Developing Language Processing
Components with GATE

Version 5 (a User Guide)

For GATE version 5.0-betal
(built October 31, 2008)

Hamish Cunningham
Diana Maynard
Kalina Bontcheva
Valentin Tablan
Cristian Ursu
Marin Dimitrov
Mike Dowman
Niraj Aswani
Ian Roberts
Yaoyong Li
Andrey Shafirin
Adam Funk

(©The University of Sheffield 2001-2008

http://gate.ac.uk/

HTML version: http://gate.ac.uk/cgi-bin/userguide/

Work on GATE has been partly supported by EPSRC grants GR/K25267 (Large-Scale
Information Extraction), GR/M31699 (GATE 2), RA007940 (EMILLE), GR/N15764/01
(AKT) and GR/R85150/01 (MIAKT), AHRB grant APN16396 (ETCSL/GATE), and
several EU-funded projects (SEKT, TAO, NeOn, MediaCampaign, MUSING,
KnowledgeWeb, PrestoSpace, h-TechSight, enIRaF).

http://www.dcs.shef.ac.uk/~hamish/
http://www.dcs.shef.ac.uk/~diana/
http://www.dcs.shef.ac.uk/~kalina/
http://www.dcs.shef.ac.uk/~valyt/
http://personal.sirma.bg/marin/marin.htm
http://www.dcs.shef.ac.uk/~niraj/
http://www.dcs.shef.ac.uk/~ian/
http://www.dcs.shef.ac.uk/~yaoyong/
http://www.dcs.shef.ac.uk/~adam/
http://gate.ac.uk/
http://gate.ac.uk/cgi-bin/userguide/
http://www.sekt-project.com
http://www.tao-project.eu
http://www.neon-project.org
http://www.media-campaign.eu
http://www.musing.eu
http://knowledgeweb.semanticweb.org
http://www.prestospace.org
http://gate.ac.uk/projects/htechsight/
http://eniraf.mis.ae.poznan.pl

Brief Contents

1 Introduction
1.1 How to Use This Text
1.2 Context
1.3 Overview
1.4 Structure of the Book

1.5

Further Reading

2 Change Log

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

Version 5.0-betal (October 2008)
Version 4.0 (July 2007)o
Version 3.1 (April 2006)o
January 2000 . ..o Lo
December 2004o
September 2004 L
Version 3 Beta 1 (August 2004)
July 2004 . . .
June 2004 . . Lo Lo
April 2004
March 2004
Version 2.2 — August 2003
Version 2.1 — February 2003 o
June 2002 . ..o

How To...

Download GATE
Install and Run GATE oo
[D,F] Use System Properties with GATE
[D,F] Use (CREOLE) Plug-ins
Troubleshooting
[D] Get Started with the GUL
[D,F] Configure GATE
Build GATE o
[D] Use GATE with Maven or JPF
[D,F] Create a New CREOLE Resource
[F] Instantiate CREOLE Resources
[D] Load CREOLE Resources
[D,F] Configure CREOLE Resources
[D] Create and Run an Application
[D] Run PRs Conditionally on Document Features
[D] View Annotations Lo
[D] Do Information Extraction with ANNIE
[D]

D
D] Modify ANNIE o oo

Brief Contents

3.19 |
3.20 |
3.21 |
3.22 |
3.23 |
3.24 |
3.25 |
3.26 |
[
[
[
D,
[D
[
[D

D] Create and Edit Test Data
D,F] Create a New Annotation Schema
D] Save and Restore LRs in Data Stores
| Save Resource Parameter State to File
,F] Perform Evaluation with the AnnotationDiff tool
| Use the Corpus Benchmark Evaluation tool
]

D

D

D

D| Write JAPE Grammars
F] Embed NLE in other Applications

3.27 [F] Use GATE within a Spring application

3.28 [F|

3.29 [F|

3.30

3.31

F| Use GATE within a Tomcat Web Application
F| Use GATE in a Multithreaded Environment
F| Add support for a new document format

] Dump Results to File oo

3.32 [D] Stop GUI ‘Freezing’ on Linux
3.33 [D] Stop GUI Crashing on Linux
3.34 [D] Stop GATE Restoring GUI Sessions/Options
3.35 Work with Unicode
3.36 Work with Oracle and PostgreSQL

4 CREOLE: the GATE Component Model
4.1 The Web and CREOLE
4.2 Java Beans: a Simple Component Architecture
4.3 The GATE Framework
4.4 Language Resources and Processing Resources
4.5 The Lifecycle of a CREOLE Resource
4.6 Processing Resources and Applications
4.7 Language Resources and Datastores
4.8 Built-in CREOLE Resources
4.9 CREOLE Resource Configuration

5 Visual CREOLE
5.1 Gazetteer Visual Resource - GAZE
5.2 Ontogazetteer L
5.3 The Co-reference Editor

6 Language Resources: Corpora, Documents and Annotations
6.1 Features: Simple Attribute/Value Data
6.2 Corpora: Sets of Documents plus Features
6.3 Documents: Content plus Annotations plus Features
6.4 Annotations: Directed Acyclic Graphs
6.5 Document Formats
6.6 XML Input/Output

7 JAPE: Regular Expressions Over Annotations
7.1 Matching operators in detail

11

51
53
54
95
56
o7
58
99
61
62
65
66
68
69
69
69
70
71

72
73
74
5
76
7
78
79
79
80

93
93
95
97

98
98
99
99
99
104
118

119

Brief Contents

7.2 Useof Context
7.3 Useof Priority
7.4 Useofnegation
7.5 Useful tricks
7.6 Ontology aware grammar transduction
7.7 Using Java code in JAPE rules L.
7.8 Optimising for speed
7.9 Serializing JAPE Transducer L.
7.10 The JAPE Debugger
7.11 Notes for Montreal Transducer users
8 ANNIE: a Nearly-New Information Extraction System
8.1 Tokeniser e
8.2 Gazetteer
8.3 Sentence Splitter
8.4 RegEx Sentence Splitter oL
8.5 Part of Speech Tagger
8.6 Semantic Tagger
8.7 Orthographic Coreference (OrthoMatcher)
8.8 Pronominal Coreference 0oL
8.9 A Walk-Through Example
9 (More CREOLE) Plugins
9.1 Document Reset
9.2 Verb Group Chunker
9.3 Noun Phrase Chunker,
9.4 OntoText Gazetteer
9.5 Flexible Gazetteer
9.6 Gazetteer List Collector
9.7 Tree Tagger
0.8 Stemmer
9.9 GATE Morphological Analyzer
9.10 MiniPar Parser
9.11 RASP Parser e
9.12 SUPPLE Parser (formerly BuChart)
9.13 Stanford Parser
9.14 Montreal Transducer
9.15 Language Plugins
9.16 Chemistry Tagger
9.17 Flexible Exporter
9.18 Annotation Set Transfer
9.19 Information Retrieval in GATE
9.20 Crawler
9.21 Google Plugin

111

Brief Contents

9.22 Yahoo Plugin
9.23 WordNet in GATE
9.24 Machine Learning in GATE
9.25 MinorThird
9.26 MIAKT NLG Lexicon
9.27 Kea - Automatic Keyphrase Detection
9.28 Ontotext JapeC Compiler
9.29 ANNIC,
9.30 Annotation Merging
9.31 OntoRoot Gazetteer

10 Working with Ontologies
10.1 Data Model for Ontologies
10.2 Ontology Event Model (new in Gate 4)
10.3 OWLIM Ontology LR
10.4 GATE’s Ontology Editor

10.5 Instantiating OWLIM Ontology using GATE APT

10.6 Ontology-Aware JAPE Transducer . .

10.7 Annotating text with Ontological Information

10.8 Populating Ontologies
10.9 Ontology Annotation Tool

11 Machine Learning API
11.1 ML Generalities
11.2 The Batch Learning PR in GATE . . .

11.3 Examples of configuration file for the three learning types

11.4 How to use the ML API
11.5 The outputs of the ML API

12 Tools for Alignment Tasks
12.1 Introduction
12.2 Tools for Alignment Tasks

13 Performance Evaluation of Language Analysers

13.1 The AnnotationDiff Tool
13.2 The six annotation relations explained
13.3 Benchmarking tool

13.4 Metrics for Evaluation in Information Extraction
13.5 Metrics for Evaluation of Inter-Annotator Agreement
13.6 A Plugin for Computing Inter-Annotator Agreement

14 Users, Groups, and LR Access Rights
14.1 Java serialisation and LR access rights
14.2 Oracle Datastore and LR access rights

v

Brief Contents

15 Developing GATE
15.1 Creating new plugins L Lo
15.2 Updating this User Guide

16 Combining GATE and UIMA
16.1 Embedding a UIMA TAE in GATE
16.2 Embedding a GATE CorpusController in UIMA

Appendices

A Design Notes
A1 Patterns
A.2 Exception Handling

B JAPE: Implementation
B.1 Formal Description of the JAPE Grammar
B.2 Relation to CPSL
B.3 Algorithms for JAPE Rule Application
B.4 Label Binding Scheme
B.5 Classes e
B.6 Implementation
B.7 Compilation
B.8 Using a Different Java Compiler

C Named-Entity State Machine Patterns
C.1 Mainjape
C.2 firstjape
C.3 firstname.jape
C.4d name.jape
C.5 name.post.jape
C.6 dateprejape e
C.7T datejape e
C.8 reldatejape
C.9 number.jape L
C.10 address.jape
CAlurljape o
C.12identifier.jape
C.13 jobtitlejape
C.l4 finaljape o
C.15 unknown.jape oL
C.16 name_context.jape
C.17 org_context.jape L
C.18 loc_context.jape
C.19 clean.jape

325
325
335

337
338
345

350

Brief Contents vi

D Part-of-Speech Tags used in the Hepple Tagger 380
E Sample ML Configuration File 382
F TAA Measures for Classification Tasks 393

References 395

Contents

1 Introduction

1.1 How to Use This Text
1.2 Context
1.3 Overview
1.3.1 Developing and Deploying Language Processing Facilities
1.3.2 Built-in Components
1.3.3 Additional Facilities
1.34 AnExample
1.4 Structure of the Book
1.5 Further Reading
2 Change Log
2.1 Version 5.0-betal (October 2008) L.
2.1.1 Major new features
2.1.2 Other new features and improvements
2.1.3 Specific bug fixes
2.2 Version 4.0 (July 2007)
2.2.1 Major new features L
2.2.2 Other new features and improvements
2.2.3 Bug fixes and optimizationso L.
2.3 Version 3.1 (April 2006)
2.3.1 Major new featureso
2.3.2 Other new features and improvements
233 Bugfixes.
2.4 January 2005
2.5 December 2004
2.6 September 2004
2.7 Version 3 Beta 1 (August 2004) Lo
2.8 July 2004
2.9 June 2004o
2.10 April 2004 L
2.11 March 2004 oL
2.12 Version 2.2 — August 2003
2.13 Version 2.1 — February 2003 oo

[ENeRNe JBENEEN I G I 2 v

Brief Contents viil

2.14 June 2002 30
3 How To... 31
3.1 Download GATE 31
3.2 Install and Run GATE 31
321 The Easy Way 32
3.22 The Hard Way (1) 32
3.2.3 The Hard Way (2): Subversion 33

