

Using priority to resolve ambiguity

If the Appelt style of matching is selected, rule priority operates in the following way.

1. Length of rule — a rule matching a longer pattern will fire first.

2. Explicit priority declaration. Use the optional Priority function to assign a ranking.
The higher the number, the higher the priority. If no priority is stated, the default is
-1.

3. Order of rules. In the case where the above two factors do not distinguish between two
rules, the order in which the rules are stated applies. Rules stated first have higher
priority.

Because priority can only operate within a single grammar, this can be a problem for dealing
with ambiguity issues. One solution to this is to create a temporary set of annotations
in initial grammars, and then manipulate this temporary set in one or more later phases
(for example, by converting temporary annotations from different phases into permanent
annotations in a single final phase). See the default set of grammars for an example of this.

If two possible ways of matching are found for the same text string, a conflict can arise.
Normally this is handled by the priority mechanism (test length, rule priority and finally
rule precedence). If all these are equal, Jape will simply choose a match at random and fire
it. This leads ot non-deterministic behaviour, which should be avoided.

190 JAPE: Regular Expressions over Annotations

8.5 Using Phases Sequentially

A JAPE grammar consists of a set of sequential phases. The list of phases is specified (in the
order in which they are to be run) in a file, conventionally named main.jape. When loading
the grammar into GATE, it is only necessary to load this main file — the phases will then be
loaded automatically. It is, however, possible to omit this main file, and just load the phases
individually, but this is much more time-consuming. The grammar phases do not need to be
located in the same directory as the main file, but if they are not, the relative path should
be specified for each phase.

One of the main reasons for using a sequence of phases is that a pattern can only be used
once in each phase, but it can be reused in a later phase. Combined with the fact that
priority can only operate within a single grammar, this can be exploited to help deal with
ambiguity issues.

The solution currently adopted is to write a grammar phase for each annotation type, or
for each combination of similar annotation types, and to create temporary annotations.
These temporary annotations are accessed by later grammar phases, and can be manipulated
as necessary to resolve ambiguity or to merge consecutive annotations. The temporary
annotations can either be removed later, or left and simply ignored.

Generally, annotations about which we are more certain are created earlier on. Annotations
which are more dubious may be created temporarily, and then manipulated by later phases
as more information becomes available.

An annotation generated in one phase can be referred to in a later phase, in exactly the same
way as any other kind of annotation (by specifying the name of the annotation within curly
braces). The features and values can be referred to or omitted, as with all other annotations.
Make sure that if the Input specification is used in the grammar, that the annotation to be
referred to is included in the list.

8.6 Using Java Code on the RHS

The RHS of a JAPE rule can consist of any Java code. This is useful for removing temporary
annotations and for percolating and manipulating features from previous annotations. In
the example below

The first rule below shows a rule which matches a first person name, e.g. ‘Fred’, and adds
a gender feature depending on the value of the minorType from the gazetteer list in which
the name was found. We first get the bindings associated with the person label (i.e. the
Lookup annotation). We then create a new annotation called ‘personAnn’ which contains
this annotation, and create a new FeatureMap to enable us to add features. Then we get the
minorType features (and its value) from the personAnn annotation (in this case, the feature

JAPE: Regular Expressions over Annotations 191

will be ‘gender’ and the value will be ‘male’), and add this value to a new feature called
‘gender’. We create another feature ‘rule’ with value ‘FirstName’. Finally, we add all the
features to a new annotation ‘FirstPerson’ which attaches to the same nodes as the original
‘person’ binding.

Note that inputAS and outputAS represent the input and output annotation set. Normally,
these would be the same (by default when using ANNIE, these will be the ‘Default’ annota-
tion set). Since the user is at liberty to change the input and output annotation sets in the
parameters of the JAPE transducer at runtime, it cannot be guaranteed that the input and
output annotation sets will be the same, and therefore we must specify the annotation set
we are referring to.

Rule: FirstName

(

{Lookup.majorType == person_first}

) :person

-—>

{
AnnotationSet person = bindings.get("person");
Annotation personAnn = person.iterator().next();

FeatureMap features = Factory.newFeatureMap();
features.put("gender", personAnn.getFeatures().get("minorType"));
features.put("rule", "FirstName");
outputAS.add(person.firstNode(), person.lastNode(), "FirstPerson",
features) ;

}

The second rule (contained in a subsequent grammar phase) makes use of annotations pro-
duced by the first rule described above. Instead of percolating the minorType from the
annotation produced by the gazetteer lookup, this time it percolates the feature from the
annotation produced by the previous grammar rule. So here it gets the ‘gender’ feature value
from the ‘FirstPerson’ annotation, and adds it to a new feature (again called ‘gender’ for
convenience), which is added to the new annotation (in outputAS) ‘TempPerson’. At the
end of this rule, the existing input annotations (from inputAS) are removed because they are
no longer needed. Note that in the previous rule, the existing annotations were not removed,
because it is possible they might be needed later on in another grammar phase.

Rule: GazPersonFirst

(

{FirstPerson}

)

:person

192 JAPE: Regular Expressions over Annotations

-=>
{

AnnotationSet person = bindings.get("person");
Annotation personAnn = person.iterator().next();
FeatureMap features = Factory.newFeatureMap();

features.put("gender", personAnn.getFeatures().get("gender"));
features.put("rule", "GazPersonFirst");
outputAS.add(person.firstNode(), person.lastNode(), "TempPerson",
features) ;

inputAS.removeAll (person) ;

}

You can combine Java blocks and normal assignments (separating each block or assignment
from the next with a comma), so the above RHS could be more simply expressed as

-—>
:person.TempPerson = { gender = :person.FirstPerson.gender,
rule = "GazPersonFirst" },
{
inputAS.removeAll (bindings.get ("person"));
+

8.6.1 A More Complex Example

The example below is more complicated, because both the title and the first name (if present)
may have a gender feature. There is a possibility of conflict since some first names are
ambiguous, or women are given male names (e.g. Charlie). Some titles are also ambiguous,
such as ‘Dr’, in which case they are not marked with a gender feature. We therefore take the
gender of the title in preference to the gender of the first name, if it is present. So, on the
RHS, we first look for the gender of the title by getting all Title annotations which have a
gender feature attached. If a gender feature is present, we add the value of this feature to a
new gender feature on the Person annotation we are going to create. If no gender feature is
present, we look for the gender of the first name by getting all firstPerson annotations which
have a gender feature attached, and adding the value of this feature to a new gender feature
on the Person annotation we are going to create. If there is no firstPerson annotation and
the title has no gender information, then we simply create the Person annotation with no
gender feature.

Rule: PersonTitle
Priority: 35

JAPE: Regular Expressions over Annotations 193

/* allows Mr. Jones, Mr Fred Jones etc. */

(
(TITLE)
(FIRSTNAME | FIRSTNAMEAMBIG | INITIALS2)*
(PREFIX)?
{Upper?}
({Upper})?
(PERSONENDING) ?
)
:person —->
{
FeatureMap features = Factory.newFeatureMap();
AnnotationSet personSet = bindings.get("person");

// get all Title annotations that have a gender feature
HashSet fNames = new HashSet();

fNames.add ("gender") ;

AnnotationSet personTitle = personSet.get("Title", fNames);

// if the gender feature exists
if (personTitle != null && personTitle.size()>0)
{
Annotation personAnn = personTitle.iterator().next();
features.put("gender", personAnn.getFeatures().get("gender"));
}
else
{
// get all firstPerson annotations that have a gender feature
AnnotationSet firstPerson = personSet.get("FirstPerson", fNames);

if (firstPerson != null && firstPerson.size()>0)

// create a new gender feature and add the value from firstPerson
{

Annotation personAnn = firstPerson.iterator().next();
features.put("gender", personAnn.getFeatures().get("gender"));

}

}
// create some other features
features.put("kind", "personName");
features.put("rule", "PersonTitle");

// create a Person annotation and add the features we’ve created
outputAS.add(personSet.firstNode(), personSet.lastNode(), "TempPerson",
features) ;

194 JAPE: Regular Expressions over Annotations

8.6.2 Adding a Feature to the Document

This is useful when using conditional controllers, where we only want to fire a particular
resource under certain conditions. We first test the document to see whether it fulfils these
conditions or not, and attach a feature to the document accordingly.

In the example below, we test whether the document contains an annotation of type ‘mes-
sage’. In emails, there is often an annotation of this type (produced by the document format
analysis when the document is loaded in GATE). Note that annotations produced by doc-
ument format analysis are placed automatically in the ‘Original markups’ annotation set,
so we must ensure that when running the processing resource containing this grammar that
we specify the Original markups set as the input annotation set. It does not matter what
we specify as the output annotation set, because the annotation we produce is going to
be attached to the document and not to an output annotation set. In the example, if an
annotation of type ‘message’ is found, we add the feature ‘genre’ with value ‘email’ to the
document.

Rule: Email
Priority: 150

(
{message}

)

-—>

{

doc.getFeatures() .put("genre", "email");

3

8.6.3 Finding the Tokens of a Matched Annotation

In this section we will demonstrate how by using Java on the right-hand side one can find all
Token annotations that are covered by a matched annotation, e.g., a Person or an Organiza-
tion. This is useful if one wants to transfer some information from the matched annotations
to the tokens. For example, to add to the Tokens a feature indicating whether or not they
are covered by a named entity annotation deduced by the rule-based system. This feature
can then be given as a feature to a learning PR, e.g. the HMM. Similarly, one can add a
feature to all tokens saying which rule in the rule based system did the match, the idea being
that some rules might be more reliable than others. Finally, yet another useful feature might
be the length of the coreference chain in which the matched entity is involved, if such exists.

JAPE: Regular Expressions over Annotations 195

The example below is one of the pre-processing JAPE grammars used by the HMM appli-
cation. To inspect all JAPE grammars, see the muse/applications/hmm directory in the
distribution.

Phase: NEInfo

Input: Token Organization Location Person
Options: control = appelt

Rule: NEInfo

Priority:100

({Organization} | {Person} | {Location}):entity
-—>
{

//get the annotation set

AnnotationSet annSet = bindings.get("entity");

//get the only annotation from the set
Annotation entityAnn = annSet.iterator().next();

AnnotationSet tokenAS = inputAS.get("Token",
entityAnn.getStartNode() .get0ffset(),
entityAnn.getEndNode () .get0ffset());

List<Annotation> tokens = new ArrayList<Annotation>(tokenAS);

//if no tokens to match, do nothing

if (tokens.isEmpty())

return;
Collections.sort(tokens, new gate.util.0ffsetComparator());

Annotation curToken=null;
for (int i=0; i < tokens.size(); i++) {
curToken = tokens.get(i);
String ruleInfo = (String) entityAnn.getFeatures().get("rulel");
String NMRuleInfo = (String) entityAnn.getFeatures().get("NMRule");
if (ruleInfo != null) {
curToken.getFeatures() .put ("rule_NE_kind", entityAnn.getType());
curToken.getFeatures() .put ("NE_rule_id", rulelnfo);
}
else if (NMRuleInfo != null) {
curToken.getFeatures() .put("rule_NE_kind", entityAnn.getType());
curToken.getFeatures() .put ("NE_rule_id", "orthomatcher");

196

JAPE: Regular Expressions over Annotations
}
else {
curToken.getFeatures() .put ("rule_NE_kind", "None");
curToken.getFeatures() .put ("NE_rule_id", "None");
}

List matchesList = (List) entityAnn.getFeatures().get("matches");
if (matchesList != null) {
if (matchesList.size() == 2)
curToken.getFeatures() .put("coref_chain_length", "2");
else if (matchesList.size() > 2 && matchesList.size() < 5)
curToken.getFeatures() .put ("coref_chain_length", "3-4");
else

curToken.getFeatures() .put("coref_chain_length", "5-more");
}
else
curToken.getFeatures() .put("coref_chain_length", "0");
}//for

Rule: TokenNEInfo
Priority:10
({Token}) :entity

-=>

{

//get the annotation set
AnnotationSet annSet = bindings.get("entity");

//get the only annotation from the set
Annotation entityAnn = annSet.iterator().next();

entityAnn.getFeatures() .put("rule_NE_kind", "None");
entityAnn.getFeatures() .put("NE_rule_id", "None");
entityAnn.getFeatures() .put("coref_chain_length", "0");

8.6.4 Using Named Blocks

For the common case where a Java block refers just to the annotations from a single left-
hand-side binding, JAPE provides a shorthand notation:

Rule: RemoveDoneFlag

JAPE: Regular Expressions over Annotations 197

(
{Instance.flag == "done"}

) :inst

-=>

rinst{
Annotation theIlnstance = instAnnots.iterator() .next();
theIlnstance.getFeatures() .remove("flag");

}

This rule is equivalent to the following:

Rule: RemoveDoneFlag

(
{Instance.flag == "done"}
) :inst
-—>
{
AnnotationSet instAnnots = bindings.get("inst");
if (instAnnots != null && instAnnots.size() !'= 0) {
Annotation theInstance = instAnnots.iterator().next();
theInstance.getFeatures() .remove("flag");
}
}

A label :<label> on a Java block creates a local variable <label>Annots within the Java
block which is the AnnotationSet bound to the <label> label. Also, the Java code in the
block is only executed if there is at least one annotation bound to the label, so you do not
need to check this condition in your own code. Of course, if you need more flexibility, e.g.
to perform some action in the case where the label is not bound, you will need to use an
unlabelled block and perform the bindings.get () yourself.

8.6.5 Java RHS Overview

When a JAPE grammar is parsed, a Jape parser creates action classes for all Java RHSs in
the grammar. (one action class per RHS) RHS Java code will be embedded as a body of the
method doit and will work in context of this method. When a particular rule is fired, the
method doit will be executed.

Method doit is specified by the interface gate. jape.RhsAction. Each action class imple-
ments this interface and is generated with the following template:

198

© 0 N 3 ks W N

e
B W N = O

15
16
17
18
19

import
import
import
import
import
import
import

java.
java.
gate.
gate.
gate
gate.
gate.

io.*;
util.x*;
*3

jape .*;

annotation. *;
util.*;

JAPE: Regular Expressions over Annotations

.creole.ontology.*;

class <AutogeneratedActionClassName >
implements java.io.Serializable, gate.jape.RhsAction {
public void doit(

gate.
java.
gate.
gate.
gate.

gate

Document doc,

AnnotationSet
AnnotationSet
AnnotationSet

util.Map<java.

lang.String, gate.AnnotationSet> bindings,
annotations,

inputAS,

outputAS,

.creole.ontology.0Ontology ontology) throws JapeException {
// your RHS Java code will be embedded here

Method doit has the following parameters that can be used in RHS Java code:

e gate.Document doc - a document that is currently processed

e java.util.Map<String, AnnotationSet> bindings - a map of binding variables
where a key is a (String) name of binding variable and value is (AnnotationSet) set of
annotations corresponding to this binding variable®

e gate.AnnotationSet annotations - Do not use this (it’s a synonym for outputAS
that is still used in some grammars but is now deprecated).

e gate.AnnotationSet inputAS - input annotations

e gate.AnnotationSet outputAS - output annotations

e gate.creole.ontology.Ontology ontology - a GATE’s transducer ontology

In your Java RHS you can use short names for all Java classes that are imported by the
action class (plus Java classes from the packages that are imported by default according to
JVM specification: java.lang.*, java.math.*). But you need to use fully qualified Java class
names for all other classes. For example:

gk W N

-->

{

// VALID line examples
AnnotationSet as =
InputStream is =

Prior to GATE 5.2 this parameter was a plain Map without type parameters, which is why you will see
a lot of now-unnecessary casts in existing JAPE grammars such as those in ANNIE.