3.3 [D,F] Use System Properties with GATE 33
3.4 [D,F] Use (CREOLE) Plug-ins 35
3.5 Troubleshooting 36
3.6 [D] Get Started with the GUI 36
3.7 [D,F] Configure GATE 38
3.7.1 [F] Save Config Data to gate.xml 39

3.8 Build GATE 39
3.9 [D] Use GATE with Maven or JPF 40
3.10 [D,F| Create a New CREOLE Resource 40
3.11 [F] Instantiate CREOLE Resources 44
3.12 [D] Load CREOLE Resources 47
3.12.1 Loading Language Resources A7
3.12.2 Loading Processing Resources A7
3.12.3 Loading and Processing Large Corpora 48

3.13 [D,F| Configure CREOLE Resources 48
3.14 [D] Create and Run an Application 48
3.15 [D] Run PRs Conditionally on Document Features 49
3.16 [D] View Annotations 49
3.17 [D] Do Information Extraction with ANNIE 50
3.18 [D] Modify ANNIE\ttt 51
3.19 [D] Create and Edit Test Data 51
3.19.1 Schema-driven editing 53
3.19.2 Saving the test data Lo 53

3.20 [D,F] Create a New Annotation Schema 53
3.21 [D] Save and Restore LRs in Data Stores 54
3.22 [D] Save Resource Parameter State to File 55
3.23 [D,F| Perform Evaluation with the AnnotationDiff tool 56
3.23.1 GUI . .. oo 56

3.24 [D] Use the Corpus Benchmark Evaluation tool 57
3.241 GUImode 57
3.24.2 How to define the properties of the benchmark tool 58

3.25 [D] Write JAPE Grammars Lo 58
3.26 [F] Embed NLE in other Applications 59
3.27 [F] Use GATE within a Spring application 61
3.28 [F] Use GATE within a Tomcat Web Application 62

3.28.1 Recommended Directory Structure 63

Brief Contents

3.28.2 Configuration files o

3.28.3 Initialization codeo L oo
3.29 [F] Use GATE in a Multithreaded Environment
3.30 [D,F] Add support for a new document format
3.31 [D] Dump Results to File
3.32 [D] Stop GUI ‘Freezing’ on Linux
3.33 [D] Stop GUI Crashing on Linux
3.34 [D] Stop GATE Restoring GUI Sessions/Options
3.35 Work with Unicode
3.36 Work with Oracle and PostgreSQL

CREOLE: the GATE Component Model
4.1 The Web and CREOLE
4.2 Java Beans: a Simple Component Architecture
4.3 The GATE Framework
4.4 Language Resources and Processing Resources
4.5 The Lifecycle of a CREOLE Resource
4.6 Processing Resources and Applications L.
4.7 Language Resources and Datastores
4.8 Built-in CREOLE Resources
4.9 CREOLE Resource Configuration
4.9.1 Configuration with XML
4.9.2 Configuring resources using annotations
4.9.3 Mixing the configuration styles

Visual CREOLE

5.1 Gazetteer Visual Resource - GAZE
5.1.1 Running Modes
5.1.2 Loading a Gazetteer
5.1.3 Linear Definition Pane,
5.1.4 Linear Definition Toolbar
5.1.5 Operations on Linear Definition Nodes
5.1.6 Gazetteer List Pane
5.1.7 Mapping Definition Paneo 0oL

5.2 Ontogazetteer
5.2.1 Gazetteer Lists Editor and Mapper
5.2.2 Ontogazetteer Editoro

5.3 The Co-reference Editor L

Language Resources: Corpora, Documents and Annotations

6.1 Features: Simple Attribute/Value Data

6.2 Corpora: Sets of Documents plus Features

6.3 Documents: Content plus Annotations plus Features

6.4 Annotations: Directed Acyclic Graphs
6.4.1 Annotation Schemas L.

1X

Brief Contents

6.5

6.6

6.4.2 Examples of Annotated Documents
6.4.3 Creating, Viewing and Editing Diverse Annotation Types
Document Formats
6.5.1 Detecting the right readero
6.5.2 XML
6.5.3 HTML
6.5.4 SGML
6.5.5 Plaintext
6.5.6 RTF
6.5.7 Email
XML Input/Output

7 JAPE: Regular Expressions Over Annotations

7.1

7.2
7.3
7.4
7.5
7.6
7.7

7.8

7.9

7.10

7.11

Matching operators in detail oL
7.1.1 Equality operators (“=="and “I=")
7.1.2 Comparison operators (“<”, “<=", “>=" and “>”).
7.1.3 Regular expression operators (“=~" “==~" “l~" and “I=~7") . . .
7.1.4 Contextual operators (“contains” and “within”)
Use of Context
Use of Priority
Use of negation
Useful tricks
Ontology aware grammar transduction
Using Java code in JAPE rules
7.7.1 Adding a feature to the document
7.7.2 Using named blocks oo
7.7.3 Java RHS overview
Optimising for speed
Serializing JAPE Transducer
7.9.1 How to serialize?

The JAPE Debugger
7.10.1 Debugger GUL.
7.10.2 Using the Debugger oo
7.10.3 Known Bugs.
Notes for Montreal Transducer users

8 ANNIE: a Nearly-New Information Extraction System

8.1

8.2
8.3

Tokeniser
8.1.1 Tokeniser Rules
8.1.2 Token Types
8.1.3 English Tokeniser 0oL
Gazetteer
Sentence Splitter

Brief Contents xi

8.4 RegEx Sentence Splitter oL 154
8.5 Part of Speech Tagger 155
8.6 Semantic Tagger 156
8.7 Orthographic Coreference (OrthoMatcher) 156
8.7.1 GATE Interface 157
8.7.2 Resources 157
8.7.3 Processing 157

8.8 Pronominal Coreference oL 157
8.8.1 Quoted Speech Submodule 158
8.8.2 Pleonastic It submodule00 159
8.8.3 Pronominal Resolution Submodule 159
8.8.4 Detailed description of the algorithm 159

8.9 A Walk-Through Example 163
8.9.1 Step 1 - Tokenisation L. 164
8.9.2 Step 2 - List Lookup 164
8.9.3 Step 3- Grammar Rules 165

9 (More CREOLE) Plugins 166
9.1 Document Reset 167
9.2 Verb Group Chunker 167
9.3 Noun Phrase Chunker 167
9.3.1 Differences from the Original 168
9.3.2 Using the Chunker 168

9.4 OntoText Gazetteer 168
9.4.1 Prerequisites. 169
9.4.2 Setup 169

9.5 Flexible Gazetteer 170
9.6 Gazetteer List Collector 171
9.7 Tree Tagger 172
9.7.1 POStags e 174

9.8 Stemmer 174
9.8.1 Algorithms 174

9.9 GATE Morphological Analyzer 175
99.1 RuleFile. 176

9.10 MiniPar Parser 178
9.10.1 Platform Supported 180
9.10.2 Resources 180
9.10.3 Parameters 181
9.10.4 Prerequisites. 181
9.10.5 Grammatical Relationships. 181

9.11 RASP Parser 182
9.12 SUPPLE Parser (formerly BuChart) 184
9.12.1 Requirementso 185

9.12.2 Building SUPPLE 185

Brief Contents xii

9.13

9.14

9.15

9.16

9.17

9.18

9.19

9.20

9.21

9.22

9.23

9.24

9.25

9.12.3 Running the parser in GATE 185
9.12.4 Viewing the parse tree Lo 186
9.12.5 System properties 186
9.12.6 Configuration files Lo 187
9.12.7 Parser and Grammar 188
9.12.8 Mapping Named Entities 189
9.12.9 Upgrading from BuChart to SUPPLE 189
Stanford Parsero 190
9.13.1 Input requirementso 190
9.13.2 Initialization parameters 191
9.13.3 Runtime parameters 191
Montreal Transducer oo 192
9.14.1 Main Improvements 192
9.14.2 Main Bug fixes 193
Language Plugins 193
9.15.1 French Plugin o 194
9.15.2 German Plugin 194
9.15.3 Romanian Plugin 0o 194
9.15.4 Arabic Plugin 194
9.15.5 Chinese Plugin 195
Chemistry Tagger 195
9.16.1 Using the tagger L 195
Flexible Exporter 196
Annotation Set Transfer 197
Information Retrieval in GATE 198
9.19.1 Using the IR functionality in GATE 200
9.19.2 Using the IR API 202
Crawler 203
9.20.1 Using the Crawler PR 204
Google Plugin 205
9.21.1 Using the GooglePR 206
Yahoo Plugin 207
9.22.1 Using the YahooPR, 208
WordNet in GATE 208
9.23.1 The WordNet APT 211
Machine Learning in GATE 212
9.24.1 ML Generalities 213
9.24.2 The Machine Learning PR in GATE 214
9.24.3 The WEKA Wrapper 216
9.24.4 Training an ML model with the ML PR and WEKA wrapper 217
9.24.5 Applying a learnt modelo 217
9.24.6 The MAXENT Wrapper 217
9.24.7 The SVM Light Wrapper 219
MinorThird o 222

Brief Contents xiii

9.26 MIAKT NLG Lexicon 223
9.26.1 Complexity and Generality 224

9.27 Kea - Automatic Keyphrase Detection 225
9.27.1 Using the “KEA Keyphrase Extractor” PR 225
9.27.2 Using Kea corpora 227

9.28 Ontotext JapeC Compiler 228
9.29 ANNIC e 229
9.29.1 Imstantiating SSD oo L 230
9.29.2 Search GUI 231
9.29.3 Using SSD from your code 236

9.30 Annotation Merging Lo 237
9.30.1 Two implemented methods 238
9.30.2 Annotation Merging Plugin 239

9.31 OntoRoot Gazetteer 240
9.31.1 How does it work? 240
9.31.2 Initialisation of OntoRoot Gazetteer 241

10 Working with Ontologies 243
10.1 Data Model for Ontologies, 244
10.1.1 Hierarchies of classes and restrictions 244
10.1.2 Instances 245
10.1.3 Hierarchies of properties L. 245

10.2 Ontology Event Model (new in Gate 4) 247
10.2.1 What happens when a resource is deleted? 249

10.3 OWLIM Ontology LR 250
10.4 GATE’s Ontology Editor 252
10.5 Instantiating OWLIM Ontology using GATE APT 257
10.6 Ontology-Aware JAPE Transducer 259
10.7 Annotating text with Ontological Information 259
10.8 Populating Ontologies 260
10.9 Ontology Annotation Tool 262
10.9.1 Viewing Annotated Texts 262
10.9.2 Editing Existing Annotations 263
10.9.3 Adding New Annotations 264
10.9.4 Options 265

11 Machine Learning API 267
11.1 ML Generalities e 268
11.1.1 Some definitionso 269
11.1.2 GATE-specific interpretation of the above definitions 270

11.2 The Batch Learning PR in GATE 270
11.2.1 The settings not specified in the configuration file 271
11.2.2 All the settings in the XML configuration file 273

11.3 Examples of configuration file for the three learning types 282

Brief Contents

11.4 How to use the ML API
11.5 The outputs of the ML API
11.5.1 Training results
11.5.2 Application results
11.5.3 Evaluation results
11.5.4 Featurefiles

12 Tools for Alignment Tasks

12.1 Introduction
12.2 Tools for Alignment Tasks
12.2.1 Compound Document

12.2.2 Compound Document Editor . . .
12.2.3 Composite Document
12.2.4 DeleteMembersPR
12.2.5 SwitchMembersPR
12.2.6 Savingas XML
12.2.7 Alignment Editor

13 Performance Evaluation of Language Analysers

13.1 The AnnotationDiff Tool
13.2 The six annotation relations explained . .
13.3 Benchmarking tool

13.4 Metrics for Evaluation in Information Extraction
13.5 Metrics for Evaluation of Inter-Annotator Agreement
13.6 A Plugin for Computing Inter-Annotator Agreement

13.6.1 TAA for Classification Task
13.6.2 TAA For Named Entity Annotation

14 Users, Groups, and LR Access Rights
14.1 Java serialisation and LR access rights . .
14.2 Oracle Datastore and LR access rights . .

14.2.1 Users, Groups, Sessions and Access Modes

14.2.2 User/Group Administration
1423 The API

15 Developing GATE
15.1 Creating new plugins

15.1.1 Where to keep plugins in the GATE hierarchy

15.1.2 Writing anew PR.
15.1.3 Writing anew VR
15.1.4 Adding plugins to the nightly build
15.2 Updating this User Guide
15.2.1 Building the User Guide
15.2.2 Making changes to the User Guide

X1iv

287
289
289
289
290
290

296
296
297
297
300
300
301
302
302
302

308
308
310
310
311
313
314
315
316

318
319
319
319
320
323

Brief Contents

16 Combining GATE and UIMA

16.1 Embedding a UIMA TAE in GATE
16.1.1 Mapping File Format
16.1.2 The UIMA component descriptor
16.1.3 Using the AnalysisEnginePR
16.1.4 Current limitations
16.2 Embedding a GATE CorpusController in UIMA
16.2.1 Mapping file format
16.2.2 The GATE application definition
16.2.3 Configuring the GATEApplicationAnnotator
Appendices
A Design Notes
Al Patterns
A1.1 Components
A.1.2 Model, view, controller
A1.3 Imterfaces
A.2 Exception Handling
B JAPE: Implementation
B.1 Formal Description of the JAPE Grammar
B.2 Relation to CPSL
B.3 Algorithms for JAPE Rule Application
B.3.1 The first algorithm 0oL
B.3.2 Algorithm 2
B.4 Label Binding Scheme o
B.5 Classes e
B.6 Implementation
B.6.1 A Walk-Through
B.6.2 Example RHScode
B.7 Compilation
B.8 Using a Different Java Compiler L.
C Named-Entity State Machine Patterns
C.1 Mainjape
C.2 firstjape
C.3 firstname.jape
C.4 name.jape e
C4.1 Person e
C.4.2 Location e
C.4.3 Organization
C.4.4 Ambiguities
C.4.5 Contextual information,

C.5 name.post.jape e

XV

337
338
338
343
343
344
345
345
346
346

350

Developing Language Processing Components with GATE

C.6 dateprejape e
C.7 datejape
C.8 reldatejape
C.9 number.jape
C.10 address.japeo
Cllurljape o e
C.12 identifier.jape e
C.13 jobtitlejape
C.14 finaljape o
C.15 unknown.jape
C.16 name_context.jape
C.ATorg_context.jape
C.18 loc_context.jape
C.19 clean.jape

D Part-of-Speech Tags used in the Hepple Tagger
E Sample ML Configuration File
F IAA Measures for Classification Tasks

References

382

393

395

Chapter 1

Introduction

Software documentation is like sex: when it is good, it is very, very good; and
when it is bad, it is better than nothing. (Anonymous.)

There are two ways of constructing a software design: one way is to make it so
simple that there are obviously no deficiencies; the other way is to make it so
complicated that there are no obvious deficiencies. (C.A.R. Hoare)

A computer language is not just a way of getting a computer to perform oper-
ations but rather that it is a novel formal medium for expressing ideas about
methodology. Thus, programs must be written for people to read, and only inci-
dentally for machines to execute. (The Structure and Interpretation of Computer
Programs, H. Abelson, G. Sussman and J. Sussman, 1985.)

If you try to make something beautiful, it is often ugly. If you try to make
something useful, it is often beautiful. (Oscar Wilde)*

GATE is an infrastructure for developing and deploying software components that process
human language. GATE helps scientists and developers in three ways:

1. by specifiying an architecture, or organisational structure, for language processing
software;

2. by providing a framework, or class library, that implements the architecture and can
be used to embed language processing capabilities in diverse applications;

3. by providing a development environment built on top of the framework made up

of convenient graphical tools for developing components.

The architecture exploits component-based software development, object orientation and
mobile code. The framework and development environment are written in Java and available

!These were, at least, our ideals; of course we didn’t completely live up to them. ..

2

Developing Language Processing Components with GATE 3

as open-source free software under the GNU library (or lesser) licence?. GATE uses Unicode
throughout [Unicode Consortium 96, Tablan et al. 02], and has been tested on a variety of
Slavic, Germanic, Romance, and Indic languages [Maynard et al. 01, Gambéck & Olsson 00,
McEnery et al. 00].

From a scientific point-of-view, GATE’s contribution is to quantitative measurement of ac-
curacy and repeatability of results for verification purposes.

GATE has been in development at the University of Sheffield since 1995 and has been
used in a wide variety of research and development projects [Maynard et al. 00]. Ver-
sion 1 of GATE was released in 1996, was licensed by several hundred organisations,
and used in a wide range of language analysis contexts including Information Extraction
([Cunningham 99b, Appelt 99, Gaizauskas & Wilks 98, Cowie & Lehnert 96]) in English,
Greek, Spanish, Swedish, German, Italian, French, Bulgarian, Russian, and a number of
other languages. Version 4 of the system is available from http://gate.ac.uk/download/.

This book describes how to use GATE to develop language processing components, test their
performance and deploy them as parts of other applications. In the rest of this chapter:
e section 1.1 describes the best way to use this book;

e section 1.2 briefly notes that the context of GATE is applied language processing, or
Language Engineering,

e section 1.3 gives an overview of developing using GATE;

e section 1.4 describes the structure of the rest of the book;

e section 1.5 lists other publications about GATE.
Note: if you don’t see the component you need in this document, or if we mention a com-
ponent that you can’t see in the software, contact gate-users@lists.sourceforge.net® —
various components are developed by our collaborators, who we will be happy to put you

in contact with. (Often the process of getting a new component is as simple as typing the
URL into GATE; the system will do the rest.)

1.1 How to Use This Text

It is a good idea to read all of this introduction (you can skip sections 1.2 and 1.5 if pressed);
then you can either continue wading through the whole thing or just use chapter 3 as a

2This is a restricted form of the main GNU licence, which means that GATE can be embedded in
commercial products if required.
3Follow the ‘support’ link from the GATE web server to subscribe to the mailing list.

http://gate.ac.uk/download/
http://gate.ac.uk/

Developing Language Processing Components with GATE 4

reference and dip into other chapters for more detail as necessary. Chapter 3 gives instruc-
tions for completing common tasks with GATE, organised in a FAQ style: details, and the
reasoning behind the various aspects of the system, are omitted in this chapter, so where
more information is needed refer to later chapters.

The structure of the book as a whole is detailed in section 1.4 below.

1.2 Context

GATE can be thought of as a Software Architecture for Language Engineering
[Cunningham 00].

‘Software Architecture’ is used rather loosely here to mean computer infrastructure for soft-
ware development, including development environments and frameworks, as well as the more
usual use of the term to denote a macro-level organisational structure for software systems
[Shaw & Garlan 96].

Language Engineering (LE) may be defined as:

... the discipline or act of engineering software systems that perform tasks involv-
ing processing human language. Both the construction process and its outputs
are measurable and predictable. The literature of the field relates to both appli-
cation of relevant scientific results and a body of practice. [Cunningham 99a]

The relevant scientific results in this case are the outputs of Computational Linguistics, Nat-
ural Language Processing and Artificial Intelligence in general. Unlike these other disciplines,
LE, as an engineering discipline, entails predictability, both of the process of constructing LE-
based software and of the performance of that software after its completion and deployment
in applications.

Some working definitions:
1. Computational Linguistics (CL): science of language that uses computation as an
investigative tool.

2. Natural Language Processing (NLP): science of computation whose subject mat-
ter is data structures and algorithms for computer processing of human language.

3. Language Engineering (LE): building NLP systems whose cost and outputs are
measurable and predictable.

4. Software Architecture: macro-level organisational principles for families of systems.
In this context is also used as infrastructure.

http://gate.ac.uk/sale/thesis/

Developing Language Processing Components with GATE)

5. Software Architecture for Language Engineering (SALE): software infrastruc-
ture, architecture and development tools for applied CL, NLP and LE.

(Of course the practice of these fields is broader and more complex than these definitions.)

In the scientific endeavours of NLP and CL, GATE’s role is to support experimentation.
In this context GATE’s significant features include support for automated measurement
(see section 13), providing a ‘level playing field” where results can easily be repeated across
different sites and environments, and reducing research overheads in various ways.

1.3 Overview

1.3.1 Developing and Deploying Language Processing Facilities

GATE as an architecture suggests that the elements of software systems that process natural
language can usefully be broken down into various types of component, known as resources?.
Components are reusable software chunks with well-defined interfaces, and are a popular
architectural form, used in Sun’s Java Beans and Microsoft’s .Net, for example. GATE
components are specialised types of Java Bean, and come in three flavours:

e LanguageResources (LRs) represent entities such as lexicons, corpora or ontologies;

e ProcessingResources (PRs) represent entities that are primarily algorithmic, such as
parsers, generators or ngram modellers;

e VisualResources (VRs) represent visualisation and editing components that participate
in GUIs.

These definitions can be blurred in practice as necessary.

Collectively, the set of resources integrated with GATE is known as CREOLE: a Collection
of REusable Objects for Language Engineering. All the resources are packaged as Java
Archive (or ‘JAR’) files, plus some XML configuration data. The JAR and XML files are
made available to GATE by putting them on a web server, or simply placing them in the
local file space. Section 1.3.2 introduces GATE’s built-in resource set.

When using GATE to develop language processing functionality for an application, the
developer uses the development environment and the framework to construct resources of
the three types. This may involve programming, or the development of Language Resources

4The terms ‘resource’ and ‘component’ are synonymous in this context. ‘Resource’ is used instead of just
‘component’ because it is a common term in the literature of the field: cf. the Language Resources and
Evaluation conference series [LREC-1 98, LREC-2 00].