JAPE: Regular Expressions over Annotations 199

java.util.logging.Logger mylLogger =
java.util.logging.Logger.getLogger (" JAPELogger");
java.sql.Statement stmt =

© 0 N O

10 // INVALID line examples
11 Logger myLogger = Logger.getLogger ("JapePhaselLogger");
12 Statement stmt =

13}

In order to add additional Java import or import static statements to all Java RHS’ of the
rules in a JAPE grammar file, you can use the following code at the beginning of the JAPE
file:

1 Imports: {

2 1import java.util.logging.Logger;
3 1import java.sql.x*;
4

3

These import statements will be added to the default import statements for each action
class generated for a RHS and the corresponding classes can be used in the RHS Java
code without the need to use fully qualified names. A useful class to know about is
gate.Utils (see the javadoc documentation for details), which provides static utility meth-
ods to simplify some common tasks that are frequently used in RHS Java code. Adding an
import static gate.Utils.x; to the Imports block allows you to use these methods without
any prefix, for example:

1 Ao
2 AnnotationSet lookups = bindings.get("lookup");
3 outputAS.add(start(lookups), end(lookups), "Person',
4 featureMap("text", stringFor (doc, lookups)));
5}
You can do the same with your own utility classes — JAPE rules can import any class

available to GATE, including classes defined in a plugin.

8.7 Optimising for Speed

The way in which grammars are designed can have a huge impact on the processing speed.
Some simple tricks to keep the processing as fast as possible are:

e avoid the use of the * and + operators. Replace them with range queries where possible.
For example, instead of

({Token}) *

use

http://gate.ac.uk/gate/doc/javadoc/gate/Utils.html

200 JAPE: Regular Expressions over Annotations

({Token}) [0, 3]

if you can predict that you won’t need to recognise a string of Tokens longer than 3.

e avoid specifying unnecessary elements such as SpaceTokens where you can. To do this,
use the Input specification at the beginning of the grammar to stipulate the annotations
that need to be considered. If no Input specification is used, all annotations will be
considered (so, for example, you cannot match two tokens separated by a space unless
you specify the SpaceToken in the pattern). If, however, you specify Tokens but not
SpaceTokens in the Input, SpaceTokens do not have to be mentioned in the pattern
to be recognised. If, for example, there is only one rule in a phase that requires
SpaceTokens to be specified, it may be judicious to move that rule to a separate phase
where the SpaceToken can be specified as Input.

e avoid the shorthand syntax for copying feature values (newFeat = :bind.Type.oldFeat),
particularly if you need to copy multiple features from the left to the right hand side
of your rule.

8.8 Ontology Aware Grammar Transduction

GATE supports two different methods for ontology aware grammar transduction. Firstly it
is possible to use the ontology feature both in grammars and annotations, while using the
default transducer. Secondly it is possible to use an ontology aware transducer by passing
an ontology language resource to one of the subsumes methods in SimpleFeatureMapImpl.
This second strategy does not check for ontology features, which will make the writing
of grammars easier, as there is no need to specify ontology when writing them. More
information about the ontology-aware transducer can be found in Section 14.9.

8.9 Serializing JAPE Transducer

JAPE grammars are written as files with the extension ‘.jape’, which are parsed and com-
piled at run-time to execute them over the GATE document(s). Serialization of the JAPE
Transducer adds the capability to serialize such grammar files and use them later to boot-
strap new JAPE transducers, where they do not need the original JAPE grammar file. This
allows people to distribute the serialized version of their grammars without disclosing the
actual contents of their jape files. This is implemented as part of the JAPE Transducer PR.
The following sections describe how to serialize and deserialize them.

JAPE: Regular Expressions over Annotations 201

8.9.1 How to Serialize?

Once an instance of a JAPE transducer is created, the option to serialize it appears in the
context menu of that instance. The context menu can be activated by right clicking on the
respective PR. Having done so, it asks for the file name where the serialized version of the
respective JAPE grammar is stored.

8.9.2 How to Use the Serialized Grammar File?

The JAPE Transducer now also has an init-time parameter binaryGrammarURL, which
appears as an optional parameter to the grammarURL. The User can use this parameter
(i.e. binaryGrammarURL) to specify the serialized grammar file.

8.10 The JAPE Debugger

As of Version 5.1 the Jape debugger is not supported.

8.11 Notes for Montreal Transducer Users

In June 2008, the standard JAPE transducer implementation gained a number of features
inspired by Luc Plamondon’s ‘Montreal Transducer’, which was available as a GATE plugin
for several years, and was made obsolete in Version 5.1. If you have existing Montreal Trans-
ducer grammars and want to update them to work with the standard JAPE implementation
you should be aware of the following differences in behaviour:

e Quantifiers (*, + and ?7) in the Montreal transducer are always greedy, but this is not
necessarily the case in standard JAPE.

e The Montreal Transducer defines {Type.feature != value} to be the same as
{!Type.feature == value} (and likewise the !~ operator in terms of =~). In stan-
dard JAPE these constructs have different semantics. {Type.feature != value}

will only match if there is a Type annotation whose feature feature does not
have the given value, and if it matches it will bind the single Type annotation.
{!Type.feature == value} will match if there is no Type annotation at a given place
with this feature (including when there is no Type annotation at all), and if it matches
it will bind every other annotation that starts at that location. If you have used !=
in your Montreal grammars and want them to continue to behave the same way you
must change them to use the prefix-! form instead (see Section 8.1.9).

202 ANNIC: ANNotations-In-Context

e The =~ operator in standard JAPE looks for regular expression matches anywhere
within a feature value, whereas in the Montreal transducer it requires the whole string
to match. To obtain the whole-string matching behaviour in standard JAPE, use the
==" operator instead (see Section 8.2.2).

Chapter 9

ANNIC: ANNotations-In-Context

ANNIC (ANNotations-In-Context) is a full-featured annotation indexing and retrieval sys-
tem. It is provided as part of an extension of the Serial Data-stores, called Searchable Serial
Data-store (SSD).

ANNIC can index documents in any format supported by the GATE system (i.e., XML,
HTML, RTF, e-mail, text, etc). Compared with other such query systems, it has additional
features addressing issues such as extensive indexing of linguistic information associated with
document content, independent of document format. It also allows indexing and extraction of
information from overlapping annotations and features. Its advanced graphical user interface
provides a graphical view of annotation markups over the text, along with an ability to build
new queries interactively. In addition, ANNIC can be used as a first step in rule development
for NLP systems as it enables the discovery and testing of patterns in corpora.

ANNIC is built on top of the Apache Lucene! — a high performance full-featured search engine
implemented in Java, which supports indexing and search of large document collections. Our
choice of IR engine is due to the customisability of Lucene. For more details on how Lucene
was modified to meet the requirements of indexing and querying annotations, please refer to
[Aswani et al. 05].

As explained earlier, SSD is an extension of the serial data-store. In addition to the persist
location, SSD asks user to provide some more information (explained later) that it uses to
index the documents. Once the SSD has been initiated, user can add/remove documents/-
corpora to the SSD in a similar way it is done with other data-stores. When documents are
added to the SSD, it automatically tries to index them. It updates the index whenever there
is a change in any of the documents stored in the SSD and removes the document from the
index if it is deleted from the SSD. Be warned that only the annotation sets, types and fea-
tures initially provided during the SSD creation time, will be updated when adding/removing
documents to the datastore.

Thttp://lucene.apache.org
203

204

ANNIC: ANNotations-In-Context

SSD has an advanced graphical interface that allows users to issue queries over the SSD.
Below we explain the parameters required by SSD and how to instantiate it, how to use its
graphical interface and how to use SSD programmatically.

9.1 Instantiating SSD

Steps:

1. In GATE Developer, right click on ‘Datastores’ and select ‘Create Datastore’.

2. From a drop-down list select ‘Lucene Based Searchable DataStore’.

3. Here, you will see an input window. Please provide these parameters:

(a)
(b)
()

DataStore URL: Select an empty folder where the DS is created.
Index Location: Select an empty folder. This is where the index will be created.

Annotation Sets: Here, you can provide one or more annotation sets that you
wish to index or exclude from being indexed. In order to be able to index the
default annotation set, you must click on the edit list icon and add an empty field
to the list. If there are no annotation sets provided, all the annotation sets in all
documents are indexed.

Base-Token Type: (e.g. Token or Key.Token) These are the basic tokens of any
document. Your documents must have the annotations of Base-Token-Type in
order to get indexed. These basic tokens are used for displaying contextual in-
formation while searching patterns in the corpus. In case of indexing more than
one annotation set, user can specify the annotation set from which the tokens
should be taken (e.g. Key.Token- annotations of type Token from the annotation
set called Key). In case user does not provide any annotation set name (e.g.
Token), the system searches in all the annotation sets to be indexed and the base-
tokens from the first annotation set with the base token annotations are taken.
Please note that the documents with no base-tokens are not indexed. However, if
the ”create tokens automatically” option is selected, the SSD creates base-tokens
automatically. Here, each string delimited with white space is considered as a
token.

Index Unit Type: (e.g. Sentence, Key.Sentence) This specifies the unit of Index.
In other words, annotations lying within the boundaries of these annotations are
indexed (e.g. in the case of “Sentences”, no annotations that are spanned across
the boundaries of two sentences are considered for indexing). User can specify
from which annotation set the index unit annotations should be considered. If
user does not provide any annotation set, the SSD searches among all annotation
sets for index units. If this field is left empty or SSD fails to locate index units,
the entire document is considered as a single unit.

ANNIC: ANNotations-In-Context

File Options Tools Help

& ® %8 > 2

205

{g/ft—anthrax—OS—oct:;; Messages ' file: fimp fa, |

5/ ft-anthrax-08-oct
@ Persan} Carpus: |Entire datastare | | Annotation set: m
&7 tt-aircraft-crash- POs= =B}
Type= ="organization”} Results: (Cl——————+ Context size:
@ ft-aircraft-crash- <] . Search 3 Clear Mext page of 50 results
e Frocessing Fesources ---
:: AnMIE Orthomatch Context , said the company. Ms Manley joined Marks & Spencer three wears ago, and
e AMNIE NE Transd POS [| e] fveo e e e Jfeo (s JRe]lfee] (=
‘ AMMIE POS Tagge Type m |0rganizati0n Htime ||date_unit| -
W AMMIE Sentence 51
Person T -
€ AHNIE Cazenteer EXCTTTCNN ik view, configuration B L
'E: ANMIE English Tak, DisplayshortcutAnnatation twpe Feature Crop ⅆRemo\aﬂ
@ DocumEnt Resat P POS Token w |category | w | Crop end | >
v . e
' Data stores Type |Lookup w \majorType |* |Cropend |+ b4
v Persan - w |Crop end | =
' file: ftmp/a/ i bl
aff ~ w |Crop end | w -

Page 124 results) _‘;",'I Export Pi Global [One item |

4] T

[

A|_annotation Type | Count
Left context Match 2| Taoken Sip3od -
immunity and regulatory approwval. Mr Eddington said BA Wuul[: Lookup 17191 =
immunity and regulatory approwval. Mr Eddington said Ba woul = Septence 11015
, said the comparmy. |Ms Manley joined Marks & Spencer| three n 5340
said the company. [Ms Manley joined Marks & Spencer| three = | 5| gration LTEE —
B -

4] Ml I [» ;ElLSeriaI Datastore Yiewear LLucene Datastore Searcher

Hide this resource wiew

Figure 9.1: Searchable Serial Datastore Viewer.

(f) Features: Finally, users can specify the annotation types and features that should
be indexed or excluded from being indexed. (e.g. SpaceToken and Split). If user
wants to exclude only a specific feature of a specific annotation type, he/she can
specify it using a ’.” separator between the annotation type and its feature (e.g.

Person.matches).

4. Click OK. If all parameters are OK, a new empty DS will be created.

5. Create an empty corpus and save it to the SSD.

6. Populate it with some documents. Each document added to the corpus and eventually
to the SSD is indexed automatically. If the document does not have the required
annotations, that document is skipped and not indexed.

206 ANNIC: ANNotations-In-Context

9.2 Search GUI

9.2.1 Overview

Figure 9.1 shows the search GUI for a datastore. The top section contains a text area to
write a query, lists to select the corpus and annotation set to search in, sliders to set the size
of the results and context and icons to execute and clear the query.

The central section shows a graphical visualisation of stacked annotations and feature values
for the result row selected in the bottom results table. You can also see the stack view
configuration window where you define which annotation type and feature to display in the
central section.

The bottom section contains the results table of the query, i.e. the text that matches the
query with their left and right contexts. The bottom section contains also a tabbed pane of
statistics.

9.2.2 Syntax of Queries

SSD enables you to formulate versatile queries using a subset of JAPE patterns. Below, we
give the JAPE pattern clauses which can be used as SSD queries. Queries can also be a
combination of one or more of the following pattern clauses.

1. String

2. {AnnotationType}

3. {AnnotationType == String}

4. {AnnotationType.feature == feature value}

5. {AnnotationTypel, AnnotationType2.feature == featureValue}

6. {AnnotationTypel.feature == featureValue, AnnotationType2.feature == fea-

tureValue}

JAPE patterns also support the | (OR) operator. For instance, {A} ({B} | {C}) is a pattern
of two annotations where the first is an annotation of type A followed by the annotation of
type either B or C.

ANNIC supports two operators, + and *, to specify the number of times a particular anno-
tation or a sub pattern should appear in the main query pattern. Here, ({A})+n means one
and up to n occurrences of annotation {A} and ({A})*n means zero or up to n occurrences
of annotation {A}.

ANNIC: ANNotations-In-Context 207

Below we explain the steps to search in SSD.

1. Double click on SSD. You will see an extra tab “Lucene DataStore Searcher”. Click
on it to activate the searcher GUI.

2. Here you can specify a query to search in your SSD. The query here is a L.H.S. part
of the JAPE grammar. Here are some examples:

(a) {Person} — This will return annotations of type Person from the SSD

(b) {Token.string == “Microsoft” } — This will return all occurrences of “Microsoft”
from the SSD.

(c) {Person}({Token})*2{Organization} — Person followed by zero or up to two to-
kens followed by Organization.

(d) {Token.orth=="*“upperlnitial”, Organization} — Token with feature orth with
value set to “upperlnitial” and which is also annotated as Organization.

208 ANNIC: ANNotations-In-Context

pel Caorpus;
B
Fercent

Fersan = M
SCrigt
=Sentence
tahble
thody

[»

Figure 9.2: Searchable Serial Datastore Viewer - Auto-completion.

9.2.3 Top Section

A text-area located in the top left part of the GUI is used to input a query. You can
copy/cut/paste with Control+C/X/V, undo/redo your changes with Control+Z/Y as usual.
To add a new line, use Control+Enter key combination.

Auto-completion shown on the figure 9.2 for annotation type is triggered when typing '{’ or
’.” and for feature when typing ’.” after a valid annotation type. It shows only the annotation
types and features related to the selected corpus and annotation set.

If you right-click on an expression it will automatically select the shortest valid enclosing
brace and if you click on a selection it will propose you to add quantifiers for allowing the
expression to appear zero, one or more times.

To execute the query, click on the magnifying glass icon, use Enter key or Alt+Enter key
combination. To clear the query, click on the red X icon or use Alt+Backspace key combi-
nation.

It is possible to have more than one corpus, each containing a different set of documents,
stored in a single data-store. ANNIC, by providing a drop down box with a list of stored
corpora, also allows searching within a specific corpus. Similarly a document can have more
than one annotation set indexed and therefore ANNIC also provides a drop down box with
a list of indexed annotation sets for the selected corpus.

A large corpus can have many hits for a given query. This may take a long time to refresh
the GUI and may create inconvenience while browsing through results. ANNIC therefore
allows you to specify a number of results that you wish to retrieve at once and provides a
way to iterate through next pages with the Next Page of Results button. Due to technical
complexities, it is not possible to visit a previous page. To retrieve all the results at the
same time, push the results slider to the right end.

ANNIC: ANNotations-In-Context 209

9.2.4 Central Section

Annotation types and features to show can be configured from the stack view configuration
window by clicking on the Configure button in the central section. You can also change the
feature value to be displayed by double clicking on the annotation type name.

The central section shows coloured rectangles exactly below the spans of text where these
annotations occur. If only an annotation type is displayed, the rectangle remains empty.
When you hover the mouse over the rectangle, it shows all their features and values in a
popup window. If an annotation type and a feature are displayed, the value of that feature
is shown in the rectangle.

Shortcuts are expression that stand for an ” AnnotationType.Feature” expression. For ex-
ample, on the figure 9.1, the shortcut "POS” stands for the expression ” Token.category”.

When you double click on an annotation rectangle, the respective query expression is placed
at the caret position in the query text area. If you have selected anything in the query text
area, it gets replaced. You can also double click on a word on the first line to add it to the

query.

9.2.5 Bottom Section

The table of results contains the text matched by the query, the contexts, the features from
the matched annotations, the effective query, the document and annotation set names. You
can sort a table column by clicking on its header.

You can remove a result from the results table or open the document containing it by right-
clicking on a result in the results table.

ANNIC provides an Fzport button to export results into an HTML file. You can also select
then copy/paste the table in your word processor or spreadsheet.

A statistics tabbed pane is displayed on the bottom-right. There is always a global statistics
pane that list the count of the occurrences of all annotation types for the selected corpus
and annotation set.

Statistics can be obtained for matched spans of the query in the results, with or without
contexts, just by annotation type, an annotation type + feature or an annotation type +
feature 4+ value. A second pane contains the one item statistics that you can add by right-
clicking on a non empty annotation rectangle or on the header of a row in the central section.
You can sort a table column by clicking on its header.

210 ANNIC: ANNotations-In-Context

9.3 Using SSD from GATE Embedded

9.3.1 How to instantiate a searchabledatastore

// create an instance of datastore
LuceneDataStoreImpl ds = (LuceneDataStorelImpl)
Factory.createDataStore(‘ ‘gate.persist.LuceneDataStoreImpl’’,
dsLocation);

// we need to set Indexer
Indexer indexer = new LucenelIndexer (new URL(indexLocation));

© W N O s W N

// set the parameters
Map parameters = new HashMap ();

= = e
o= O

// specify the index wurl
parameters.put (Constants.INDEX_LOCATION_URL, new URL(indexLocation));

= o= e
(S Y

// specify the base token type

// and specify that the tokens should be created automatically

// if mot found in the document
parameters.put(Constants.BASE_TOKEN_ANNOTATION_TYPE, ‘‘Token’’);
parameters.put (Constants.CREATE_TOKENS_AUTOMATICALLY, new Boolean(true));

I N R S
= O © W N O

// specify the index wunil type
parameters.put (Constants.INDEX_UNIT_ANNOTATION_TYPE, ‘‘Sentence’’);

NN N
gl W N

// specifying the annotation sets "Key” and ”Default Annotation Set”
// to be indexed
List<String> setsToInclude = new ArrayList<String>();
setsToInclude.add("Key");
setsToInclude.add ("<null>");
parameters.put(Constants.ANNOTATION_SETS_NAMES_TO_INCLUDE, setsToInclude);
parameters.put (Constants . ANNOTATION_SETS_NAMES_TO_EXCLUDE,

new ArraylList<String>());

W W W W N NN N
w N H O © o N O

// all features should be indexed
parameters.put(Constants.FEATURES_TO_INCLUDE, new ArrayList<String>());
parameters.put(Constants.FEATURES_TO_EXCLUDE, new ArrayList<String>());

w W W w
N o v e

// set the indezer
ds.setIndexer (indexer , parameters);

=k W W
= O © o

// set the searcher
ds.setSearcher (new LuceneSearcher());

IS
¥

9.3.2 How to search in this datastore

1
2 // obtain the searcher instance

Performance Evaluation of Language Analysers 211

© W N o s W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Searcher searcher = ds.getSearcher ();
Map parameters = new HashMap();

// obtain the wurl of index
String indexLocation =

new File (((URL) ds.getIndexer ().getParameters ()

.get (Constants . INDEX_LOCATION_URL)).getFile()).getAbsolutePath();
ArrayList indexLocations = new ArrayList();
indexLocations.add(indexLocation);

// corpus2SearchIn = mention corpus name that was indexed here.

// the annotation set to search in
String annotationSet2SearchIn = "Key";

// set the parameter

parameters.put (Constants.INDEX_LOCATIONS,indexLocations);
parameters.put(Constants.CORPUS_ID, corpus2SearchIn);
parameters.put (Constants.ANNOTATION_SET_ID, annotationSet);
parameters.put(Constants.CONTEXT_WINDOW, contextWindow);
parameters.put (Constants.NO_OF_PATTERNS, noOfPatterns);

// search

String query = "{Personl}";
Hit[] hits = searcher.search(query, parameters);

212 Performance Evaluation of Language Analysers

Chapter 10

Performance Evaluation of Language
Analysers

When you can measure what you are speaking about, and express it in numbers,
you know something about it; but when you cannot measure it, when you cannot
express it in numbers, your knowledge is of a meager and unsatisfactory kind:
it may be the beginning of knowledge, but you have scarcely in your thoughts
advanced to the stage of science. (Kelvin)

Not everything that counts can be counted, and not everything that can be
counted counts. (Einstein)

GATE provides a variety of tools for automatic evaluation. The Annotation Diff tool com-
pares two annotation sets within a document. Corpus QA extends Annotation Diff to an
entire corpus. The Corpus Benchmark tool also provides functionality for comparing anno-
tation sets over an entire corpus. Additionally, two plugins cover similar functionality; one
implements inter-annotator agreement, and the other, the balanced distance metric.

These tools are particularly useful not just as a final measure of performance, but as a tool to
aid system development by tracking progress and evaluating the impact of changes as they
are made. Applications include evaluating the success of a machine learning or language
engineering application by comparing its results to a gold standard and also comparing
annotations prepared by two human annotators to each other to ensure that the annotations
are reliable.

This chapter begins by introducing the concepts and metrics relevant, before describing each
of the tools in turn.
213

214 Performance Evaluation of Language Analysers

10.1 Metrics for Evaluation in Information Extraction

When we evaluate the performance of a processing resource such as tokeniser, POS tagger,
or a whole application, we usually have a human-authored ‘gold standard’ against which to
compare our software. However, it is not always easy or obvious what this gold standard
should be, as different people may have different opinions about what is correct. Typically,
we solve this problem by using more than one human annotator, and comparing their annota-
tions. We do this by calculating inter-annotator agreement (IAA), also known as inter-rater
reliability:.

TAA can be used to assess how difficult a task is. This is based on the argument that if
two humans cannot come to agreement on some annotation, it is unlikely that a computer
could ever do the same annotation ‘correctly’. Thus, IAA can be used to find the ceiling for
computer performance.

There are many possible metrics for reporting IAA, such as Cohen’s Kappa, prevalence,
and bias [Eugenio & Glass 04]. Kappa is the best metric for TAA when all the annotators
have identical exhaustive sets of questions on which they might agree or disagree. In other
words, it is a classification task. This could be a task like ‘are these names male or female
names’. However, sometimes there is disagreement about the set of questions, e.g. when the
annotators themselves determine which text spans they ought to annotate, such as in named
entity extraction. That could be a task like ‘read over this text and mark up all references
to politics’. When annotators determine their own sets of questions, it is appropriate to
use precision, recall, and F-measure to report IAA. Precision, recall and F-measure are
also appropriate choices when assessing performance of an automated application against a
trusted gold standard.

In this section, we will first introduce some relevant terms, before outlining Cohen’s Kappa
and similar measures, in Section 10.1.2. We will then introduce precision, recall and F-
measure in Section 10.1.3.

10.1.1 Annotation Relations

Before introducing the metrics we will use in this chapter, we will first outline the ways in
which annotations can relate to each other. These ways of comparing annotations to each
other are used to determine the counts that then go into calculating the metrics of interest.
Consider a document with two annotation sets upon it. These annotation sets might for
example be prepared by two human annotators, or alternatively, one set might be produced
by an automated system and the other might be a trusted gold standard. We wish to assess
the extent to which they agree. We begin by counting incidences of the following relations:

Coextensive Two annotations are coextensive if they hit the same span of text in a docu-
ment. Basically, both their start and end offsets are equal.

Performance Evaluation of Language Analysers 215

Overlaps Two annotations overlap if they share a common span of text.

Compatible Two annotations are compatible if they are coextensive and if the features of
one (usually the ones from the key) are included in the features of the other (usually
the response).

Partially Compatible Two annotations are partially compatible if they overlap and if the
features of one (usually the ones from the key) are included in the features of the other
(response).

Missing This applies only to the key annotations. A key annotation is missing if either
it is not coextensive or overlapping, orif one or more features are not included in the
response annotation.

Spurious This applies only to the response annotations. A response annotation is spurious
if either it is not coextensive or overlapping, or if one or more features from the key
are not included in the response annotation.

10.1.2 Cohen’s Kappa

The three commonly used IAA measures are observed agreement, specific agreement, and
Kappa (k) [Hripcsak & Heitjan 02]. Those measures can be calculated from a contingency
table, which lists the numbers of instances of agreement and disagreement between two
annotators on each category. To explain the IAA measures, a general contingency table for
two categories catl and cat2 is shown in Table 10.1.

Table 10.1: Contingency table for two-category problem

Annotator-2
Annotator-1 catl cat2 | marginal sum
catl a b a+b
cat2 c d c+d
marginal sum atc b-+d | a+b+c+d

Observed agreement is the portion of the instances on which the annotators agree. For
the two annotators and two categories as shown in Table 10.1, it is defined as

a+d

= — 10.1
a+b+c+d ()

o

The extension of the above formula to more than two categories is straightforward. The
extension to more than two annotators is usually taken as the mean of the pair-wise agree-
ments [Fleiss 75], which is the average agreement across all possible pairs of annotators. An
alternative compares each annotator with the majority opinion of the others [Fleiss 75].

216 Performance Evaluation of Language Analysers

However, the observed agreement has two shortcomings. One is that a certain amount of
agreement is expected by chance. The Kappa measure is a chance-corrected agreement.
Another is that it sums up the agreement on all the categories, but the agreements on each
category may differ. Hence the category specific agreement is needed.

Specific agreement quantifies the degree of agreement for each of the categories separately.
For example, the specific agreement for the two categories list in Table 10.1 is the following,
respectively,

2a 2d

T A= — 10.2
2a+b+c’ 2T bt e+2d (10-2)

catl —

Kappa is defined as the observed agreements A, minus the agreement expected by chance
A, and is normalized as a number between -1 and 1.

A~ A, (10.3)
k=— .
1— A,
k = 1 means perfect agreements, x = 0 means the agreement is equal to chance, kK = —1

means ‘perfect’ disagreement.

There are two different ways of computing the chance agreement A, (for a detailed explana-
tions about it see [Eugenio & Glass 04]; however, a quick outline will be given below). The
Cohen’s Kappa is based on the individual distribution of each annotator, while the Siegel
& Castellan’s Kappa is based on the assumption that all the annotators have the same
distribution. The former is more informative than the latter and has been used widely.

Let us consider an example:

Table 10.2: Example contingency table for two-category problem

Annotator-2
Annotator-1 catl cat2 | marginal sum
catl 1 2 3
cat2 3 4 7
marginal sum 4 6 10

Cohen’s Kappa requires that the expected agreement be calculated as follows. Divide
marginal sums by the total to get the portion of the instances that each annotator allocates
to each category. Multiply annotator’s proportions together to get the likelihood of chance
agreement, then total these figures. Table 10.3 gives a worked example.

The formula can easily be extended to more than two categories.

Siegel & Castellan’s Kappa is applicable for any number of annotators. Siegel & Castel-
lan’s Kappa for two annotators is also known as Scott’s Pi (see [Lombard et al. 02]). It

Performance Evaluation of Language Analysers 217

Table 10.3: Calculating Expected Agreement for Cohen’s Kappa
Annotator-1 | Annotator 2 | Multiplied
catl [3/10=03|4/10=040.12
cat2 | 7/10=0.7]6/10=0.6 | 0.42
Total 0.54

differs from Cohen’s Kappa only in how the expected agreement is calculated. Table 10.4
shows a worked example. Annotator totals are added together and divided by the number
of decisions to form joint proportions. These are then squared and totalled.

Table 10.4: Calculating Expected Agreement for Siegel & Castellan’s Kappa (Scott’s Pi)

Ann-1 | Ann-2 | Sum | Joint Prop | JP-Squared
catl | 3 4 7 7/20 49/400=0.1225
cat2 | 7 6 13 13/20 169/400=0.4225
Total 218/400 = 0.545

The Kappa suffers from the prevalence problem which arises because imbalanced distribu-
tion of categories in the data increases A.. The prevalence problem can be alleviated by
reporting the positive and negative specified agreement on each category besides the Kappa
[Hripesak & Heitjan 02, Eugenio & Glass 04]. In addition, the so-called bias problem affects
the Cohen’s Kappa, but not S&C’s. The bias problem arises as one annotator prefers one
particular category more than another annotator. [Eugenio & Glass 04] advised to compute
the S&C’s Kappa and the specific agreements along with the Cohen’s Kappa in order to
handle these problems.

Despite the problem mentioned above, the Cohen’s Kappa remains a popular TAA measure.
Kappa can be used for more than two annotators based on pair-wise figures, e.g. the mean
of all the pair-wise Kappa as an overall Kappa measure. The Cohen’s Kappa can also be
extended to the case of more than two annotators by using the following single formula
[Davies & Fleiss 82]

IDEED DD &
I(J(J = 1) Xe(pe(l = pe)) + 20 25 (Pej — Pe)?)

k=1— (10.4)

Where I and J are the number of instances and annotators, respectively; Y;. is the number
of annotators who assigns the category c to the instance I; p.; is the probability of the
annotator j assigning category c; p. is the probability of assigning category by all annotators
(i.e. averaging p.; over all annotators).

The Krippendorff’s alpha, another variant of Kappa, differs only slightly from the S&C’s
Kappa on nominal category problem (see [Carletta 96, Eugenio & Glass 04]).