Developing Language Processing Components with GATE 6

such as grammars that are used by existing Processing Resources, or a mixture of both.
The development environment is used for visualisation of the data structures produced and
consumed during processing, and for debugging, performance measurement and so on. For
example, figure 1.1 is a screenshot of one of the visualisation tools (displaying named-entity

{C) Gate 3.0-alpha build 1667 —[F]x]
ile Options Tools Help
&, Gate Messages é Hind\l
E| @8 rpplications Annotations
= [T =
| ANNE_D038C o = :
=] §=H Language Resources | W Original markups %
_Eli [LIkE E
T o
= Frocessing Resources Faat [Loc z
{5 ANNIE OrlhoMatcher_0 g‘; o
&
AMMIE ME Transducer, = I~ THTSTREAM é
AMMIE POS Tagger 00 F z
ANNIE Sentance Spite | | 2 E
B} ANNIE Gazetteer 0030 o B
", ANMIE English Tokenig T o g
Document Reset PR_C ?m(’ﬁﬁ
E @ Data stores Financial
dervices
Authority
!
E s
=
g
T
{
Food =l
Type Set Start| End| Features
il—l —'I ORG | Original markups| 230 245|{} B
imeTyne <[Resstiernt ORG |Original markups| 1362|1380|{}
—— ORG Original markups| 3467|3483|{}
jgate SourceURL 7| file/C e ORG |Otiginal markups| 3487|3505({}
= ORG |Original markups| 3628|3653|{}
QORG |Original markups| 4200|4232|{}
QORG |Original markups| 4235|4254|{}
QORG | Original markups| 4299|4266|{}
ORG | Original markups| 5532|5560|{} ;l
15 Annotations (0 selected) New
thatinns
] _»| | _Dacument Editor | Initialisation Parameters| OLD Docurnent Editor

Figure 1.1: One of GATE’s visual resources

extraction results for a Hindi sentence).

The GATE development environment is analogous to systems like Mathematica for Mathe-
maticians, or JBuilder for Java programmers: it provides a convenient graphical environment
for research and development of language processing software.

When an appropriate set of resources have been developed, they can then be embedded in
the target client application using the GATE framework. The framework is supplied as two
JAR files.® To embed GATE-based language processing facilities in an application, these
JAR files are all that is needed, along with JAR files and XML configuration files for the
various resources that make up the new facilities.

®The main JAR file (gate.jar) supplies the framework, built-in resources and various 3rd-party libraries;
the second file (guk.jar, the GATE Unicode Kit) contains Unicode support (e.g. additional input methods
for languages not currently supported by the JDK). They are separate because the latter has to be a Java
extension with a privileged security profile.

Developing Language Processing Components with GATE 7

1.3.2 Built-in Components

GATE includes resources for common LE data structures and algorithms, including doc-
uments, corpora and various annotation types, a set of language analysis components for
Information Extraction and a range of data visualisation and editing components.

GATE supports documents in a variety of formats including XML, RTF, email, HTML,
SGML and plain text. In all cases the format is analysed and converted into a sin-
gle unified model of annotation. The annotation format is a modified form the TIP-
STER format [Grishman 97] which has been made largely compatible with the Atlas format
[Bird & Liberman 99|, and uses the now standard mechanism of ‘stand-off markup’. GATE
documents, corpora and annotations are stored in databases of various sorts, visualised via
the development environment, and accessed at code level via the framework. See chapter 6
for more details of corpora etc.

A family of Processing Resources for language analysis is included in the shape of ANNIE,
A Nearly-New Information Extraction system. These components use finite state techniques
to implement various tasks from tokenisation to semantic tagging or verb phrase chunking.
All ANNIE components communicate exclusively via GATE’s document and annotation
resources. See chapter 8 for more details. See chapter 5 for visual resources. See chapter 9
for other miscellaneous CREOLE resources.

1.3.3 Additional Facilities

Three other facilities in GATE deserve special mention:

e JAPE, a Java Annotation Patterns Engine, provides regular-expression based pat-
tern/action rules over annotations — see chapter 7.

e The ‘annotation diff’ tool in the development environment implements performance
metrics such as precision and recall for comparing annotations. Typically a language
analysis component developer will mark up some documents by hand and then use these
along with the diff tool to automatically measure the performance of the components.
See section 13.

e GUK, the GATE Unicode Kit, fills in some of the gaps in the JDK’s® support for
Unicode, e.g. by adding input methods for various languages from Urdu to Chinese.
See section 3.35 for more details.

And by version 4 it will make a mean cup of tea.

6JDK: Java Development Kit, Sun Microsystem’s Java implementation. Unicode support is being actively
improved by Sun, but at the time of writing many languages are still unsupported. In fact, Unicode itself
doesn’t support all languages, e.g. Sylheti; hopefully this will change in time.

Developing Language Processing Components with GATE 8

1.3.4 An Example

This section gives a very brief example of a typical use of GATE to develop and deploy
language processing capabilities in an application, and to generate quantitative results for
scientific publication.

Let’s imagine that a developer called Fatima is building an email client” for Cyberdyne
Systems’ large corporate Intranet. In this application she would like to have a language
processing system that automatically spots the names of people in the corporation and
transforms them into mailto hyperlinks.

A little investigation shows that GATE’s existing components can be tailored to this purpose.
Fatima starts up the development environment, and creates a new document containing
some example emails. She then loads some processing resources that will do named-entity
recognition (a tokeniser, gazetteer and semantic tagger), and creates an application to run
these components on the document in sequence. Having processed the emails, she can see
the results in one of several viewers for annotations.

The GATE components are a decent start, but they need to be altered to deal specially
with people from Cyberdyne’s personnel database. Therefore Fatima creates new “cyber-”
vesions of the gazetteer and semantic tagger resources, using the “bootstrap” tool. This tool
creates a directory structure on disk that has some Java stub code, a Makefile and an XML
configuration file. After several hours struggling with badly written documentation, Fatima
manages to compile the stubs and create a JAR file containing the new resources. She tells
GATE the URL of these files®, and the system then allows her to load them in the same way
that she loaded the built-in resources earlier on.

Fatima then creates a second copy of the email document, and uses the annotation editing
facilities to mark up the results that she would like to see her system producing. She saves
this and the version that she ran GATE on into her Oracle datastore (set up for her by
the Herculean efforts of the Cyberdyne technical support team, who like GATE because it
enables them to claim lots of overtime). From now on she can follow this routine:

1. Run her application on the email test corpus.

2. Check the performance of the system by running the ‘annotation diff’ tool to compare
her manual results with the system’s results. This gives her both percentage accuracy
figures and a graphical display of the differences between the machine and human
outputs.

3. Make edits to the code, pattern grammars or gazetteer lists in her resources, and
recompile where necessary.

"Perhaps because Outlook Express trashed her mail folder again, or because she got tired of Microsoft-
specific viruses and hadn’t heard of Netscape or Emacs.
8While developing, she uses a file:/... URL; for deployment she can put them on a web server.

Developing Language Processing Components with GATE 9

4. Tell GATE to re-initialise the resources.

5. Go to 1.

To make the alterations that she requires, Fatima re-implements the ANNIE gazetteer so that
it regenerates itself from the local personnel data. She then alters the pattern grammar in the
semantic tagger to prioritise recognition of names from that source. This latter job involves
learning the JAPE language (see chapter 7), but as this is based on regular expressions it
isn’t too difficult.

Eventually the system is running nicely, and her accuracy is 93% (there are still some problem
cases, e.g. when people use nicknames, but the performance is good enough for production
use). Now Fatima stops using the GATE development environment and works instead on
embedding the new components in her email application. This application is written in Java,
so embedding is very easy”: the two GATE JAR files are added to the project CLASSPATH,
the new components are placed on a web server, and with a little code to do initialisation,
loading of components and so on, the job is finished in half a day — the code to talk to GATE
takes up only around 150 lines of the eventual application, most of which is just copied from
the example in the sheffield.examples.StandAloneAnnie class.

Because Fatima is worried about Cyberdyne’s unethical policy of developing Skynet to help
the large corporates of the West strengthen their strangle-hold over the World, she wants
to get a job as an academic instead (so that her conscience will only have to cope with the
torture of students, as opposed to humanity). She takes the accuracy measures that she
has attained for her system and writes a paper for the Journal of Nasturtium Logarithm
Encitement describing the approach used and the results obtained. Because she used GATE
for development, she can cite the repeatability of her experiments and offer access to example
binary versions of her software by putting them on an external web server.

And everybody lived happily ever after.

1.4 Structure of the Book

The material presented in this book ranges from the conceptual (e.g. ‘what is software
architecture?’) to practical instructions for programmers (e.g. how to deal with GATE ex-
ceptions) and linguists (e.g. how to write a pattern grammar). This diversity is something
of an organisational challenge. Our (no doubt imperfect) solution is to collect specific in-
structions for ‘how to do X’ in a separate chapter (3). Other chapters give a more discursive
presentation. In order to understand the whole system you must, unfortunately, read much
of the book; in order to get help with a particular task, however, look first in chapter 3 and
refer to other material as necessary.

9Languages other than Java require an additional interface layer, such as JNI, the Java Native Interface,
which is in C.

http://gate.ac.uk/GateExamples/doc/java2html/sheffield/examples/StandAloneAnnie.java.html

Developing Language Processing Components with GATE 10

The other chapters:

Chapter 4 describes the GATE architecture’s component-based model of language processing,
describes the lifecycle of GATE components, and how they can be grouped into applications
and stored in databases and files.

Chapter 5 describes the set of Visual Resources that are bundled with GATE.

Chapter 6 describes GATE’s model of document formats, annotated documents, annotation
types, and corpora (sets of documents). It also covers GATE’s facilities for reading and
writing in the XML data interchange language.

Chapter 7 describes JAPE, a pattern/action rule language based on regular expressions over
annotations on documents. JAPE grammars compile into cascaded finite state transducers.

Chapter 8 describes ANNIE, a pipelined Information Extraction system which is supplied
with GATE.

Chapter 9 describes CREOLE resources bundled with the system that don’t fit into the
previous categories.

Chapter 10 describes processing resources and language resources for working with ontologies.

Chapter 11 describes a machine learning layer specifically targetted at NLP tasks including
text classification, chunk learning (e.g. for named entity recognition) and relation learning.

Chapter 13 describes how to measure the performance of language analysis components.
Chapter 14 describes the data store security model.
Appendix A discusses the design of the system.

Appendix B describes the implementation details and formal definitions of the JAPE anno-
tation patterns language.

Appendix C describes in some detail the JAPE pattern grammars that are used in ANNIE
for named-entity recognition.

1.5 Further Reading

Lots of documentation lives on the GATE web server, including:

e the concise application developer’s guide (with emphasis on using the GATE API);

e a guide to using GATE for manual annotation;

http://gate.ac.uk/
http://gate.ac.uk/sale/pg/pg.pdf
http://gate.ac.uk/sale/am/annotationmanual.pdf

Developing Language Processing Components with GATE 11

e movies of the system in operation;

the main system documentation tree;

JavaDoc API documentation;

HTML of the source code;

parts of the requirements analysis that version 3 is based on.

For more details about Sheffield University’s work in human language processing see the NLP
group pages or A Definition and Short History of Language Engineering ([Cunningham 99a]).
For more details about Information Extraction see IF, a User Guide or the GATE IE pages.

A list of publications on GATE and projects that use it (some of which are available on-line):
[Cunningham 05] is an overview of the field of Information Extraction for the 2nd Edition
of the Encyclopaedia of Language and Linguistics.

[Cunningham & Bontcheva 05] is an overview of the field of Software Architecture for
Language Engineering for the 2nd Edition of the Encyclopaedia of Language and Lin-
guistics.

[Li et al. 04] (Machine Learning Workshop 2004) describes an SVM based learning algor-
tihm for IE using GATE.

[Wood et al. 04] (NLDB 2004) looks at ontology-based IE from parallel texts.

[Cunningham & Scott 04b] (JNLE) is a collection of papers covering many important
areas of Software Architecture for Language Engineering.

[Cunningham & Scott 04a] (JNLE) is the introduction to the above collection.

[Bontcheva 04] (LREC 2004) describes lexical and ontological resources in GATE used for
Natural Language Generation.

[Bontcheva et al. 04] (JNLE) discusses developments in GATE in the early naughties.

[Maynard et al. 04a] (LREC 2004) presents algorithms for the automatic induction of
gazetteer lists from multi-language data.

[Maynard et al. 04c] (AIMSA 2004) presents automatic creation and monitoring of se-
mantic metadata in a dynamic knowledge portal.

[Maynard et al. 04b] (ESWS 2004) discusses ontology-based IE in the hTechSight project.

[Dimitrov et al. 04] (Anaphora Processing) gives a lightweight method for named entity
coreference resolution.

http://gate.ac.uk/demos/movies.html
http://gate.ac.uk/gate/doc/
http://gate.ac.uk/gate/doc/javadoc
http://gate.ac.uk/gate/doc/java2html
http://gate.ac.uk/gate/doc/usecases.html
http://nlp.shef.ac.uk/
http://nlp.shef.ac.uk/
http://www.dcs.shef.ac.uk/~hamish/LeIntro.html
http://www.dcs.shef.ac.uk/~hamish/IE/
http://gate.ac.uk/ie/
http://gate.ac.uk/gate/doc/papers.html

Developing Language Processing Components with GATE 12

[Kiryakov 03] (Technical Report) discusses semantic web technology in the context of mul-
timedia indexing and search.

[Tablan et al. 03] (HLT-NAACL 2003) presents the OLLIE on-line learning for IE system.

[Wood et al. 03] (Recent Advances in Natural Language Processing 2003) discusses using
parallel texts to improve IE recall.

[Maynard et al. 03a] (Recent Advances in Natural Language Processing 2003) looks at
semantics and named-entity extraction.

[Maynard et al. 03b] (ACL Workshop 2003) describes NE extraction without training
data on a language you don’t speak (!).

[Maynard et al. | (EACL 2003) looks at the distinction between information and content
extraction.

[Manov et al. 03] (HLT-NAACL 2003) describes experiments with geographic knowledge
for IE.

[Saggion et al. 03a] (EACL 2003) discusses robust, generic and query-based summarisa-
tion.

[Saggion et al. 03c] (EACL 2003) discusses event co-reference in the MUMIS project.

[Saggion et al. 03b] (Data and Knowledge Engineering) discusses multimedia indexing
and search from multisource multilingual data.

[Cunningham et al. 03] (Corpus Linguistics 2003) describes GATE as a tool for collabo-
rative corpus annotation.

[Bontcheva et al. 03] (NLPXML-2003) looks at GATE for the semantic web.

[Dimitrov 02a, Dimitrov et al. 02] (DAARC 2002, MSc thesis) discuss lightweight coref-
erence methods.

[Lal 02] (Master Thesis) looks at text summarisation using GATE.
[Lal & Ruger 02] (ACL 2002) looks at text summarisation using GATE.

[Cunningham et al. 02] (ACL 2002) describes the GATE framework and graphical devel-
opment environment as a tool for robust NLP applications.

[Bontcheva et al. 02b] (NLIS 2002) discusses how GATE can be used to create HLT mod-
ules for use in information systems.

[Tablan et al. 02] (LREC 2002) describes GATE’s enhanced Unicode support.

[Maynard et al. 02a] (ACL 2002 Summarisation Workshop) describes using GATE to
build a portable IE-based summarisation system in the domain of health and safety.

Developing Language Processing Components with GATE 13

[Maynard et al. 02¢] (Nordic Language Technology) describes various Named Entity
recognition projects developed at Sheffield using GATE.

[Maynard et al. 02b] (AIMSA 2002) describes the adaptation of the core ANNIE modules
within GATE to the ACE (Automatic Content Extraction) tasks.

[Maynard et al. 02d] (JNLE) describes robustness and predictability in LE systems, and
presents GATE as an example of a system which contributes to robustness and to low
overhead systems development.

[Bontcheva et al. 02c], [Dimitrov 02a] and [Dimitrov 02b] (TALN 2002, DAARC
2002, MSc thesis) describe the shallow named entity coreference modules in GATE:
the orthomatcher which resolves pronominal coreference, and the pronoun resolution
module.

[Bontcheva et al. 02a] (ACI 2002 Workshop) describes how GATE can be used as an en-
vironment for teaching NLP, with examples of and ideas for future student projects
developed within GATE.

[Pastra et al. 02] (LREC 2002) discusses the feasibility of grammar reuse in applications
using ANNIE modules.

[Baker et al. 02] (LREC 2002) report results from the EMILLE Indic languages corpus
collection and processing project.

[Saggion et al. 02b] and [Saggion et al. 02a] (LREC 2002, SPLPT 2002) describes how
ANNIE modules have been adapted to extract information for indexing multimedia
material.

[Maynard et al. 01] (RANLP 2001) discusses a project using ANNIE for named-entity
recognition across wide varieties of text type and genre.

[Cunningham 00] (PhD thesis) defines the field of Software Architecture for Language
Engineering, reviews previous work in the area, presents a requirements analysis for
such systems (which was used as the basis for designing GATE versions 2 and 3), and
evaluates the strengths and weaknesses of GATE version 1.

[Cunningham 02] (Computers and the Humanities) describes the philosophy and moti-
vation behind the system, describes GATE version 1 and how well it lived up to its
design brief.

[McEnery et al. 00] (Vivek) presents the EMILLE project in the context of which GATE’s
Unicode support for Indic languages has been developed.

[Cunningham et al. 00d] and [Cunningham 99c] (technical reports) document early
versions of JAPE (superceded by the present document).

http://www.emille.lancs.ac.uk/

Developing Language Processing Components with GATE 14

[Cunningham et al. 00a], [Cunningham et al. 98a] and [Peters et al. 98] (OntoLex 2000,
LREC 1998) presents GATE’s model of Language Resources, their access and distri-
bution.

[Maynard et al. 00] (technical report) surveys users of GATE up to mid-2000.

[Cunningham et al. 00c] and [Cunningham et al. 99] (COLING 2000, AISB 1999)
summarise experiences with GATE version 1.

[Cunningham et al. 00b] (LREC 2000) taxonomises Language Engineering components
and discusses the requirements analysis for GATE version 2.

[Bontcheva et al. 00] and [Brugman et al. 99] (COLING 2000, technical report) de-
scribe a prototype of GATE version 2 that integrated with the EUDICO multimedia
markup tool from the Max Planck Institute.

[Gambick & Olsson 00] (LREC 2000) discusses experiences in the Svensk project, which
used GATE version 1 to develop a reusable toolbox of Swedish language processing
components.

[Cunningham 99a] (JNLE) reviewed and synthesised definitions of Language Engineering.

[Stevenson et al. 98] and [Cunningham et al. 98b] (ECAI 1998, NeMLaP 1998) re-
port work on implementing a word sense tagger in GATE version 1.

[Cunningham et al. 97b] (ANLP 1997) presents motivation for GATE and GATE-like
infrastructural systems for Language Engineering.

[Gaizauskas et al. 96b, Cunningham et al. 97a, Cunningham et al. 96e] (ICTAI 1996,
TITPSTER 1997, NeMLaP 1996) report work on GATE version 1.

[Cunningham et al. 96c, Cunningham et al. 96d, Cunningham et al. 95] (COLING
1996, AISB Workshop 1996, technical report) report early work on GATE version 1.

[Cunningham et al. 96b] (TIPSTER) discusses a selection of projects in Sheffield using
GATE version 1 and the TIPSTER architecture it implemented.

[Cunningham et al. 96a] (manual) was the guide to developing CREOLE components for
GATE version 1.

[Gaizauskas et al. 96a] (manual) was the user guide for GATE version 1.

[Humphreys et al. 96] (manual) desribes the language processing components distributed
with GATE version 1.

[Cunningham 94, Cunningham et al. 94] (NeMLaP 1994, technical report) argue that
software engineering issues such as reuse, and framework construction, are important
for language processing R&D.

http://www.mpi.nl/world/tg/lapp/eudico/eudico.html
http://www.mpi.nl/world/tg/lapp/eudico/eudico.html

Developing Language Processing Components with GATE 15

[Dowman et al. 05b] (World Wide Web Conference Paper) The Web is used to assist the
annotation and indexing of broadcast news.

[Dowman et al. 05a] (Euro Interactive Television Conference Paper) A system which can
use material from the Internet to augment television news broadcasts.

[Dowman et al. 05c] (Second European Semantic Web Conference Paper) A system that
semantically annotates television news broadcasts using news websites as a resource to
aid in the annotation process.

[Li et al. 05a] (Proceedings of Sheffield Machine Learning Workshop) describe an SVM
based IE system which uses the SVM with uneven margins as learning component and
the GATE as NLP processing module.

[Li et al. 05b] (Proceedings of Ninth Conference on Computational Natural Language
Learning (CoNLL-2005)) uses the uneven margins versions of two popular learning
algorithms SVM and Perceptron for IE to deal with the imbalanced classification prob-
lems derived from IE.

[Li et al. 05c] (Proceedings of Fourth SIGHAN Workshop on Chinese Language processing
(Sighan-05)) used Perceptron learning, a simple, fast and effective learning algorithm,
for Chinese word segmentation.

[Aswani et al. 05] (Proceedings of Fifth International Conference on Recent Advances in
Natural Language Processing (RANLP2005)) It is a full-featured annotation indexing
and search engine, developed as a part of the GATE. It is powered with Apache Lucene
technology and indexes a variety of documents supported by the GATE.

[Li et al. 05c] (Proceedings of Fourth SIGHAN Workshop on Chinese Language processing
(Sighan-05)) a system for Chinese word segmentation based on Perceptron learning, a
simple, fast and effective learning algorithm.

[Wang et al. 05] (Proceedings of the 2005 IEEE/WIC/ACM International Conference on
Web Intelligence (WI 2005)) Extracting a Domain Ontology from Linguistic Resource
Based on Relatedness Measurements.

[Ursu et al. 05] (Proceedings of the 2nd European Workshop on the Integration of Knowl-
edge, Semantic and Digital Media Technologies (EWIMT 2005))Digital Media Preser-
vation and Access through Semantically Enhanced Web-Annotation.

[Polajnar et al. 05] (University of Sheffield-Research Memorandum CS-05-10) User-
Friendly Ontology Authoring Using a Controlled Language.

[Aswani et al. 06] (Proceedings of the 5th International Semantic Web Conference
(ISWC2006)) In this paper the problem of disambiguating author instances in on-
tology is addressed. We describe a web-based approach that uses various features such
as publication titles, abstract, initials and co-authorship information.