However, note that the Kappa (and the observed agreement) is not applicable to some
tasks. Named entity annotation is one such task [Hripcsak & Rothschild 05]. In the named

218 Performance Evaluation of Language Analysers

entity annotation task, annotators are given some text and are asked to annotate some
named entities (and possibly their categories) in the text. Different annotators may annotate
different instances of the named entity. So, if one annotator annotates one named entity in
the text but another annotator does not annotate it, then that named entity is a non-entity
for the latter. However, generally the non-entity in the text is not a well-defined term, e.g.
we don’t know how many words should be contained in the non-entity. On the other hand,
if we want to compute Kappa for named entity annotation, we need the non-entities. This
is why people don’t compute Kappa for the named entity task.

10.1.3 Precision, Recall, F-Measure

Much of the research in IE in the last decade has been connected with the MUC com-
petitions, and so it is unsurprising that the MUC evaluation metrics of precision, recall
and F-measure [Chinchor 92] also tend to be used, along with slight variations. These
metrics have a very long-standing tradition in the field of IR [van Rijsbergen 79] (see also

[Manning & Schiitze 99, Frakes & Baeza-Yates 92]).

Precision measures the number of correctly identified items as a percentage of the number
of items identified. In other words, it measures how many of the items that the system
identified were actually correct, regardless of whether it also failed to retrieve correct items.
The higher the precision, the better the system is at ensuring that what is identified is
correct.

Error rate is the inverse of precision, and measures the number of incorrectly identified
items as a percentage of the items identified. It is sometimes used as an alternative to
precision.

Recall measures the number of correctly identified items as a percentage of the total number
of correct items. In other words, it measures how many of the items that should have been
identified actually were identified, regardless of how many spurious identifications were made.
The higher the recall rate, the better the system is at not missing correct items.

Clearly, there must be a tradeoff between precision and recall, for a system can easily be
made to achieve 100% precision by identifying nothing (and so making no mistakes in what
it identifies), or 100% recall by identifying everything (and so not missing anything). The
F-measure [van Rijsbergen 79] is often used in conjunction with Precision and Recall, as a
weighted average of the two. False positives are a useful metric when dealing with a wide
variety of text types, because it is not dependent on relative document richness in the same
way that precision is. By this we mean the relative number of entities of each type to be
found in a set of documents.

When comparing different systems on the same document set, relative document richness
is unimportant, because it is equal for all systems. When comparing a single system’s
performance on different documents, however, it is much more crucial, because if a particular

Performance Evaluation of Language Analysers 219

document type has a significantly different number of any type of entity, the results for that
entity type can become skewed. Compare the impact on precision of one error where the
total number of correct entities = 1, and one error where the total = 100. Assuming the
document length is the same, then the false positive score for each text, on the other hand,
should be identical.

Common metrics for evaluation of IE systems are defined as follows:

Correct + 1/2Partial

Precision = 10.5
recusion Correct + Spurious + Partial ()
Correct + 1/2Partial
= 10.
fieca Correct + Missing + Partial (10.6)
24+ 1)PxR
F — measure = WD (10.7)

where (3 reflects the weighting of P vs. R. If 3 is set to 1, the two are weighted equally.

Spurious

FalsePositive = (10.8)

C

where ¢ is some constant independent from document richness, e.g. the number of tokens or
sentences in the document.

Note that we consider annotations to be partially correct if the entity type is correct and the
spans are overlapping but not identical. Partially correct responses are normally allocated a
half weight.

10.1.4 Macro and Micro Averaging

Where precision, recall and f-measure are calculated over a corpus, there are options in terms
of how document statistics are combined.

e Micro averaging essentially treats the corpus as one large document. Correct, spurious
and missing counts span the entire corpus, and precision, recall and f-measure are
calculated accordingly.

e Macro averaging calculates precision, recall and f-measure on a per document basis,
and then averages the results.

220 Performance Evaluation of Language Analysers

The method of choice depends on the priorities of the case in question. Macro averaging
tends to increase the importance of shorter documents.

It is also possible to calculate a macro average across annotation types; that is to say,
precision, recall and f-measure are calculated separately for each annotation type and the
results then averaged.

10.2 The Annotation Diff Tool

The Annotation Diff tool enables two sets of annotations in one or two documents to be com-
pared, in order either to compare a system-annotated text with a reference (hand-annotated)
text, or to compare the output of two different versions of the system (or two different sys-
tems). For each annotation type, figures are generated for precision, recall, F-measure. Each
of these can be calculated according to 3 different criteria - strict, lenient and average. The
reason for this is to deal with partially correct responses in different ways.

e The Strict measure considers all partially correct responses as incorrect (spurious).
e The Lenient measure considers all partially correct responses as correct.

e The Average measure allocates a half weight to partially correct responses (i.e. it takes
the average of strict and lenient).

It can be accessed both from GATE Developer and from GATE Embedded. Annotation Diff
compares sets of annotations with the same type. When performing the comparison, the
annotation offsets and their features will be taken into consideration. and after that, the
comparison process is triggered. Figure 10.1 shows the Annotation Diff window.

All annotations from the key set are compared with the ones from the response set, and those
found to have the same start and end offsets are displayed on the same line in the table.
Then, the Annotation Diff evaluates if the features of each annotation from the response set
subsume those features from the key set, as specified by the features names you provide.

In order to create a gold standard set from two sets you need to show the ‘Adjudication’
panel at the bottom. It will insert two checkboxes columns in the central table. Tick boxes
in the ‘K(ey)” and ‘R(esponse)’ then input a Target set in the text field and use the ‘Copy
selection to target’ button to copy all annotations selected to the target annotation set.
There is a context menu for the checkboxes to tick them quickly.

To use the annotation diff tool, see Section 10.2.1. To compare more than two annotation
sets, see Section 3.4.3.

Performance Evaluation of Language Analysers 221

ey doc: |EP—1016?26—A1.>{_._ |v| Key set: T\,epe: Weight =
~L. Compare
Resp. doc; |EP-1016?26—A1.><._. |v| Resp. set: Features: Call Cisame @nane [1.00 =
Start | End ke Features K |=4 R | Start | End Re
2651726532 |2-and+0.25ma/ml [irule =measurement.Me. fare=Mall, conj=and}[]|=|[]|2&6517|26532(2-andd 0. 25mafn ™
Z2TER(ZZTED|T0-B0% Jconj=-, type=intery.. urement.Measurespant =|[]|z2762|22769|70-80%
37432380032 |10%and- 15" {canj=and, type=inte. .urement. MeasureSpan} |[]|=|[]|27992|28003[10"and- 15"
2EEE02559332°Candd2etC irule=measurement.Me.. before=at, conj=and}|[]|=|[]|25580(25593|32°C-and439°C
21576|21578|cm {dimenszion=[length],.. afepat; centi_metre]} O~ (O[3 1576|2 1580|cm- 2
2509325097 |cm- 2 dimension=[length], ... afepat; centi_metre e
& - ! - - Llengthl, [—— I I Tick selected check boxes —
5720057211 mm- 2. field {dimenzion=[length],.. afepat; milli-rmeter]} [Ui sHlemes diad momes ||
40226(40227|3 {rule=measurement.5i...e, e =scalarvalue} Tielk CEMTEE CREms ||
204611204622 {rule=measurement.Me..n, type=scalarvalue} |[| i partially correct annotations
3586535866 {dimension=[length],.. safepat;arc_minute]} [| Tick missing annotations
45397452985 irule=measurement.5i...e, tyae=scalaryaluet |[| Tick false positives annotations
[| Tick mismatch annatations I =
O r-|6a]z3474[3480]permi =
1 I | [*]
2 annatations copied to consensus and 2 hidden
Target set: |c0nsensus
Show document
== Copy selection to target set
#| Export to HTML

[statistics l Adjudication

Figure 10.1: Annotation diff window with the parameters at the top, the comparison table
in the center and the adjudication panel at the bottom.

10.2.1 Performing Evaluation with the Annotation Diff Tool

The Annotation Diff tool is activated by selecting it from the Tools menu at the top of the
GATE Developer window. It will appear in a new window. Select the key and response
documents to be used (note that both must have been previously loaded into the system),
the annotation sets to be used for each, and the annotation type to be compared.

Note that the tool automatically intersects all the annotation types from the selected key
annotation set with all types from the response set.

On a separate note, you can perform a diff on the same document, between two different
annotation sets. One annotation set could contain the key type and another could contain
the response one.

After the type has been selected, the user is required to decide how the features will be
compared. It is important to know that the tool compares them by analysing if features
from the key set are contained in the response set. It checks for both the feature name and
feature value to be the same.

There are three basic options to select:

e To take ‘all’ the features from the key set into consideration

222 Performance Evaluation of Language Analysers

Keydor [EP-1016726-ALx... | v |Keyset T\r‘pe: Weight [——
~L. Compare
Resp. doc; |EP-1016?26—A1.><._. |v| Resp. set: Features: Call Cisame @nane [1.00 =
Start | End e Features =d Start | End Response
26517265322 andd 0. 25ma/ml {rule=measurement. Me fore=Mall, conj=and}|= 2651726532 |2 and40.25maml |
Z2TER(ZZTED|T0-B0% iconj=-, type=intery.. urement.Measurespant |= (22762227697 0-80%
37432380032 |10%and- 15" {conj=and, type=inte. urement. MeasureSpan} |= |37%%2|280032|10% and- 15'
2EEE02559332°Candd2etC {rule=measurement.Me, . before=at, conj=and}|= |25580|25533|32°C.and}29°C
21576|21578|cm idimension=[length],.. afepat; centi_metre]} ~ |31576[21580|cm- 2
2509325097 cm-2 {dimension=[lenath],.. afepat; centi_metre]} ~ (2509325095 |Cm
5720057211 mm- 2. field {dimenzion=[length],.. afepat; milli-rmeter]} ~ |5720057204|mm- 2
40226(40227|3 irule=measurement.5i... e, tae=scalarvalue} |-7
20461204622 cluding the ..n, thype=scalaryalue} |7
3586535866 |right ITR {missing the most 3' G residue). afepat;arc_minute]} -7
45397|45308/5| BXAMPIE 4F. o, type=scalarvalue} |7
= new line, — = teh, - = space -
T P- 247942479637 |=|
F-|22474(22480|per-ml |
q] I | [
Correct: 467 Recal Frocision Formpasure 2 annatations copied to consensus and 2 hidden
Partially carrect: 2 Strict: 0,59 0,85 0,87 @Shgw document
Missing: 4 Lenient: 0,9% 0,45 0,47
False positives: 23 Awerage: 0,99 095 0,97 i. Export to HTML

Statistics |_Adjudication |

Figure 10.2: Annotation diff window with the parameters at the top, the comparison table
in the center and the statistics panel at the bottom.

e To take only ‘some’ user selected features

e To take ‘none’ of the features from the key set.

The weight for the F-Measure can also be changed - by default it is set to 1.0 (i.e. to
give precision and recall equal weight). Finally, click on ‘Compare’ to display the results.
Note that the window may need to be resized manually, by dragging the window edges as
appropriate).

In the main window, the key and response annotations will be displayed. They can be sorted
by any category by clicking on the central column header: ‘=7". The key and response
annotations will be aligned if their indices are identical, and are color coded according to
the legend displayed at the bottom.

Precision, recall, F-measure are also displayed below the annotation tables, each according
to 3 criteria - strict, lenient and average. See Sections 10.2 and 10.1 for more details about
the evaluation metrics.

The results can be saves to an HTML file by using the ‘Export to HTML’ button. This
creates an HTML snapshot of what the Annotation Diff table shows at that moment. The
columns and rows in the table will be shown in the same order, and the hidden columns will
not appear in the HTML file. The colours will also be the same.

Performance Evaluation of Language Analysers 223

If you need more details or context you can use the button ‘Show document’ to display the
document and the annotations selected in the annotation diff drop down lists and table.

10.3 Corpus Quality Assurance

File Options Tools Help

G GATE : Messages f GATE corpus_0o0. . ‘
?ﬁx&pplica{ions 1

Corpus statistics Document statistics |

.
Data stores

&7 EP-1011099-A1|
& Ep-1012019-41]
&7 EP-1010762-41
f CATE corpus_00

%} Processing Resources

<]] I]
- .

A

|| present in every selected set

‘lannotation Features

[@ Language Resources Document Matchonly A0nly BOverlagRec. BfAPrec. BfAF1-stricy| -

{|EP-1010762-81xmi_00017|220 12 2 o 094 |o9s [o.97 ||)

@ EP-1013770-AL (lEP-1011019-2a1.¥ml_00018[273 23 |18 [10 0.86 |09l [0.88 Efmmta“m SEHAALE <

& ep-1013757-a7| || EF~1011099-A1xmI_00019289 28 [18 |6 089 [092 Jos1 |- Laiﬁ‘;':osri‘]@ =
|lEP-1011101-21 xmi_00014242 22 |24 |1 051 lo.a1 o1 o ool =

&7 ep-1012718-41| |[EP-1013287-A2 0m_0001B[320 28 [14 |15 |o.88 [0.92 [0.00 |- Key (4) —

& e 1013665 a1 || E-L013288-A2 xm0001CN23 14 |3 [2 088|096 [|| :
J|EP-1013665-A1ml_0001D|56 2 |5 |0 087 083 [o.95 ||:|[present in every document

&7 EP-1013288-42| |[EP-1013718-ALxml_0001E[103 37 |9 |2 073 [0.90 [0.80 || |Annotation Types
{|EP-1012757-22. xmi_0001F [209 (56 [32 [15 [0.75 [0.81 [0.78 || [Measurement

&7 ep-1013257-22| |lco T 012770-a1 xml 000200337 59 |1 |8 083 097 |0.90 | |Reference

@? EP-1011101-A1 [[Macra summary 0@ |09z [0.89 “|section
{|Micro summary 2192292 [127 |59 [o.86 [0.92 o.BS

e
|] present in every selected tpe

‘|Measures

‘|F1-score strict
i|F1-score lenisnt
:|Fl-score average

"'{a Compare

[I I I |L Caorpus editar L Initialisation Parameters L Corpus Quality Assurance

Figure 10.3: Corpus Quality Assurance showing the document statistics table

10.3.1 Description of the interface

A bottom tab in each corpus view is entitled ‘Corpus Quality Assurance’. This tab will
allow you to calculate precision, recall and F-score between two annotation sets in a corpus
without the need to load a plugin. It extends the Annotation Diff functionality to the entire
corpus in a convenient interface.

The main part of the view consists of two tabs each containing a table. One tab is entitled
‘Corpus statistics” and the other is entitled ‘Document statistics’.

To the right of the tabbed area is a configuration pane in which you can select the annotation
sets you wish to compare, the annotation types you are interested in and the annotation
features you wish to specify for use in the calculation if any.

224 Performance Evaluation of Language Analysers

You can also choose whether to calculate agreement on a strict or lenient basis or take the
average of the two. (Recall that strict matching requires two annotations to have an identical
span if they are to be considered a match, where lenient matching accepts a partial match;
annotations are overlapping but not identical in span.)

At the top, four icons are for opening a document or Annotation Diff only when a row in the
document statistics table is selected, exporting the two tables to an HT'ML file and reloading
the list of sets, types and features when some documents have been modified in the corpus.