Chapter 2

Change Log

This chapter lists major changes to GATE in roughly chronological order by release. Changes
in the documentation are also referenced here.

2.1 Version 5.0-betal (October 2008)

2.1.1 Major new features
JAPE language improvements

Several new extensions to the JAPE language to support more flexible pattern matching.
Full details are in chapter 7 but briefly:

e Negative constraints, that prevent a rule from matching if certain other annotations
are present (section 7.4).

e Additional matching operators for feature values, so you can now look for
{Token.length < 5}, {Lookup.minorType != "ignore"}, etc. as well as simple
equality (section 7.1).

e “Meta-property” accessors, to permit access to the string covered by an annotation,
the length of the annotation, etc., e.g. {Lookup@length > 4}.

e Contextual operators, allowing you to search for one annotation contained within (or
containing) another, e.g. {Sentence contains {Lookup.majorType == "location"}}
(see section 7.1.4).

e Additional Kleene operator for ranges, e.g. ({Token}) [2,5] matches between 2 and
5 consecutive tokens.
16

Developing Language Processing Components with GATE 17

e Additional operators can be added via runtime configuration.

Some of these extensions are similar to, but not the same as, those provided by the Montreal
Transducer plugin. If you are already familiar with the Montreal Transducer, you should
first look at section 7.11 which summarises the differences.

Resource configuration via Java 5 Annotations

Introduced an alternative style for supplying resource configuration information via Java 5
annotations rather than in creole.xml. The previous approach is still fully supported as
well, and the two styles can be freely mixed. See section 4.9 for full details.

Ontology-based Gazetteer

Added a new plugin Ontology_Based_Gazetteer, which contains OntoRoot Gazetteer — a dy-
namically created gazetteer which is, in combination with few other generic GATE resources,
capable of producing ontology-aware annotations over the given content with regards to the
given ontology. For more details see section 9.31.

Inter-annotator agreement and merging

New plugins to support tasks involving several annotators working on the same annotation
task on the same documents. The “iaaPlugin” (section 13.6) computes inter-annotator
agreement scores between the annotators, and the “annotationMerging” plugin (section 9.30)
merges annotations from multiple annotators into a single “consensus” annotation set.

GUI improvements

Many improvements to the GUI including context-sensitive help, a new schema-driven tool
to streamline manual annotation tasks (see section 3.19.1), and many smaller fixes and user-
friendliness changes.

2.1.2 Other new features and improvements

e New parser plugins: A new plugin for the Stanford Parser (see section 9.13) and a
rewritten plugin for the RASP NLP tools (section 9.11).

e A new sentence splitter, based on regular expressions, has been added to the ANNIE
plugin. More details in section 8.4.

http://nlp.stanford.edu/software/lex-parser.shtml
http://www.informatics.sussex.ac.uk/research/groups/nlp/rasp/

Developing Language Processing Components with GATE 18

e “Real-time” corpus controller (section 4.6), which terminates processing of a document
if it takes longer than a configurable timeout..

e Improved alignment editor (chapter 12) with several advanced features and an API for
adding your own actions to the editor.

e New features in the ML API to produce an n-gram based language model from a corpus
and a so-called “document-term matrix” (see section 9.19). Also introduced features
to support active learning, and various optimisations. Full details in chapter 11.

e Added new “getCovering” method to AnnotationSet. This method returns annotations
that completely span the provided range. An optional annotation type parameter can
be provided to further limit the returned set.

2.1.3 Specific bug fixes

e HTML document format parser: several bugs fixed, including a null pointer exception
if the document contained certain characters illegal in HTML (#1754749). Also, the
HTML parser now respects the “Add space on markup unpack” configuration option
— previously it would always add space, even if the option was set to false.

e JAPE did not always correctly handle the case when the input and output annotation
sets for a transducer were different. This has now been fixed.

Plus many more minor bug fixes

2.2 Version 4.0 (July 2007)

2.2.1 Major new features
ANNIC

ANNotations In Context: a full-featured annotation indexing and retrieval system designed
to support corpus querying and JAPE rule authoring. It is provided as part of an extention
of the Serial Datastores, called Searchable Serial Datastore (SSD). See section 9.29 for more
details.

New machine learning API

A brand new machine learning layer specifically targetted at NLP tasks including text clas-
sification, chunk learning (e.g. for named entity recognition) and relation learning. See

https://sourceforge.net/support/tracker.php?aid=1754749

Developing Language Processing Components with GATE 19

chapter 11 for more details.

Ontology API

A new ontology API, based on OWL In Memory (OWLIM), which offers a better API, revised
ontology event model and an improved ontology editor to name but few. See chapter 10 for
more details.

OCAT

Ontology-based Corpus Annotation Tool to help annotators to manually annotate documents
using ontologies. For more details please see section 10.9.

Alignment Tools

A new set of components (e.g. CompoundDocument, AlignmentEditor etc.) that help in
building alignment tools and in carrying out cross-document processing. See chapter 12 for
more details.

New HTML Parser

A new HTML document format parser, based on Andy Clark’s NekoHTML. This parser is
much better than the old one at handling modern HTML and XHTML constructs, JavaScript
blocks, etc., though the old parser is still available for existing applications that depend on
its behaviour.

Java 5.0 support

GATE now requires Java 5.0 or later to compile and run. This brings a number of benefits:

e Java 5.0 syntax is now available on the right hand side of JAPE rules with the default
Eclipse compiler. See section B.8 for details.

e enum types are now supported for resource parameters. see section 3.13 for details on
defining the parameters of a resource.

e AnnotationSet and the CreoleRegister take advantage of generic types. The
AnnotationSet interface is now an extension of Set<Annotation> rather than just
Set, which should make for cleaner and more type-safe code when programming to the

http://www.ontotext.com/owlim/
http://people.apache.org/~andyc/neko/doc/html/

Developing Language Processing Components with GATE 20

API, and the CreoleRegister now uses parameterized types, which are backwards-
compatible but provide better type-safety for new code.

2.2.2 Other new features and improvements

e Hiding the view for a particular resource (by right clicking on its tab and selecting
“Hide this view”) will now completely close the associated viewers and dispose them.
Re-selecting the same resource at a later time will lead to re-creating the necessary
viewers and displaying them. This has two advantages: firstly it offers a mechanism
for disposing views that are not needed any more without actually closing the resource
and secondly it provides a way to refresh the view of a resource in the situations where
it becomes corrupted.

e The DataStore viewer now allows multiple selections. This lets users load or delete an
arbitrarily large number of resources in one operation.

e The Corpus editor has been completely overhauled. It now allows re-ordering of doc-
uments as well as sorting the document list by either index or document name.

e Support has been added for resource parameters of type gate.FeatureMap, and it is
also possible to specify a default value for parameters whose type is Collection, List
or Set. See section 3.13 for details.

e (Feature Request #1446642) After several requests, a mechanism has been added to
allow overriding of GATE’s document format detection routine. A new creation-time
parameter mimeType has been added to the standard document implementation, which
forces a document to be interpreted as a specific MIME type and prevents the usual
detection based on file name extension and other information. See section 6.5.1 for
details.

e A capability has been added to specify arbitrary sets of additional features on individual
gazetteer entries. These features are passed forward into the Lookup annotations
generated by the gazetteer. See section 8.2 for details.

e As an alternative to the Google plugin, a new plugin called yahoo has been added to
GATE to allow users to submit their query to the Yahoo search engine and to load the
found pages as GATE documents. See section 9.22 for more details.

e [t is now easier to run a corpus pipeline over a single document in the GATE GUI —
documents now provide a right-click menu item to create a singleton corpus containing
just this document. See section 3.12.1 for details.

e A new interface has been added that lets PRs receive notification at the start and
end of execution of their containing controller. This is useful for PRs that need to do
cleanup or other processing after a whole corpus has been processed. See section 4.6
for details.

https://sourceforge.net/support/tracker.php?aid=1446642

Developing Language Processing Components with GATE 21

e The GATE GUI does not call System.exit() any more when it is closed. Instead
an effort is made to stop all active GATE threads and to release all GUI resources,
which leads to the JVM exiting gracefully. This is particularly useful when GATE is
embedded in other systems as closing the main GATE window will not kill the JVM
process any more.

e The set of AnnotationSchemas that used to be included in the core gate.jar and laoded
as builtins have now been moved to the ANNIE plugin. When the plugin is loaded,
the default annotation schemas are instantiated automatically and are available when
doing manual annotation.

e There is now support in creole.xml files for automatically creating instances of a re-
source that are hidden (i.e. do not show in the GUI). One example of this can be seen
in the creole.xml file of the ANNIE plugin where the default annotation schemas are
defined.

e A couple of helper classes have been added to assist in using GATE within a Spring
application. Section 3.27 explains the details.

e Improvements have been made to the thread-safety of some internal GATE compo-
nents, which mean that it is now safe to create resources in multiple threads (though
it is not safe to use the same resource instance in more than one thread). This is
a big advantage when using GATE in a multithreaded environment, such as a web
application. See section 3.29 for details.

e Plugins can now provide custom icons for their PRs and LRs in the plugin JAR file.
See section 3.13 for details.

e [t is now possible to override the default location for the saved session file using a
system property. See section 3.3 for details.

e The TreeTagger plugin supports a system property to specify the location of the shell
interpreter used for the tagger shell script. In combination with Cygwin this makes it
much easier to use the tagger on Windows. See section 9.7 for details.

e The Buchart plugin has been removed. It is superseded by SUPPLE, and instructions
on how to upgrade your applications from Buchart to SUPPLE are given in section 9.12.
The probability finder plugin has also been removed, as it is no longer maintained.

e The bootstrap wizard now creates a basic plugin that builds with Ant. Since a Unix-
style make command is no longer required this means that the generated plugin will
build on Windows without needing Cygwin or MinGW.

e The GATE source code has moved from CVS into Subversion. See section 3.2.3 for
details of how to check out the code from the new repository.

e An optional parameter, keepOriginalMarkupsAS, has been added to the DocumentRe-
set PR which allows users to decide whether to keep the Original Markups AS or not
while reseting the document. See section 9.1 for more details.

http://www.springframework.org

Developing Language Processing Components with GATE 22

2.2.3 Bug fixes and optimizations

The Morphological Analyser has been optimized. A new FSM based, although with
minor alteration to the basic FSM algorithm, has been implemented to optimize the
GATE Morphological Analyser. The previous profiling figures show that the morpher
when integrated with ANNIE application used to take upto 60% of the overall pro-
cessing time. The optimized version only takes 7.6% of the total processing time. See
section 9.9 for more details on the morpher.

The ANNIE Sentence Splitter was optimised. The new version is about twice as fast
as the previous one. The actual speed increase varies widely depending on the nature
of the document.

The imlementation of the OrthoMatcher component has been improved. This resources
takes significantly less time on large documents.

The implementation of AnnotationSets has been improved. GATE now requires
up to 40% less memory to run and is also 20% faster on average. The get meth-
ods of AnnotationSet return instances of ImmutableAnnotationSet. Any attempt
at modifying the content of these objects will trigger an Exception. An empty
ImmutableAnnotationSet is returned instead of null.