Corpus Quality Assurance works also with a corpus inside a datastore. Using a datastore is
useful to minimise memory consumption when you have a big corpus.

10.3.2 Step by step usage

Begin by selecting the annotation sets you wish to compare in the top list in the configuration
pane. Clicking on an annotation set labels it annotation set A (an ‘(A)’ will appear beside it
to indicate that this is your selection for annotation set A). Now click on another annotation
set. This will be labelled annotation set B.

To change your selection, deselect an annotation set by clicking on it a second time. You can
now choose another annotation set. Note that you do not need to hold the control key down
to select the second annotation set. This list is configured to accept two (and no more than
two) selections. If you wish, you may check the box ‘present in every document’ to reduce
the annotation sets list to only those sets present in every document.

You may now choose the annotation types you are interested in. If you don’t choose any
then all will be used. If you wish, you may check the box ‘present in every selected set’ to
reduce the annotation types list to only those present in every selected annotation set.

Optionally you can choose the annotation features you wish to include in the calculation.
If you choose features, then for an annotation to be considered a match to another, their
feature values must also match. If you select the box ‘present in every selected type’ the
features list will be reduced to only those present in every type you selected.

The ‘Measures’ list allows you to choose whether to calculate strict or lenient figures or
average the two. You may choose as many as you wish, and they will be included as columns
in the table to the left.

Finally, click on the ‘Compare’ button to recalculate the tables. The figures that appear in
the two tables (one per tab) are described below.

Performance Evaluation of Language Analysers 225

10.3.3 Details of the Corpus statistics table

In this table you will see that one row appears for every annotation type you chose. Columns
give total counts for matching annotations (‘Match’), annotations only present in annotation
set A (‘Only A’), annotations only present in annotation set B (‘Only B’) and annotations
that overlapped (‘Overlap’).

Depending on whether one of your annotation sets is considered a gold standard, you might
prefer to think of ‘Only A’ as missing and ‘Only B’ as spurious, or vice versa, but the Corpus
Quality Assurance tool makes no assumptions about which if any annotation set is the gold
standard. Where it is being used to calculate Inter Annotator Agreement there is no concept
of a ‘correct’ set. However, in ‘MUC’ terms, ‘Match’ would be correct and ‘Overlap’ would
be partial.

After these columns, three columns appear for every measure you chose to calculate. If you
chose to calculate a strict F1, a recall, precision and F1 column will appear for the strict
counts. If you chose to calculate a lenient F1, precision, recall and F1 columns will also
appear for lenient counts.

In the corpus statistics table, calculations are done on a per type basis and include all
documents in the calculation. Final rows in the table provide summaries; total counts are
given along with a micro and a macro average.

Micro averaging treats the entire corpus as one big document where macro averaging, on
this table, is the arithmetic mean of the per-type figures. See Section 10.1.4 for more detail
on the distinction between a micro and a macro average.

10.3.4 Details of the Document statistics table

In this table you will see that one row appears for every document in the corpus. Columns
give counts as in the corpus statistics table, but this time on a per-document basis.

As before, for every measure you choose to calculate, precision, recall and F1 columns will
appear in the table.

Summary rows, again, give a macro average (arithmetic mean of the per-document measures)
and micro average (identical to the figure in the corpus statistics table).

10.4 Corpus Benchmark Tool

Like the Corpus Quality Assurance functionality, the corpus benchmark tool enables evalu-
ation to be carried out over a whole corpus rather than a single document. Unlike Corpus

226 Performance Evaluation of Language Analysers

QA, it uses matched corpora to achieve this, rather than comparing annotation sets within
a corpus. It enables tracking of the system’s performance over time. It provides more de-
tailed information regarding the annotations that differ between versions of the corpus (e.g.
annotations created by different versions of an application) than the Corpus QA tool does.

The basic idea with the tool is to evaluate an application with respect to a ‘gold standard’.
You have a ‘marked’ corpus containing the gold standard reference annotations; you have
a ‘clean’ copy of the corpus that does not contain the annotations in question, and you
have an application that creates the annotations in question. Now you can see how you are
getting on, by comparing the result of running your application on ‘clean’ to the ‘marked’
annotations.

10.4.1 Preparing the Corpora for Use

You will need to prepare the following directory structure:

main directory (can have any name)

|

| __"clean" (directory containing unannotated documents in XML form)

|

| __"marked" (directory containing annotated documents in XML form)

|

| __"processed" (directory containing the datastore which is generated
when you ‘store corpus for future evaluation’)

e main: you should have a main directory containing subdirectories for your matched
corpora. It does not matter what this directory is called. This is the directory you
will select when the program prompts, ‘Please select a directory which contains the
documents to be evaluated’.

e clean: Make a directory called ‘clean’ (case-sensitive), and in it, make a copy of your
corpus that does not contain the annotations that your application creates (though it
may contain other annotations). The corpus benchmark tool will apply your applica-
tion to this corpus, so it is important that the annotations it creates are not already
present in the corpus. You can create this corpus by copying your ‘marked’ corpus and
deleting the annotations in question from it.

e marked: you should have a ‘gold standard’ copy of your corpus in a directory called
‘marked’ (case-sensitive), containing the annotations to which the program will com-
pare those produced by your application. The idea of the corpus benchmark tool is to
tell you how good your application performance is relative to this annotation set. The
‘marked’ corpus should contain exactly the same documents as the ‘clean’ set.

Performance Evaluation of Language Analysers 227

e processed: this directory contains a third version of the corpus. This directory will
be created by the tool itself, when you run ‘store corpus for future evaluation’. We
will explain how to do this in Section 10.4.3

10.4.2 Defining Properties

The properties of the corpus benchmark tool are defined in the file ‘corpus_tool.properties’,
which should be located in the GATE home directory. GATE will tell you where it’s looking
for the properties file in the ‘message’ panel when you run the Corpus Benchmark Tool. It
is important to prepare this file before attempting to run the tool because there is no file
present by default, so unless you prepare this file, the corpus benchmark tool will not work!

The following properties should be set:
e the precision/recall performance threshold for verbose mode, below which the annota-

tion will be displayed in the results file. This enables problem annotations to be easily
identified. By default this is set to 0.5;

e the name of the annotation set containing the human-marked annotations (annotSet-
Name);

e the name of the annotation set containing the system-generated annotations (output-
SetName);

e the annotation types to be considered (annotTypes);

the feature values to be considered, if any (annotFeatures).

The default annotation set has to be represented by an empty string. The outputSetName
and annotSetName must be different, and cannot both be the default annotation set. (If
they are the same, then use the Annotation Set Transfer PR to change one of them.) If you
omit any line (or just leave the value blank), that property reverts to default. For example,
‘annotSetName="is the same as leaving that line out.

An example file is shown below:

threshold=0.7

annotSetName=Key

outputSetName=ANNIE
annotTypes=Person;0Organization;Location;Date;Address;Money
annotFeatures=type;gender

Here is another example:

228 Performance Evaluation of Language Analysers

threshold=0.6
annotSetName=Filtered
outputSetName=
annotTypes=Mention
annotFeatures=class

10.4.3 Running the Tool

To use the tool, first make sure the properties of the tool have been set correctly (see Section
10.4.2 for how to do this) and that the corpora and directory structure have been prepared
as outlined in Section 10.4.1. Also, make sure that your application is saved to file (see
Section 3.8.3). Then, from the ‘Tools’ menu, select ‘Corpus Benchmark’. You have four
options:

1. Default Mode
2. Store Corpus for Future Evaluation
3. Human Marked Against Stored Processing Results

4. Human Marked Against Current Processing Results

We will describe these options in a different order to that in which they appear on the menu,
to facilitate explanation.

Store Corpus for Future Evaluation populates the ‘processed’ directory with a datastore
containing the result of running your application on the ‘clean’ corpus. If a ‘processed’
directory exists, the results will be placed there; if not, one will be created. This creates
a record of the current application performance. You can rerun this operation any time to
update the stored set.

Human Marked Against Stored Processing Results compares the stored ‘processed’
set with the ‘marked’ set. This mode assumes you have already run ‘Store corpus for future
evaluation’. It performs a diff between the ‘marked’ directory and the ‘processed’ directory
and prints out the metrics.

Human Marked Against Current Processing Results compares the ‘marked’ set with
the result of running the application on the ‘clean’ corpus. It runs your application on the
documents in the ‘clean’ directory creating a temporary annotated corpus and performs a
diff with the documents in the ‘marked’ directory. After the metrics (recall, precision, etc.)
are calculated and printed out, it deletes the temporary corpus.

Default Mode runs ‘Human Marked Against Current Processing Results’ and ‘Human
Marked Against Stored Processing Results’ and compares the results of the two, showing

Performance Evaluation of Language Analysers 229

you where things have changed between versions. This is one of the main purposes of the
benchmark tool; to show the difference in performance between different versions of your
application.

Once the mode has been selected, the program prompts, ‘Please select a directory which
contains the documents to be evaluated’. Choose the main directory containing your corpus
directories. (Do not select ‘clean’; ‘marked’, or ‘processed’.) Then (except in ‘Human marked
against stored processing results’ mode) you will be prompted to select the file containing
your application (e.g. an .xgapp file).

The tool can be used either in verbose or non-verbose mode, by selecting or unselecting
the verbose option from the menu. In verbose mode, for any precision/recall figure below
the user’s pre-defined threshold (stored in corpus_tool.properties file) the tool will show the
the non-coextensive annotations (and their corresponding text) for that entity type, thereby
enabling the user to see where problems are occurring.

10.4.4 The Results

Running the tool (either in ‘Human marked against stored processing results’, ‘Human
marked against current processing results’ or ‘Default’” mode) produces an HTML file, in
tabular form, which is output in the main GATE Developer messages window. This can
then be pasted into a text editor and viewed in a web browser for easier viewing. See figure
10.4 for an example.

In each mode, the following statistics will be output:

1. Per-document figures, itemised by type: precision and recall, as well as detailed infor-
mation about the differing annotations;

2. Summary by type (‘Statistics’): correct, partially correct, missing and spurious totals,
as well as whole corpus (micro-average) precision, recall and f-measure (F1), itemised

by type;

3. Overall average figures: precision, recall and F1 calculated as a macro-average (arith-
metic average) of the individual document precisions and recalls.

In ‘Default’” mode, information is also provided about whether the figures have increased or
decreased in comparison with the ‘Marked’ corpus.

230 Performance Evaluation of Language Analysers

ft-airlines-27-jul-2001.xml

Earites s war seeuaiewi veuie s puspesssss

[2202,2210] England: [12,19]C Tce: [2618,2626] England: [2260,2267]
Bank: [344,348]

IAnnotation
Type

‘Pmcisinn Recall ‘Annotatlnns

MISSING ANNOTATIONS in the automatic texts: 1997: [652,656] the Airline
Group: [1669,1686] London Underground: [388,406] The Airline Group:
[1266,1283] The Airline Group: [2412,2429] Swanwick: [2634,2642] 2000:
[2018,2022] The Airline Group: [938,955] The Airline Group: [1751,1766]
Swanwick: [2376,2364]Monarch Airlines: [1052,1068] Virgin Atlantic:
[45,60] Britannia Airways: [1030,1047] Labour: [634,640] London Area and
Mention 0.851063829787234 |0.6896551724137931 Terminal Control Centre: [2029,2068]

SPURIOUS ANNOTATIONS in the automatic texts: peak days: [2194,2203]
PPP: [376,379] The Airline Group: [935,955] London: [2029,2035]
PARTIALLY CORRECT ANNOTATIONS in the automatic texts: last year Nats
handled more than 2m air traffic mov ts with vol growing by 5
per cent in 2000: [1922,2022] Abbey: [1367,1372]March: [1743,1748]
March: [1486,1491] January: [2402,2409] next 10: [2520,2527]

ft-bmi-09-may-2001.xml

|Annotatlon Type ‘Pmclsion ‘Recall ‘Ammtatlons

[Mention [0.9791666666666666 [0.94 |

Statistics

[Annotation Type [Correct Partially Correct|Missing [Spurious [Precision [Recall [F-Measure

[Mention [434 [16 [34 B [0.9650655021834061 [0.9132231404958677 [0.9384288747346073

Overall average precision: 0.959158791298373
Overall average recall: 0.9108515466531439
Overall average fMeasure : 0.9332844120837758
Finished!

Figure 10.4: Fragment of results from corpus benchmark tool

10.5 A Plugin Computing Inter-Annotator Agreement
(TIAA)

The interannotator agreement plugin, ‘Inter_Annotator_Agreement’, computes the F-
measures, namely precision, recall and F1, suitable for named entity annotations (see Sec-
tion 10.1.3), and agreement, Cohen’s kappa and Scott’s pi, suitable for text classification
tasks (see Section 10.1.2). In the latter case, a confusion matrix is also provided. In this
section we describe those measures and the output results from the plugin. But first we
explain how to load the plugin, and the input to and the parameters of the plugin.

First you need to load the plugin named ‘Inter_Annotator_Agreement’ into GATE Developer
using the tool Manage CREOLFE Plugins, if it is not already loaded. Then you can create a
PR for the plugin from the TAA Computation’ in the existing PR list. After that you can
put the PR into a Corpus Pipeline to use it.

The IAA Computation PR differs from the Corpus Benchmark Tool in the data preparation
required. As in the Corpus Benchmark Tool, the idea is to compare annotation sets, for
example, prepared by different annotators, but in the TAA Computation PR, these annota-
tion sets should be on the same set of documents. Thus, one corpus is loaded into GATE
on which the PR is run. Different annotation sets contain the annotations which will be

Performance Evaluation of Language Analysers 231

compared. These should (obviously) have different names.

It falls to the user to decide whether to use annotation type or an annotation feature as
class; are two annotations considered to be in agreement because they have the same type
and the same span? Or do you want to mark up your data with an annotation type such
as ‘Mention’, thus defining the relevant annotations, then give it a ‘class’ feature, the value
of which should be matched in order that they are considered to agree? This is a matter of
convenience. For example, data from the Batch Learning PR (see Section 15.2) uses a single
annotation type and a class feature. In other contexts, using annotation type might feel
more natural; the annotation sets should agree about what is a ‘Person’, what is a ‘Date’
etc. It is also possible to mix the two, as you will see below.

The TAA plugin has two runtime parameters annSetsForlaa and annTypesAndFeats for
specifying the annotation sets and the annotation types and features, respectively. Values
should be separated by semicolons. For example, to specify annotation sets ‘Annl’, ‘Ann2’
and ‘Ann3’ you should set the value of annSetsForlaa to ‘Annl;Ann2;Ann3’. Note that more
than two annotation sets are possible. Specify the value of annTypesAndFeats as ‘Per’ to
compute the TAA for the three annotation sets on the annotation type Per. You can also
specify more than one annotation type and separate them by ‘;’ too, and optionally specify
an annotation feature for a type by attaching a ‘->’ followed by feature name to the end of
the annotation name. For example, ‘Per->label;Org’ specifies two annotation types Per and
Org and also a feature name label for the type Per. If you specify an annotation feature for
an annotation type, then two annotations of the same type will be regarded as being different
if they have different values of that feature, even if the two annotations occupy exactly the
same position in the document. On the other hand, if you do not specify any annotation
feature for an annotation type, then the two annotations of the type will be regarded as the
same if they occupy the same position in the document.