The Chemistry tagger (section 9.16) has been updated with a number of bugfixes and
improvements.

The Document user interface has been optimised to deal better with large bursts of
events which tend to occur when the document that is currently displayed gets modi-
fied. The main advantages brought by this new implementation are:

— The document Ul refreshes faster than before.

— The presence of the GUI for a document induces a smaller performance penalty
than it used to. Due to a better threading implementation, machines benefit-
ing from multiple CPUs (e.g. dual CPU, dual core or hyperthreading machines)
should only see a negligible increase in processing time when a document is dis-
played compared to the situations where the document view is not shown. In the
previous version, displaying a document while it was processed used to increase
execution time by an order of magnitude.

— The GUI is more responsive now when a large number of annotations are dis-
played, hidden or deleted.

— The strange exceptions that used to occur occasionally while working with the
document GUI should not happen any more.

And as always there are many smaller bugfixes too numerous to list here...

Developing Language Processing Components with GATE 23

2.3 Version 3.1 (April 2006)

2.3.1 DMajor new features
Support for UIMA

UIMA (http://www.research.ibm.com/UIMA/) is a language processing framework devel-
oped by IBM. UIMA and GATE share some functionality but are complementary in most
respects. GATE now provides an interoperability layer to allow UIMA applications to in-
clude GATE components in their processing and vice-versa. For full information, see chapter
16.

New Ontology API

The ontology layer has been rewritten in order to provide an abstraction layer between the
model representation and the tools used for input and output of the various representation
formats. An implementation that uses Jena 2 (http://jena.sourceforge.net/ontology) for
reading and writing OWL and RDF(S) is provided.

Ontotext Japec Compiler

Japec is a compiler for JAPE grammars developed by Ontotext Lab. It has some limitations
compared to the standard JAPE transducer implementation, but can run JAPE grammars
up to five times as fast. By default, GATE still uses the stable JAPE implementation, but
if you want to experiment with Japec, see section 9.28.

2.3.2 Other new features and improvements

e Addition of a new JAPE matching style ”all”. This is similar to Brill, but once all
rules from a given start point have matched, the matching will continue from the next
offset to the current one, rather than from the position in the document where the
longest match finishes. More details can be found in Section 7.3.

e Limited support for loading PDF and Microsoft Word document formats. Only the
text is extracted from the documents, no formatting information is preserved.

e The Buchart parser has been deprecated and replaced by a new plugin called SUPPLE -
the Sheffield University Prolog Parser for Language Engineering. Full details, including
information on how to move your application from Buchart to SUPPLE, is in section
9.12.

http://www.research.ibm.com/UIMA/
http://jena.sourceforge.net/ontology

Developing Language Processing Components with GATE 24

e The Hepple POS Tagger is now open-source. The source code has been included in
the GATE distribution, under src/hepple/postag. More information about the POS
Tagger can be found in Section 8.5.

e Minipar is now supported on Windows. minipar-windows.ezxe, a modified version of
pdemo.cpp is added under the gate/plugins/minipar directory to allow users to run
Minipar on windows platform. While using Minipar on Windows, this binary should
be provided as a value for miniparBinary parameter. For full information on Minipar
in GATE, see section 9.10.

e The XmlGateFormat writer(Save As Xml from GATE GUI, gate.Document.toXml()
from GATE API) and reader have been modified to write and read GATE annotation
IDs. For backward compatibility reasons the old reader has been kept. This change
fixes a bug which manifested in the following situation: If a GATE document had
annotations carrying features of which values were numbers representing other GATE
annotation IDs, after a save and a reload of the document to and from XML, the former
values of the features could have become invalid by pointing to other annotations. By
saving and restoring the GATE annotation 1D, the former consistency of the GATE
document is maintained. For more information, see Section 6.5.2.

e The NP chunker and chemistry tagger plugins have been updated. Mark Greenwood
has relicenced them under the LGPL, so their source code has been moved into the
GATE distribution. See sections 9.3 and 9.16 for details.

e The Tree Tagger wrapper has been updated with an option to be less strict when
characters that cannot be represented in the tagger’s encoding are encountered in the
document. Details are in section 9.7.

e JAPE Transducers can be serialized into binary files. The option to load serialized
version of JAPE Transducer (an init-time parameter binaryGrammarURL) is also im-
plemented which can be used as an alternative to the parameter grammarURL. More
information can be found in Section 7.9.

e On Mac OS, GATE now behaves more ‘naturally’. The application menu items and
keyboard shortcuts for About and Preferences now do what you would expect, and
exiting GATE with command-Q or the Quit menu item properly saves your options
and current session.

e Updated versions of Weka(3.4.6) and Maxent(2.4.0).

e Optimisation in gate.creole.ml: the conversion of AnnotationSet into ML examples is
now faster.

e [t is now possible to create your own implementation of Annotation, and have
GATE use this instead of the default implementation. See AnnotationFactory and
AnnotationSetImpl in the gate.annotation package for details.

Developing Language Processing Components with GATE 25

2.3.3 Bug fixes

The Tree Tagger wrapper has been updated in order to run under Windows. See 9.7.

The SUPPLE parser has been made more user-friendly. It now produces more helpful
error messages if things go wrong. Note that you will need to update any saved
applications that include SUPPLE to work with this version - see section 9.12 for
details.

Miscellaneous fixes in the Ontotext JapeC compiler.
Optimization : the creation of a Document is much faster.

Google plugin: The optional pagesToExclude parameter was causing a NullPointerEx-
ception when left empty at run time. Full details about the plugin functionality can
be found in section 9.21.

Minipar, SUPPLE, TreeTagger: These plugins that call external processes have been
fixed to cope better with path names that contain spaces. Note that some of the
external tools themselves still have problems handling spaces in file names, but these
are beyond our control to fix. If you want to use any of these plugins, be sure to read
the documentation to see if they have any such restrictions.

When using a non-default location for GATE configuration files, the configuration data
is saved back to the correct location when GATE exits. Previously the default locations
were always used.

Jape Debugger: ConcurrentModificationException in JAPE debugger. The JAPE
debugger was generating a ConcurrentModificationException during an attempt to
run ANNIE. There is no exception when running without the debugger enabled. As
result of fixing one unnesesary and incorrect callback to debugger was removed from
SinglePhaseTransducer class.

Plus many other small bugfixes...

2.4 January 2005

Release of version 3.

New plugins for processing in various languages (see 9.15). These are not full IE systems
but are designed as starting points for further development (French, German, Spanish, etc.),
or as sample or toy applications (Cebuano, Hindi, etc.).

Other new plugins:

Chemistry Tagger 9.16

Developing Language Processing Components with GATE 26

Montreal Transducer 9.14

e RASP Parser 9.11
e MiniPar 9.10

e Buchart Parser 9.12
e MinorThird 9.25

e NP Chunker 9.3

e Stemmer 9.8

o TreeTagger 9.7

e Probability Finder
e Crawler 9.20

e Google PR 9.21

Support for SVM Light, a support vector machine implementation, has been added to the
machine learning plugin (see section 9.24.7).

2.5 December 2004

GATE no longer depends on the Sun Java compiler to run, which means it will now work
on any Java runtime environment of at least version 1.4. JAPE grammars are now compiled
using the Eclipse JDT Java compiler by default.

A welcome side-effect of this change is that it is now much easier to integrate GATE-based
processing into web applications in Tomcat. See section 3.28 for details.

2.6 September 2004

GATE applications are now saved in XML format using the XStream library, rather than
by using native java serialization. On loading an application, GATE will automatically
detect whether it is in the old or the new format, and so applications in both formats
can be loaded. However, older versions of GATE will be unable to load applications saved
in the XML format. (A java.io.StreamCorruptedException: invalid stream header
exception will occcur.) It is possible to get new versions of GATE to use the old format by
setting a flag in the source code. (See the Gate.java file for details.) This change has been
made because it allows the details of an application to be viewed and edited in a text editor,
which is sometimes easier than loading the application into GATE.

Developing Language Processing Components with GATE 27

2.7 Version 3 Beta 1 (August 2004)

Version 3 incorporates a lot of new functionality and some reorganisation of existing com-
ponents.

Note that Beta 1 is feature-complete but needs further debugging (please send us bug re-
ports!).

Highlights include: completely rewritten document viewer/editor; extensive ontology sup-
port; a new plugin management system; separate .jar files and a Tomcat classloading fix;
lots more CREOLE components (and some more to come soon).

Almost all the changes are backwards-compatible; some recent classes have been renamed
(particularly the ontologies support classes) and a few events added (see below); datastores
created by version 3 will probably not read properly in version 2. If you have problems use
the mailing list and we’ll help you fix your code!

The gorey details:

e Anonymous CVS is now available. See section 3.2.3 for details.

e CREOLE repositories and the components they contain are now managed as plugins.
You can select the plugins the system knows about (and add new ones) by going to
”"Manage CREOLE Plugins” on the file menu.

e The gate. jar file no longer contains all the subsiduary libraries and CREOLE compo-
nent resources. This makes it easier to replace library versions and/or not load them
when not required (libraries used by CREOLE builtins will now not be loaded unless
you ask for them from the plugins manager console).

e ANNIE and other bundled components now have their resource files (e.g. pattern files,
gazetteer lists) in a separate directory in the distribution — gate/plugins.

e Some testing with Sun’s JDK 1.5 pre-releases has been done and no problems reported.

e The gate:// URL system used to load CREOLE and ANNIE resources in past releases
is no longer needed. This means that loading in systems like Tomcat is now much easier.

e MAC OS X is now properly supported by the installed and the runtime.

e An Ontology-based Corpus Annotation Tool (OCAT) has been implemented as a
GATE plugin. Documentation of its functionality is in Section 10.9.

e The NLG Lexical tools from the MIAKT project have now been released. See docu-
mentation in Section 9.26.

e The Features viewer/editor has been completely updated — see Sections 3.16 and 3.19
for details.

Developing Language Processing Components with GATE 28

e The Document editor has been completely rewritten — see Section 3.6 for more infor-
mation.

e The datastore viewer is now a full-size VR — see Section 3.21 for more information.

2.8 July 2004

GATE Documents now fire events when the document content is edited. This was added in
order to support the new facility of editing documents from the GUI. This change will break
backwards compatibility by requiring all DocumentListener implementations to implement
a new method:

public void contentEdited(DocumentEvent e);

2.9 June 2004

A new algorithm has been implemented for the AnnotationDiff function. A new, more
usable, GUI is included, and an "Export to HTML” option added. More details about the
AnnotationDiff tool are in Section 3.23.

A new build process, based on ANT (http://ant.apache.org/) is now available for GATE.
The old build process, based on make, is now unsupported. See Section 3.8 for details of the
new build process.

A Jape Debugger from Ontos AG has been integrated in GATE. You can turn integration
ON with command line option ”-j”. If you run the GATE GUI with this option, the new
menu item for Jape Debugger GUI will appear in the Tools menu. The default value of
integration is OFF. We are currently awaiting documentation for this.

NOTE! Keep in mind there is ClassCastExceprion if you try to debug ConditionalCorpus-
Pipeline. Jape Debugger is designed for Corpus Pipeline only. The Ontos code needs to be
changed to allow debugging of ConditionalCorpusPipeline.