The parameter measureType specifies the type of measure computed. There are two
measure types; the F-measure (i.e. Precision, Recall and F1), and the observed agreement
and Cohen’s Kappa. For classification tasks such as document or sentence classification, the
observed agreement and Cohen’s Kappa is often used, though the F-measure is applicable
too. In these tasks, the targets are already identified, and the task is merely to classify them
correctly. However, for the named entity recognition task, only the F-measure is applicable.
In such tasks, finding the ‘named entities’ (text to be annotated) is as much a part of the
task as correctly labelling it. Observed agreement and Cohen’s kappa are not suitable in this
case. See Section 10.1.2 for further discussion. The parameter has two values, FMEASURE
and AGREEMENTANDKAPPA. The default value of the parameter is FMEASURE.

Another parameter verbosity specifies the verbosity level of the plugin’s output. Level 2
displays the most detailed output, including the TAA measures on each document and the
macro-averaged results over all documents. Level 1 only displays the IAA measures averaged
over all documents. Level 0 does not have any output. The default value of the parameter
is 1. In the following we will explain the outputs in detail.

Yet another runtime parameter bdmScoreF'ile specifies the URL for a file containing the

232 Performance Evaluation of Language Analysers

BDM scores used for the BDM based TAA computation. The BDM score file should be
produced by the BDM computation plugin, which is described in Section 10.6. The BDM-
based IAA computation will be explained below. If the parameter is not assigned any value,
or is assigned a file which is not a BDM score file, the PR will not compute the BDM based
IAA.

10.5.1 TAA for Classification

IAA has been used mainly in classification tasks, where two or more annotators are given
a set of instances and are asked to classify those instances into some pre-defined categories.
[AA measures the agreements among the annotators on the class labels assigned to the in-
stances by the annotators. Text classification tasks include document classification, sentence
classification (e.g. opinionated sentence recognition), and token classification (e.g. POS tag-
ging). The important point to note is that the evaluation set and gold standard set have
exactly the same instances, but some instances in the two sets have different class labels.
Identifying the instances is not part of the problem.

The three commonly used IAA measures are observed agreement, specific agreement, and
Kappa (k) [Hripesak & Heitjan 02]. See Section 10.1.2 for the detailed explanations of those
measures. If you select the value of the runtime parameter measure Type as AGREEMEN-
TANDKAPPA, the IAA plugin will compute and display those IAA measures for your clas-
sification task. Below, we will explain the output of the PR for the agreement and Kappa
measures.

At the verbosity level 2, the output of the plugin is the most detailed. It first prints out a list
of the names of the annotation sets used for IAA computation. In the rest of the results, the
first annotation set is denoted as annotator 0, and the second annotation set is denoted as
annotator 1, etc. Then the plugin outputs the TAA results for each document in the corpus.

For each document, it displays one annotation type and optionally an annotation feature if
specified, and then the results for that type and that feature. Note that the IAA compu-
tations are based on the pairwise comparison of annotators. In other words, we compute
the TAA for each pair of annotators. The first results for one document and one annotation
type are the macro-averaged ones over all pairs of annotators, which have three numbers
for the three types of IAA measures, namely Observed agreement, Cohen’s kappa and Scott’s
pi. Then for each pair of annotators, it outputs the three types of measures, a confusion
matrix (or contingency table), and the specific agreements for each label. The labels are
obtained from the annotations of that particular type. For each annotation type, if a feature
is specified, then the labels are the values of that feature. Please note that two terms may
be added to the label list: one is the empty one obtained from those annotations which
have the annotation feature but do not have a value for the feature; the other is ‘Non-cat’,
corresponding to those annotations not having the feature at all. If no feature is specified,
then two labels are used: ‘Anns’ corresponding to the annotations of that type, and ‘Non-
cat’ corresponding to those annotations which are annotated by one annotator but are not

Performance Evaluation of Language Analysers 233

annotated by another annotator.

After displaying the results for each document, the plugin prints out the macro-averaged
results over all documents. First, for each annotation type, it prints out the results for each
pair of annotators, and the macro-averaged results over all pairs of annotators. Finally it
prints out the macro-averaged results over all pairs of annotators, all types and all documents.

Please note that the classification problem can be evaluated using the F-measure too. If you
want to evaluate a classification problem using the F-measure, you just need to set the run
time parameter measure Type to FMEASURE.

10.5.2 TAA For Named Entity Annotation

The commonly used IAA measures, such as kappa, have not been used in text mark-up
tasks such as named entity recognition and information extraction, for reasons explained
in Section 10.1.2 (also see [Hripcsak & Rothschild 05]). Instead, the F-measures, such as
Precision, Recall, and F1, have been widely used in information extraction evaluations such
as MUC, ACE and TERN for measuring IAA. This is because the computation of the F-
measures does not need to know the number of non-entity examples. Another reason is
that F-measures are commonly used for evaluating information extraction systems. Hence
IAA F-measures can be directly compared with results from other systems published in the
literature.

For computing F-measure between two annotation sets, one can use one annotation set as
gold standard and another set as system’s output and compute the F-measures such as
Precision, Recall and F1. One can switch the roles of the two annotation sets. The Precision
and Recall in the former case become Recall and Precision in the latter, respectively. But
the F1 remains the same in both cases. For more than two annotators, we first compute
F-measures between any two annotators and use the mean of the pair-wise F-measures as
an overall measure.

The computation of the F-measures (e.g. Precision, Recall and F1) are shown in Section
10.1. As noted in [Hripesak & Rothschild 05], the F1 computed for two annotators for one
specific category is equivalent to the positive specific agreement of the category.

The outputs of the TAA plugins for named entity annotation are similar to those for clas-
sification. But the outputs are the F-measures, such as Precision, Recall and F1, instead
of the agreements and Kappas. It first prints out the results for each document. For one
document, it prints out the results for each annotation type, macro-averaged over all pairs of
annotators, then the results for each pair of annotators. In the last part, the micro-averaged
results over all documents are displayed. Note that the results are reported in both the strict
measure and the lenient measure, as defined in Section 10.2.

Please note that, for computing the F-measures for the named entity annotations, the IAA
plugin carries out the same computation as the Corpus Benchmark tool. The TAA plugin is

234 Performance Evaluation of Language Analysers

simpler than the Corpus benchmark tool in the sense that the former needs only one set of
documents with two or more annotation sets, whereas the latter needs three sets of the same
documents, one without any annotation, another with one annotation set, and the third one
with another annotation set. Additionally, the TAA plugin can deal with more than two
annotation sets but the Corpus benchmark tool can only deal with two annotation sets.

10.5.3 The BDM-Based TAA Scores

For a named entity recognition system, if the named entity’s class labels are the names of
concepts in some ontology (e.g. in the ontology-based information extraction), the system
can be evaluated using the TAA measures based on the BDM scores. The BDM measures
the closeness of two concepts in an ontology. If an entity is identified but is assigned a label
which is close to but not the same as the true label, the system should obtain some credit
for it, which the BDM-based metric can do. In contrast, the conventional named entity
recognition measure does not take into account the closeness of two labels and does not give
any credit to one identified entity with a wrong label, regardless of how close the assigned
label is to the true label. For more explanation about BDM see Section 10.6.

In order to compute the BDM-based IAA, one has to assign the plugin’s runtime parameter
bdmScoreFile to the URL of a file containing the BDM scores. The file should be obtained
by using the BDM computation plugin, which is described in Section 10.6. Currently the
BDM-based TAA is only used for computing the F-measures for e.g. the entity recognition
problem. Please note that the F-measures can also be used for evaluation of classification
problem. The BDM is not used for computing other measures such as the observed agreement
and Kappa, though it is possible to implement it. Therefore currently one has to select
FMEASURE for the run time parameter measure Type in order to use the BDM based TAA
computation.

10.6 A Plugin Computing the BDM Scores for an On-
tology

The BDM (balanced distance metric) measures the closeness of two concepts in an ontology
or taxonomy [Maynard 05, Maynard et al. 06]. It is a real number between 0 and 1. The
closer the two concepts are in an ontology, the greater their BDM score is. For detailed
explanation about the BDM, see the papers [Maynard 05, Maynard et al. 06]. The BDM can
be seen as an improved version of the learning accuracy [Cimiano et al. 03]. It is dependent
on the length of the shortest path connecting the two concepts and also the deepness of the
two concepts in ontology. It is also normalised with the size of ontology and also takes into
account the concept density of the area containing the two involved concepts.

The BDM has been used to evaluate the ontology based information extraction (qOBIE)

Profiling Processing Resources 235

system [Maynard et al. 06]. The OBIE identifies the instances for the concepts of an on-
tology. It’s possible that an OBIE system identifies an instance successfully but does not
assign it the correct concept. Instead it assigns the instance a concept being close to the
correct one. For example, the entity ‘London’ is an instance of the concept Capital, and
an OBIE system assigns it the concept City which is close to the concept Capital in some
ontology. In that case the OBIE should obtain some credit according to the closeness of
the two concepts. That is where the BDM can be used. The BDM has also been used to
evaluate the hierarchical classification system [Li et al. 07b]. It can also be used for ontology
learning and alignment.

The BDM computation plugin computes BDM score for each pair of concepts in an ontology.
It has two run time parameters:

e ontologyURL - its value should be the URL of the ontology that one wants to
compute the BDM scores for.

e outputBDMFile — its value is the URL of a file which will store the BDM scores
computed.

The plugin has the name Ontology-BDM_Computation and the corresponding processing
resource’s name is BDM Computation PR. The PR can be put into a Pipeline. If it is put
into a Corpus Pipeline, the corpus used should contain at least one document.

The BDM computation used the formula given in [Maynard et al. 06]. The resulting file
specified by the runtime parameter outputBDMFile contains the BDM scores. It is a text
file. The first line of the file gives some meta information such as the name of ontology used
for BDM computation. From the second line of the file, each line corresponds to one pair of
concepts. One line is like

key==Service, response=0bject, bdm=0.6617647, msca=0Object, cp=1, dpk=1, dpr=0,
n0=2.0, n1=2.0, n2=2.8333333, bran=1.9565217

It first shows the names of the two concepts (one as key and another as response, and the
BDM score, and then other parameters’ values used for the computation. Note that, since
the BDM is symmetric for the two concepts, the resulting file contains only one line for each
pair. So if you want to look for the BDM score for one pair of concepts, you can choose one
as key and another as response. If you cannot find the line for the pair, you have to change
the order of two concepts and retrieve the file again.

236 Profiling Processing Resources

Chapter 11

Profiling Processing Resources

11.1 Overview

This is a reporting tool for GATE processing resources. It reports the total time taken by
processing resources and the time taken for each document to be processed by an application
of type corpus pipeline.

GATE use log4j, a logging system, to write profiling informations in a file. The GATE pro-
filing reporting tool uses the file generated by log4j and produces a report on the processing
resources. It profiles JAPE grammars at the rule level, enabling the user precisely identify
the performance bottlenecks. It also produces a report on the time taken to process each
document to find problematic documents.

This initial code for the reporting tool was written by Intelius employees Andrew Borthwick
and Chirag Viradiya and generously released under the LGPL licence to be part of GATE.

Processing elements of following pipelines
Time in % time

* ANNIE seconds taken
(-1 ANNIE 67.233 100.0
+] pr_ANNIE_NE_Transducer 47.631 70.8
[+] pr ANNIE_English Tokeniser 7.053 10.5
pr ANNIE OrthoMatcher 5.574 8.3
I+] pr_ANNIE_Sentence Splitter 5.181 7.7
pr ANNIE POS Tagger 0.903 1.3
All others 0.47 0.7
pr ANNIE Gazetteer 0.217 0.3
pr_Document_Reset FR 0.204 0.3

Figure 11.1: Example of HTML profiling report for ANNIE
237

238 Profiling Processing Resources

11.1.1 Features

e Ability to generate the following two reports
— Report on processing resources. For each level of processing: application, pro-
cessing resource (PR) and grammar rule, subtotalled at each level.
— Report on documents processed. For some or all PR, sorted in decreasing pro-
cessing time.

e Report on processing resources specific features

— Sort order by time or by execution.
— Show or hide processing elements which took 0 milliseconds.

— Generate HTML report with a collapsible tree.
e Report on documents processed specific features

— Limit the number of document to show from the most time consuming.

— Filter the PR to display statistics for.
e Features common to both reports

— Generate report as indented text or in HTML format.
— Generate a report only on the log entries from the last logical run of GATE.

— All processing times are reported in milliseconds and in terms of percentage
(rounded to nearest 0.1%) of total time.

— Command line interface and API.

— Detect if the benchmark.txt file is modified while generating the report.

11.1.2 Limitations

Be aware that the profiling doesn’t support non corpus pipeline as application type. There
is indeed no interest in profiling a non corpus pipeline that works on one or no document at
all. To get meaningful results you should run your corpus pipeline on at least 10 documents.

11.2 Graphical User Interface

The activation of the profiling and the creation of profiling reports are accessible from the
‘Tools’ menu in GATE with the submenu ‘Profiling Reports’.

Profiling Processing Resources 239

You can ‘Start Profiling Applications’ and ‘Stop Profiling Applications’ at any time. The
logging is cumulative so if you want to get a new report you must use the ‘Clear Profiling
History” menu item when the profiling is stopped.

Two types of reports are available: ‘Report on Processing Resources’ and ‘Report on Docu-
ments Processed’. See the previous section for more information.

11.3 Command Line Interface

Report on processing resources Usage: java gate.util.reporting. PRTimeReporter [Op-
tions|

Options:

-i input file path (default: benchmark.txt in the user’s .gate directory?)

-m print media - html/text (default: html)

-7 suppressZeroTimeEntries - true/false (default: true)

-s sorting order - exec_order/time_taken (default: exec_order)

-0 output file path (default: report.html/txt in the system temporary directory)
-1 logical start (not set by default)

-h show help

Note that suppressZeroTimeEntries will be ignored if the sorting order is ‘time_taken’

Report on documents processed Usage: java gate.util.reporting.DocTimeReporter
[Options]

Options:

-i input file path (default: benchmark.txt in the user’s .gate directory?)
-m print media - html/text (default: html)

-d number of docs, use -1 for all docs (default: 10 docs)

-p processing resource name to be matched (default: all_prs)

LGATE versions up to 5.2 placed benchmark.txt in the execution directory.
2GATE versions up to 5.2 placed benchmark.txt in the execution directory.

240 Profiling Processing Resources

-0 output file path (default: report.html/txt in the system temporary directory)
-1 logical start (not set by default)
-h show help

Examples

e Run report 1: Report on Total time taken by each processing element across corpus

— java -cp " gate/bin:gate/lib/GnuGetOpt.jar” gate.util.reporting. PRTimeReporter
-i benchmark.txt -o report.txt -m text

e Run report 2: Report on Time taken by document within given corpus.

— java-cp ”gate/bin:gate/lib/GnuGetOpt.jar” gate.util.reporting.DocTimeReporter
-i benchmark.txt -o report.html -m html

11.4 Application Programming Interface

11.4.1 Log4j.properties

This is required to direct the profiling information to the benchmark.txt file. The bench-
mark.txt generated by GATE will be used as input for GATE profiling report tool as input.

e # File appender that outputs only benchmark messages

e logdj.appender.benchmarklog=org.apache.log4j.RollingFileAppender

e logdj.appender.benchmarklog. Threshold=DEBUG

e log4j.appender.benchmarklog.File=$user.home/.gate/benchmark.txt

e logdj.appender.benchmarklog.MaxFileSize=5MB

e log4j.appender.benchmarklog.MaxBackupIndex=1

e logdj.appender.benchmarklog.layout=org.apache.log4j.PatternLayout

e log4j.appender.benchmarklog.layout.ConversionPattern=%m%n

e # Configure the Benchmark logger so that it only goes to the benchmark log file

e logdj.logger.gate.util. Benchmark=DEBUG, benchmarklog

e logdj.additivity.gate.util. Benchmark=false

Profiling Processing Resources 241

11.4.2 Benchmark log format

The format of the benchmark file that logs the times is as follow:

timestamp START PR_name
timestamp duration benchmarkID class features
timestamp duration benchmarkID class features

with the timestamp being the difference, measured in milliseconds, between the current time
and midnight, January 1, 1970 UTC.

Example:

1257269774770 START Sections_splitter

1257269774773 0 Sections_splitter.doc_EP-1026523-A1_xml_00008.documentLoaded
gate.creole.SerialAnalyserController

{corpusName=Corpus for EP-1026523-A1.xml_00008,
documentName=EP-1026523-A1.xm1_00008}

11.4.3 Enabling profiling

There are two ways to enable profiling of the processing resources:

1. In gate/build.properties, add the line: run.gate.enable.benchmark=true

2. In your Java code, use the method: Benchmark.setBenchmarkingEnabled(true)

11.4.4 Reporting tool

Report on processing resources

1. Instantiate the Class PRTimeReporter
(a) PRTimeReporter report = new PRTimeReporter();
2. Set the input benchmark file

(a) File benchmarkFile = new File(”benchmark.txt”);

242

Profiling Processing Resources

(b) report.setBenchmarkFile(benchmarkFile);
Set the output report file

(a) File reportFile = new File("report.txt”); or
(b) File reportFile = new File("report.html”);
(c) report.setReportFile(reportFile);

Set the output format: in html or text format (default: MEDIA_HTML)

(a) report.setPrintMedia(PRTimeReporter. MEDIA_TEXT); or
(b) report.setPrintMedia(PRTimeReporter. MEDIA_HTML);

Set the sorting order: Sort in order of execution or descending order of time taken
(default: EXEC_ORDER)

(a) report.setSortOrder(PRTimeReporter.SORT_TIME_TAKEN); or
(b) report.setSortOrder(PRTimeReporter. SORT_EXEC_ORDER);

Set if suppress zero time entries: True/False (default: True). Parameter ignored if
SortOrder specified is ‘SORT_TIME_TAKEN’

(a) report.setSuppressZeroTimeEntries(true);

Set the logical start: A string indicating the logical start to be operated upon for
generating reports

(a) report.setLogicalStart(” InteliusPipelineStart”);
Generate the text/html report

(a) report.executeReport();

Report on documents processed

1. Instantiate the Class DocTimeReporter

(a) DocTimeReporter report = new DocTimeReporter();

2. Set the input benchmark file

(a) File benchmarkFile = new File(” benchmark.txt”);
(b) report.setBenchmarkFile(benchmarkFile);

3. Set the output report file

(a) File reportFile = new File(”"report.txt”); or

Developing GATE 243

(b) File reportFile = new File(”report.html”);
(c) report.setReportFile(reportFile);

4. Set the output format: Generate report in html or text format (default: ME-
DIA_HTML)

(a) report.setPrintMedia(DocTimeReporter. MEDIA_TEXT); or
(b) report.setPrintMedia(DocTimeReporter. MEDIA_HTML);

5. Set the maximum number of documents: Maximum number of documents to be dis-
played in the report (default: 10 docs)

(a) report.setNoOfDocs(2); // 2 docs or
(b) report.setNoOfDocs(DocTimeReporter. ALL_DOCS); // All documents

6. Set the PR matching regular expression: A PR name or a regular expression to filter
the results (default: MATCH_ALL_PR_REGEX).

(a) report.setSearchString(”HTML”); // match ALL PRS having HTML as substring

7. Set the logical start: A string indicating the logical start to be operated upon for
generating reports

(a) report.setLogicalStart(” InteliusPipelineStart”);
8. Generate the text/html report

(a) report.executeReport();

244 Developing GATE

Chapter 12

Developing GATE

This chapter describes ways of getting involved in and contributing to the GATE project.
Sections 12.1 and 12.2 are good places to start. Sections 12.3 and 12.4 describe protocol and
provide information for committers; we cover creating new plugins and updating this user
guide. See Section 12.2 for information on becoming a committer.

12.1 Reporting Bugs and Requesting Features

The GATE bug tracker can be found on SourceForge, here. When reporting bugs, please give
as much detail as possible. Include the GATE version number and build number, the platform
on which you observed the bug, and the version of Java you were using (1.5.0_15, 1.6.0.03,
etc.). Include steps to reproduce the problem, and a full stack trace of any exceptions,
including ‘Caused by ...’. You may wish to first check whether the bug is already fixed in
the latest nightly build. You may also request new features.

12.2 Contributing Patches

Patches may be submitted on SourceForge. The best format for patches is an SVN diff
against the latest subversion. The diff can be saved as a file and attached; it should not
be pasted into the bug report. Note that we generally do not accept patches against earlier
versions of GATE. Also, GATE is intended to be compatible with Java 5, so if you regularly
develop using a later version of Java it is very important to compile and test your patches
on Java 5. Patches that use Java-6-only features and do not compile and run on Java 5 will
not be accepted.

If you intend to submit larger changes, you might prefer to become a committer! We welcome
input to the development process of GATE. The code is hosted on SourceForge, providing
245

http://sourceforge.net/projects/gate/support
http://sourceforge.net/projects/gate/support
http://sourceforge.net/projects/gate/

246 Developing GATE

anonymous Subversion access (see Section 2.2.3). We're happy to give committer privileges
to anyone with a track record of contributing good code to the project. We also make the
current version available nightly on the ftp site.

12.3 Creating New Plugins

GATE provides a flexible structure where new resources can be plugged in very easily. There
are three types of resources: Language Resource (LR), Processing Resource (PR) and Visual
Resource (VR). In the following subsections we describe the necessary steps to write new
PRs and VRs, and to add plugins to the nightly build. The guide on writing new LRs will
be available soon.

12.3.1 Where to Keep Plugins in the GATE Hierarchy

Each new resource added as a plugin should contain its own subfolder under the %GATE-
HOME% /plugins folder with an associated creole.xml file. A plugin can have one or more
resources declared in its creole.xml file and /or using source-level annotations as described in
section 4.7.

12.3.2 What to Call your Plugin

The plugins are many and the list is constantly expanding. The naming convention aims to
impose order and group plugins in a readable manner. When naming new plugins, please
adhere to the following guidelines;

e Words comprising plugin names should be capitalized and separated by underscores
Like_So. This means that they will format nicely in GATE Developer. For example,
‘Inter_Annotator_Agreement’.

e Plugin names should begin with the word that best describes their function. Practi-
cally, this means that words are often reversed from the usual order, for example, the
Chemistry Tagger plugin should be called ‘Tagger Chemistry’. This means that for
example parsers will group together alphabetically and thus will be easy to find when
someone is looking for parsers. Before naming your plugin, look at the existing plugins
and see where it might group well.

Developing GATE 247

12.3.3 Writing a New PR
Class Definition

Below we show a template class definition, which can be used in order to write a new
Processing Resource.

-

2 package example;

3

4 1import gate.x*;

5 1import gate.creole.*;

6 1import gate.creole.metadata.*;

7

8 /Hx

9 ¥ Processing Resource. The @CreoleResource annotation marks this
10 * class as a GATE Resource, and gives the information GATE needs
11 ¥ to configure the resource appropriately.

12 x/

13 @CreoleResource (name = "Example PR",

14 comment = "An example processing resource")

15 public class NewPlugin extends AbstractLanguageAnalyser {

16

17 /%

18 ¥ this method gets called whenever an object of this

19 x class is created either from GATE Developer GUI or if

20 * dqnitiated wusing Factory.createResource () method.

21 */

22 public Resource init() throws ResourcelInstantiationException {
23 // here initialize all required wvariables , and may

24 // be throw an exception if the wvalue for any of the

25 // mandatory parameters is not provided

26

27 if (this.rulesURL == null)

28 throw new ResourcelnstantiationException("rules URL null");
29

30 return this;

31 }

32

33

34 /%

35 ¥ this method should provide the actual functionality of the PR
36 x (from where the main execution begins). This method

37 ¥ gets called when wuser click on the "RUN” button in the

38 x GATE Developer GUI’s application window.

39 */

40 public void execute() throws ExecutionException {

W
=

// write code here
¥

P
w N

/* this method is called to reinitialize the resource x/
public void reInit() throws ResourcelnstantiationException {

PN
IS

248 Developing GATE

46 // reinitialization code
47 }

18
49

NS
*

There are two types of parameters

1. Init time parameters — values for these parameters mneed to be
provided at the time of initializing a mew resource and these
values are mnot supposed to be changed.

2. Runtime parameters — wvalues for these parameters are provided
at the time of executing the PR. These are runtime parameters and
can be changed before starting the execution

(i.e. before you click on the "RUN” button in GATE Developer)

A parameter myParam is specified by a pair of methods getMyParam
and setMyParam (with the first letter of the parameter name
capitalized in the normal Java Beans style), with the setter
annotated with a @CreoleParameter annotation .

50
51
52
53
54
55
56
57
58
59
60
61
62

¥ Oo% X X X X X X X X X X X x

63 for example to set a value for outputAnnotationSetName

64 */

65 String outputAnnotationSetName;

66

67 //getter and setter methods

68

69 /* get<parameter name with first letter Capital> x/

70 public String getOutputAnnotationSetName () {

71 return outputAnnotationSetName;

72 }

73

74 /x The setter method is annotated to tell GATE that it defines an
75 ¥ optional runtime parameter.

76 */

77 @0ptional

78 @RunTime

79 @CreoleParameter (

80 comment = "name of the annotationSet used for output")
81 public void setOuputAnnotationSetName (String setName) {
82 this.outputAnnotationSetName = setName;

83 }

84

85 Jx* Init—time parameter %/

86 URL rulesURL;

87

88 // getter and setter methods

89 public URL getRulesURL () {

90 return rulesFile;

01 }

92

93 /* This parameter is nol annotated @RunTime or @Optional, so il is a
94 ¥ required init—time parameter.

95 */

96 @CreoleParameter (

97 comment = "example of an inittime parameter",

98 defaultValue = "resources/morph/default.rul")

Developing GATE 249

99 public void setRulesURL (URL rulesURL) {
100 this.rulesURL = rulesURL;

101 }

102}

PR Creole Entry

The creole.xml file simply needs to tell GATE which JAR file to look in to find the PR.

<?xml version="1.0"7>
<CREOLE-DIRECTORY>

<JAR SCAN="true">newplugin.jar</JAR>
</CREOLE-DIRECTORY>

Alternatively the configuration can be given in the XML file directly instead of using source
annotations. Section 4.7 gives the full details.

Context Menu

Each resource (LR,PR) has some predefined actions associated with it. These actions appear
in a context menu that appears in GATE Developer when the user right clicks on any of
the resources. For example if the selected resource is a Processing Resource, there will
be at least four actions available in its context menu: 1. Close 2. Hide 3. Rename and 4.
Reinitialize. New actions in addition to the predefined actions can be added by implementing
the gate.gui.ActionsPublisher interface in either the LR/PR itself or in any associated VR.
Then the user has to implement the following method.

public List getActions() {
return actions;

}

Here the variable actions should contain a list of instances of type javaz.swing. AbstractAction.
A string passed in the constructor of an AbstractAction object appears in the context menu.
Adding a null element adds a separator in the menu.

250 Developing GATE

Listeners

There are at least four important listeners which should be implemented in order to listen
to the various relevant events happening in the background. These include:

o CreoleListener

Creole-register keeps information about instances of various resources and refreshes
itself on new additions and deletions. In order to listen to these events, a class should
implement the gate.event. CreoleListener. Implementing CreoleListener requires users
to implement the following methods:

— public void resourceLoaded(CreoleEvent creoleEvent);
— public void resourceUnloaded(CreoleEvent creoleEvent);

— public void resourceRenamed(Resource resource, String oldName, String new-
Name);

— public void datastoreOpened(CreoleEvent creoleEvent);
— public void datastoreCreated(CreoleEvent creoleEvent);

— public void datastoreClosed(CreoleEvent creoleEvent);

e DocumentListener

A traditional GATE document contains text and a set of annotationSets. To get
notified about changes in any of these resources, a class should implement the
gate.event. DocumentListener. This requires users to implement the following meth-

ods:

— public void contentEdited(DocumentEvent event);
— public void annotationSetAdded(DocumentEvent event);

— public void annotationSetRemoved(DocumentEvent event);

e AnnotationSetListener

As the name suggests, AnnotationSet is a set of annotations. To listen
to the addition and deletion of annotations, a class should implement the
gate.event. AnnotationSetListener and therefore the following methods:

— public void annotationAdded(AnnotationSetEvent event);

— public void annotationRemoved(AnnotationSetEvent event);

e AnnotationListener

Each annotation has a featureMap associated with it, which contains a set of feature
names and their respective values. To listen to the changes in annotation, one needs
to implement the gate.event. AnnotationListener and implement the following method:

— public void annotationUpdated(AnnotationEvent event);

Developing GATE 251

HORIZONTAL

CENTRAL LARGE VIEW

Figure 12.1: GATE GUI

12.3.4 Writing a New VR

Each resource (PR and LR) can have its own associated visual resource. When double
clicked, the resource’s respective visual resource appears in GATE Developer. The GATE
Developer GUI is divided into three visible parts (See Figure 12.1). One of them contains
a tree that shows the loaded instances of resources. The one below this is used for various
purposes - such as to display document features and that the execution is in progress. This
part of the GUI is referred to as ‘small’. The third and the largest part of the GUI is referred
to as ‘large’. One can specify which one of these two should be used for displaying a new
visual resource in the creole.xml.

Class Definition

Below we show a template class definition, which can be used in order to write a new Visual
Resource.

1 package example.gui;

2

3 1import gate.*;

4 1import gate.creole.x*;

5 1import gate.creole.metadata.*;

6

7/

8 * An example Visual Resource for the New Plugin

9 ¥ Note that here we extends the AbstractVisualResource class.
10 * The @CreoleResource annotation associates this VR with the
11 ¥ underlying PR type it displays.

*/

@CreoleResource (name = "Visual resource for new plugin",

==
w N

252 Developing GATE

14 guiType = GuiType.LARGE,

15 resourceDisplayed = "example.NewPlugin",

16 mainViewer = true)

17 public class NewPluginVR extends AbstractVisualResource {

18

19 /%

20 x* An Init method called when the GUI is initialized for
21 ¥ the first time

22 */

23 public Resource init () {

24 // initialize GUI Components

25 return this;

26 }

27

28 /*

29 x Here target is the PR class to which this Visual Resource
30 * belongs. This method is called after the init () method.
31 */

32 public void setTarget(Object target) {

33 // check if the target is an instance of what you expected
34 // and initialize local data structures if required
35 }

36}

Every document has its own document viewer associated with it. It comes with a single
component that shows the text of the original document. GATE provides a way to attach new
GUI plugins to the document viewer. For example AnnotationSet viewer, AnnotationList
viewer and Co-Reference editor. These are the examples of DocumentViewer plugins shipped
as part of the core GATE build. These plugins can be displayed either on the right or on
top of the document viewer. They can also replace the text viewer in the center (See figure
12.1). A separate button is added at the top of the document viewer which can be pressed
to display the GUI plugin.

Below we show a template class definition, which can be used to develop a new Docu-
ment Viewer plugin.

/%
¥ Note that the class needs to extends the AbstractDocumentView class
*/

@CreoleResource

public class DocumentViewerPlugin extends AbstractDocumentView {

/* Implementers should override this method and wuse it for
¥ populating the GUI.
*/
public void initGUI() {
// write code to initialize GUI

© 0w N O U R W N

= e
N o= O

}

==
=W

/* Returns the type of this view */
public int getType () {

e
o w

Developing GATE 253

17 // it can be any of the following constants

18 // from the gate.gui.docview.DocumentView

19 // CENTRAL, VERTICAL, HORIZONTAL

20 }

21

22 /* Returns the actual Ul component this view represents. x/
23 public Component getGUI() {

24 // return the top level GUI component

25 }

26

27 /* This method called whenever view becomes active.x/

28 public void registerHooks () {

29 // register listeners

30 }

31

32 /* This method called whenever view becomes inactive. x/
33 public void unregisterHooks () {

34 // do mnothing

35 }

36 F

12.3.5 Adding Plugins to the Nightly Build

If you add a new plugin and want it to be part of the build process, you should create a
build.xml file with targets ‘build’, ‘test’, ‘distro.prepare’, ‘javadoc’ and ‘clean’. The build
target should build the JAR file, test should run any unit tests, distro.prepare should clean
up any intermediate files (e.g. the classes/ directory) and leave just what’s in Subversion,
plus the compiled JAR file and javadocs. The clean target should clean up everything,
including the compiled JAR and any generated sources, etc. You should also add your
plugin to ‘plugins.to.build’ in the top-level build.xml to include it in the build. This is by
design - not all the plugins have build files, and of the ones that do, not all are suitable for
inclusion in the nightly build (viz. SUPPLE, Section 17.11).

Note that if you are currently building gate by doing ‘ant jar’, be aware that this does not
build the plugins. Running just ‘ant’ or ‘ant all’ will do so.

12.4 Updating this User Guide

The GATE User Guide is maintained in the GATE subversion repository at SourceForge. If
you are a developer at Sheffield you do not need to check out the userguide explicitly, as it
will appear under the tao directory when you check out sale. For others, you can check it
out as follows:

svn checkout https://svn.sourceforge.net/svnroot/gate/userguide/trunk userguide

254 Developing GATE

The user guide is written in KTEX and translated to PDF using pdflatex and to HTML
using tex4ht. The main file that ties it all together is tao_main.tex, which defines the
various macros used in the rest of the guide and \inputs the other .tex files, one per
chapter.

12.4.1 Building the User Guide

You will need:

e A standard POSIX shell environment including GNU Make. On Windows this gener-
ally means Cygwin, on Mac OS X the XCode developer tools and on Unix the relevant
packages from your distribution.

e A copy of the userguide sources (see above).

e A KTEX installation, including pdflatex if you want to build the PDF version, and
tex4ht if you want to build the HTML. MiKTeX should work for Windows, texlive
(available in MacPorts) for Mac OS X, or your choice of package for Unix.

e The BibTeX database big.bib. It must be located in the directory above
where you have checked out the userguide, i.e. if the guide sources are in
/home/bob/svn/userguide then big.bib needs to go in /home/bib/svn. Sheffield
developers will find that it is already in the right place, under sale, others will need
to download it from http://gate.ac.uk/sale/big.bib.

e The file http://gate.ac.uk/sale/utils.tex.

A bit of luck.

Once these are all assembled it should be a case of running make to perform the actual build.
To build the PDF do make tao.pdf, for the one page HTML do make index.html and for
the several pages HTML do make split.html.

The PDF build generally works without problems, but the HTML build is known to hang
on some machines for no apparent reason. If this happens to you try again on a different
machine.

12.4.2 Making Changes to the User Guide

To make changes to the guide simply edit the relevant .tex files, make sure the guide still
builds (at least the PDF version), and check in your changes to the source files only.
Please do not check in your own built copy of the guide, the official user guide builds are
produced by a Hudson continuous integration server in Sheffield.

http://www.cygwin.com
http://www.macports.org
http://gate.ac.uk/sale/big.bib
http://gate.ac.uk/sale/utils.tex

Developing GATE 255

If you add a section or subsection you should use the \sect or \subsect commands rather
than the normal LaTeX \section or \subsection. These shorthand commands take an
optional first parameter, which is the label to use for the section and should follow the
pattern of existing labels. The label is also set as an anchor in the HTML version of the
guide. For example a new section for the ‘Fish’ plugin would go in misc-creole.tex with
a heading of:

\sect[sec:misc-creole:fish]{The Fish Plugin}

and would have the persistent URL http://gate.ac.uk/userguide/sec:misc-creole:fish.

If your changes are to document a bug fix or a new (or removed) feature then you should
also add an entry to the change log in recent-changes.tex. You should include a reference
to the full documentation for your change, in the same way as the existing changelog entries
do. You should find yourself adding to the changelog every time except where you are just
tidying up or rewording existing documentation. Unlike in the other source files, if you add
a section or subsection you should use the \rcSect or \rcSubsect. Recent changes appear
both in the introduction and the appendix, so these commands enable nesting to be done
appropriately.

Section /subsection labels should comprise ‘sec’ followed by the chapter label and a descriptive
section identifier, each colon-separated. New chapter labels should begin ‘chap:’.

Try to avoid changing chapter/section/subsection labels where possible, as this may break
links to the section. If you need to change a label, add it in the file ‘sections.map’. Entries
in this file are formatted one per line, with the old section label followed by a tab followed
by the new section label.

The quote marks used should be ‘ and .

Titles should be in title case (capitalise the first word, nouns, pronouns, verbs, adverbs and
adjectives but not articles, conjunctions or prepositions). When referring to a numbered
chapter, section, subsection, figure or table, capitalise it, e.g. ‘Section 3.1’. When merely
using the words chapter, section, subsection, figure or table, e.g. ‘the next chapter’, do not
capitalise them. Proper nouns should be capitalised (‘Java’, ‘Groovy’), as should strings
where the capitalisation is significant, but not terms like ‘annotation set’ or ‘document’.

The user guide is rebuilt automatically whenever changes are checked in, so your change
should appear in the online version of the guide within 20 or 30 minutes.

256 Developing GATE

Part 111

CREOLE Plugins

257

Chapter 13

Gazetteers

...neurobiologists still go on openly studying reflexes and looking under the hood,
not huddling passively in the trenches. Many of them still keep wondering: how
does the inner life arise? Ever puzzled, they oscillate between two major fictions:
(1) The brain can be understood; (2) We will never come close. Meanwhile they
keep pursuing brain mechanisms, partly from habit, partly out of faith. Their
premise: The brain is the organ of the mind. Clearly, this three-pound lump of
tissue is the source of our ‘insight information’ about our very being. Somewhere
in it there might be a few hidden guidelines for better ways to lead our lives.

Zen and the Brain, James H. Austin, 1998 (p. 6).

13.1 Introduction to Gazetteers

A gazetteer consists of a set of lists containing names of entities such as cities, organisations,
days of the week, etc. These lists are used to find occurrences of these names in text, e.g.
for the task of named entity recognition. The word ‘gazetteer’ is often used interchangeably
for both the set of entity lists and for the processing resource that makes use of those lists
to find occurrences of the names in text.

When a gazetteer processing resource is run on a document, annotations of type Lookup are
created for each matching string in the text. Gazetteers usually do not depend on Tokens
or on any other annotation and instead find matches based on the textual content of the
document. (the Flexible Gazetteer, described in section 13.7, being the exception to
the rule). This means that an entry may span more than one word and may start or end
within a word. If a gazetteer that directly works on text does respect word boundaries, the
way how word boundaries are found might differ from the way the GATE tokeniser finds
word boundaries. A Lookup annotation will only be created if the entire gazetteer entry is
matched in the text. The details of how gazetteer entries match text depend on the gazetteer
259

260 Gazetteers

processing resource and its parameters. In this chapter, we will cover several gazetteers.

13.2 ANNIE Gazetteer

The rest of this introductory section describes the ANNIE Gazetteer which is part of ANNIE
and also described in section 6.3. The ANNIE gazetteer is part of and proved by the ANNIE
plugin.

Each individual gazetteer list is a plain text file, with one entry per line.

Below is a section of the list for units of currency:

Ecu

European Currency Units
FFr

Fr

German mark

German marks

New Taiwan dollar

New Taiwan dollars

NT dollar

NT dollars

An index file (usually called lists.def) is used to describe all such gazetteer list files that
belong together. Each gazetteer list should reside in the same directory as the index file.

The gazetteer index files describes for each list the major type and optionally, a minor type
and a language, separated by colons. In the example below, the first column refers to the
list name, the second column to the major type, and the third to the minor type. These lists
are compiled into finite state machines. Any text strings matched by these machines will be
annotated with features specifying the major and minor types.

currency_prefix.lst:currency_unit:pre_amount
currency_unit.lst:currency_unit:post_amount
date.lst:date:specific_date

day.lst:date:day

monthen.lst:date:month:en
monthde.lst:date:month:de
season.lst:date:season

The major and minor type as well as the language will be added as features to only Lookup
annotation generated from a matching entry from the respective list. For example, if an entry

Gazetteers 261

from the currency unit.1lst gazetteer list matches some text in a document, the gazetteer
processing resource will generate a Lookup annotation spanning the matching text and assign
the features major="currency unit" and minor="post_amount" to that annotation.

Grammar rules (JAPE rules) can specify the types to be identified in particular circum-
stances. The major and minor types enable this identification to take place, by giving access
to items stored in particular lists or combinations of lists.

For example, if a day needs to be identified, the minor type ‘day’ would be specified in the
grammar, in order to match only information about specific days. If any kind of date needs
to be identified, the major type ‘date’ would be specified. This might include weeks, months,
years etc. as well as days of the week, and would give access to all the items stored in day.lst,
month.lst, season.lst, and date.lst in the example shown.

13.2.1 Creating and Modifying Gazetteer Lists

Gazetteer lists can be modified using any text editor. Use of an editor that can edit Unicode
UTF-8 files (e.g. the GATE Unicode editor) is advised, however, in order to ensure that the
lists are stored as UTF-8, which will minimise any language encoding problems, particularly
if e.g. accents, umlauts or characters from non-Latin scripts are present.

To create a new list, simply add an entry for that list to the definitions file and add the new
list in the same directory as the existing lists.

After any modifications have been made, ensure that you reinitialise the gazetteer PR in
GATE, if one is already loaded, before rerunning your application.

13.3 Gazetteer Visual Resource - GAZE

Gaze is a tool for editing the gazetteer lists , definitions and mapping to ontology. It
is suitable for use both for Plain/Linear Gazetteers (Default and Hash Gazetteers) and
Ontology-enabled Gazetteers (OntoGazetteer). The Gazetteer PR associated with the viewer
is reinitialised every time a save operation is performed. Note that GAZE does not scale up
to very large lists (we suggest not using it to view over 40,000 entries and not to copy inside
more than 10, 000 entries).

Gaze is part of and provided by the ANNIE plugin. To make it possible to visualize gazetteers
with the Gaze visualizer, the ANNIE plugin must be loaded first. Double clicking on a
gazetteer PR that uses a gazetteer definition (index) file will display the contents of the
gazetteer in the main window. The first pane will display the definition file, while the right
pane will display whichever gazetteer list has been selected from it.

A gazetteer list can be modified simply by typing in it. it can be saved by clicking the Save

262 Gazetteers

button. When a list is saved, the whole gazetteer is automatically reinitialised (and will be
ready for use in GATE immediately).

To edit the definition file, right click inside the pane and choose from the options (Inset, Edit,
Remove). A pop-up menu will appear to guide you through the remaining process. Save the
definition file by selecting Save. Again, the gazetteer will be reinitialised automatically.

13.3.1 Display Modes

The display mode depends on the type of gazetteer loaded in the VR. The mode in which
Linear/Plain Gazetteers are loaded is called Linear/Plain Mode. In this mode, the Linear
Definition is displayed in the left pane, and the Gazetteer List is displayed in the right pane.
The Ontology/Extended mode is on when the displayed gazetteer is ontology-aware, which
means that there exists a mapping between classes in the ontology and lists of phrases. Two
more panes are displayed when in this mode. On the top in the left-most pane there is a tree
view of the ontology hierarchy, and at the bottom the mapping definition is displayed. This
section describes the Linear/Plain display mode, the Ontology /Extended mode is described
in section 13.5.

Whenever a gazetteer PR that uses a gazetteer definition (index) file is loaded, the Gaze
gazetteer visualisation will appear on double-click over the gazetteer in the Processing Re-
sources branch of the Resources Tree.

13.3.2 Linear Definition Pane

This pane displays the nodes of the linear definition, and allows manipulation of the whole
definition as a file, as well as the single nodes. Whenever a gazetteer list is modified, its
node in the linear definition is coloured in red.

13.3.3 Linear Definition Toolbar

All the functionality explained in this section (New, Load, Save, Save As) is accessible also
via File — Linear Definition in the menu bar of Gaze.

New — Pressing New invokes a file dialog where the location of the new definition is specified.

Load — Pressing Load invokes a file dialog, and after locating the new definition it is loaded
by pressing Open.

Save — Pressing Save saves the definition to the location from which it has been read.

Save As — Pressing Save As allows another location to be chosen, and the definition saved

Gazetteers 263

there.

13.3.4 Operations on Linear Definition Nodes

Double-click node — Double-clicking on a definition node forces the displaying of the
gazetteer list of the node in the right-most pane of the viewer.

Insert — On right-click over a node and choosing Insert, a dialog is displayed, requesting
List, Major Type, Minor Type and Languages. The mandatory fields are List and Major
Type. After pressing OK, a new linear node is added to the definition.

Remove — On right-click over a node and choosing Remove, the selected linear node is
removed from the definition.

Edit — On right-click over a node and choosing Edit a dialog is displayed allowing changes
of the fields List, Major Type, Minor Type and Languages.

13.3.5 Gazetteer List Pane

The gazetteer list pane has a toolbar with similar to the linear definition’s buttons (New,
Load, Save, Save As). They work as predicted by their names and as explained in the Linear
Definition Pane section, and are also accessible from File / Gazetteer List in the menu bar
of Gaze. The only addition is Save All which saves all modified gazetteer lists. The editing
of the gazetteer list is as simple as editing a text file. One could use Ctrl4+A to select the
whole list, Ctrl4+-C to copy the selected, Ctrl4+V to paste it, Del to delete the selected text
or a single character, etc.

13.3.6 Mapping Definition Pane

The mapping definition is displayed one mapping nod