2.10 April 2004

GATE now has two alternative strategies for ontology-aware grammar transduction:

e using the [ontology] feature both in grammars and annotations; with the default Trans-
ducer.

Developing Language Processing Components with GATE 29

e using the ontology aware transducer — passing an ontology LR to a new subsume
method in the SimpleFeatureMaplmpl. the latter strategy does not check for ontology
features (this will make the writing of grammars easier — no need to specify ontology).

The changes are in:
e SinglePhaseTransducer (always call subsume with ontology — if null then the ordinary

subsumption takes place)

e SimpleFeatureMaplmpl (new subsume method using an ontology LR)

More information about the ontology-aware transducer can be found in Section 10.6.

A morphological analyser PR has been added to GATE. This finds the root and affix values
of a token and adds them as features to that token.

A flexible gazetteer PR has been added to GATE. This performs lookup over a document
based on the values of an arbitrary feature of an arbitrary annotation type, by using an
externally provided gazetteer. See 9.5 for details.

2.11 March 2004

Support was added for the MAXENT machine learning library. (See 9.24.6 for details.)

2.12 Version 2.2 — August 2003

Note that GATE 2.2 works with JDK 1.4.0 or above. Version 1.4.2 is recommended, and is
the one included with the latest installers.

GATE has been adapted to work with Postgres 7.3. The compatibility with PostgreSQL 7.2
has been preserved. See 3.36 for more details.

New library version — Lucene 1.3 (rcl)

A bug in gate.util.Javac has been fixed in order to account for situations when String literals
require an encoding different from the platform default.

Temporary .java files used to compile JAPE RHS actions are now saved using UTF-8 and
the 7-encoding UTF-8” option is passed to the javac compiler.

A custom tools.jar is no longer necessary

Developing Language Processing Components with GATE 30

Minor changes have been made to the look and feel of GATE to improve its appearance with
JDK 1.4.2

Some bug fixes (087, 088, 089, 090, 091, 092, 093, 095, 096 — see http://gate.ac.uk/gate/doc/bugs.html
for more details).

2.13 Version 2.1 — February 2003

Integration of Machine Learning PR and WEKA wrapper (see Section 9.24).
Addition of DAML+OIL exporter.
Integration of WordNet in GATE (see Section 9.23).

The syntax tree viewer has been updated to fix some bugs.

2.14 June 2002

Conditional versions of the controllers are now available (see Section 3.15). These allow
processing resources to be run conditionally on document features.

PostgreSQL Data Stores are now supported (see Section 4.7). These store data into a
PostgreSQL RDBMS.

Addition of OntoGazetteer (see Section 5.2), an interface which makes ontologies visible
within GATE, and supports basic methods for hierarchy management and traversal.

Integration of Protégé, so that people with developed Protégé ontologies can use them within
GATE.

Addition of IR facilities in GATE (see Section 9.19).

Modification of the corpus benchmark tool (see Section 3.24), which now takes an application
as a parameter.

See also for details of other recent bug fixes.

http://gate.ac.uk/gate/doc/bugs.html

Chapter 3

How To...

“The law of evolution is that the strongest survives!”

“Yes; and the strongest, in the existence of any social species, are those who are
most social. In human terms, most ethical. ... There is no strength to be gained
from hurting one another. Only weakness.”

The Dispossessed [p.183], Ursula K. le Guin, 1974.

This chapter describes how to complete common tasks using GATE. Sections that relate
to the Development Environment are flagged [D]; those that relate to the framework are
flagged [F]; sections relating to both are flagged [D,F].

There are two other primary sources for this type of information:

e for the development enviroment, see the visual tutorials available on our ‘movies’ page;

e for the framework, see the example code at http://gate.ac.uk/GateExamples/doc/.

3.1 Download GATE

To download GATE point your web browser at http://gate.ac.uk/ and follow the download
link. Fill in the form there, and you will be emailed an FTP address to download the system
from.

3.2 Install and Run GATE

31

http://gate.ac.uk/demos/movies.html
http://gate.ac.uk/GateExamples/doc/
http://gate.ac.uk/

Developing Language Processing Components with GATE 32

GATE 3.1 will run anywhere that supports Java version 1.4.2 or later, including Solaris,
Linux and Windoze platforms. GATE 4.0 beta 1 requires Java 5.0. We don’t run tests on
other platforms, but have had reports of successfull installs elsewhere. We are also testing
released installers on MacOS X.

3.2.1 The Easy Way

The easy way to install is to use one of the platform-specific installers (created using the
excellent IzPack). Download a ‘platform-specific installer’ and follow the instructions it gives
you. Once the installation is complete, you can start GATE using gate.exe (Windows) or
GATE. app (Mac) in the top-level installation directory, or gate.sh in the bin directory (other
platforms).

3.2.2 The Hard Way (1)

Download the Java-only release package or the binary build snapshot, and follow the instruc-
tions below.

Prerequisites:

e A conforming Java 2 environment,

— version 1.4.2 or above for GATE 3.1
— version 5.0 for GATE 4.0 beta 1 or later.

available free from Sun Microsystems or from your UNIX supplier. (We test on various
Sun JDKs on Solaris, Linux and Windows XP.)

e Binaries from the GATE distribution you downloaded: gate.jar, 1ib/ext/guk. jar
(Unicode editing support) and a suitable script to start Ant, e.g. ant.sh or ant.bat.
These are held in a directory called bin like this:

.../bin/
gate. jar
ant.sh
ant.bat

You will also need the 1ib directory, containing various libraries that GATE depends
on.

e An open mind and a sense of humour.

Using the binary distribution:

http://www.izforge.com/izpack/
http://java.sun.com/products/jdk/

Developing Language Processing Components with GATE 33

e Unpack the distribution, creating a directory containing jar files and scripts.

e To run the development environment: on Windows, start a Command Prompt win-
dow, change to the directory where you unpacked the GATE distribution and run
‘‘bin/ant.bat run’’; on UNIX run ¢ ‘bin/ant run’’.

e To embed GATE as a library, put gate.jar and all the libraries in the
lib directory in your CLASSPATH and tell Java that guk.jar is an extension
(-Djava.ext.dirs=path-to-guk. jar).

The Ant scripts that start GATE (ant.bat or ant) requires you to set the JAVA_HOME envi-
ronment variable to point to the top level directory of your JAVA installation. The value of
GATE_CONFIG is passed to the system by the scripts using either a -i command-line option,
or the Java property gate.config.

3.2.3 The Hard Way (2): Subversion

The GATE code is maintained in a Subversion repository. You can use a Subversion client
to check out the source code — the most up-to-date version of GATE is the trunk:
svn checkout https://gate.svn.sourceforge.net/svnroot/gate/gate/trunk gate

Once you have checked out the code you can build GATE using Ant (see section 3.8)

You can browse the complete Subversion repository online at http://gate.svn.sourceforge.net /gate.

3.3 [D,F] Use System Properties with GATE

During initialisation, GATE reads several Java system properties in order to decide where
to find its configuration files.

Here is a list of the properties used, their default values and their meanings:

gate.home sets the location of the GATE install directory. This should point to the top
level directory of your GATE installation. This is the only property that is required.
If this is not set, the system will display an error message and them it will attempt to
guess the correct value.

gate.plugins.home points to the location of the directory containing installed GATE
plug-ins (a.k.a. CREOLE directories). If this is not set then the default value of
{gate.home}/plugins is used.

http://subversion.tigris.org
http://gate.svn.sourceforge.net/gate

Developing Language Processing Components with GATE 34

gate.site.config points to the location of the configuration file containing the site-wide
options. If not set this will default to {gate.home}/gate.xml. The site configuration
file must exist!

gate.user.config points to the file containing the user’s options. If not specified, or if the
specified file does not exist at startup time, the default value of gate.xml (.gate.xml on
Unix platforms) in the user’s home directory is used.

gate.user.session points to the file containing the user’s saved session. If not specified,
the default value of gate.session (.gate.session on Unix) in the user’s home directory
is used. When starting up the GUI the session is reloaded from this file if it exists,
and when exiting the GUI the session is saved to this file (unless the user has disabled

“save session on exit” in the configuration dialog). The session is not used when using
GATE as a library.

load.plugin.path is a path-like structure, i.e. a list of URLSs separated by ;’. All directories
listed here will be loaded as CREOLE plugins during initialisation. This has similar
functionality with the the -d command line option.

gate.builtin.creole.dir is a URL pointing to the location of GATE’s built-in CREOLE
directory. This is the location of the creole.xml file that defines the fundamental
GATE resource types, such as documents, document format handlers, controllers and
the basic visual resources that make up the GATE GUI. The default points to a location
inside gate. jar and should not generally need to be overridden.

When using GATE as a library, you can set the values for these properties before you
call Gate.init (). Alternatively, you can set the values programmatically using the static
methods setGateHome (), setPluginsHome(), setSiteConfigFile(), etc. before calling
Gate.init (). See the Javadoc documentation for details. If you want to set these values
from the command line you can use the following syntax for setting gate.home for example:

java -Dgate.home=/my/new/gate/home/directory -cp... gate.Main

When running the GUI, you can set the properties by creating a file build.properties in
the top level GATE directory. In this file, any system properties which are prefixed with

run.” will be passed to GATE. For example, to set an alternative user config file, put the
following line in build.properties’:

run.gate.user.config=${user.home}/alternative-gate.xml

This facility is not limited to the GATE-specific properties listed above, for example the
following line changes the default temporary directory for GATE (note the use of forward
slashes, even on Windows platforms):

run. java.io.tmpdir=d:/bigtmp

'In this specific case, the alternative config file must already exist when GATE starts up, so you should
copy your standard gate.xml file to the new location.

Developing Language Processing Components with GATE 35

3.4 |D,F]| Use (CREOLE) Plug-ins

The definitions of CREOLE resources (see Chapter 4) are stored in CREOLE directories (di-
rectories containing an XML file describing the resources, the java archive with the compiled
executable code and whatever libraries are required by the resources).

Starting with version 3, CREOLE directories are called “CREOLE Plugins” or simply “Plu-
gins”. In previous versions, the CREOLE resources distributed with GATE used be included
in the monolithic gate. jar archive. Version 3 includes them as separate directories under
the plugins directory of the distribution. This allows easy access to the linguistic resources
used without the requirement to unpack the gate. jar file.

Plugins can have one or more of the following states in relation with GATE:

known plugins are those plugins that the system knows about. These include all the plugins
in the plugins directory of the GATE installation (the so—called installed plugins) as
well all the plugins that were manually loaded from the user interface.

loaded plugins are the plugins currently loaded in the system. All CREOLE resource types
from the loaded plugins are available for use. All known plugins can easily be loaded
and unloaded using the user interface.

auto-loadable plugins are the list of plugins that the system loads automatically during
initialisation. By default this only includes the ANNIE plugin (see Section 3.17).

The default location for installed plugins can be modified using the gate.plugins.home sys-
tem property while the list of auto-loadable plugins can be set using the load.plugin.path
property, see Section 3.3 above.

The CREOLE plugins can be managed through the graphical user interface which can be
activated by selecting “Manage CREOLE plugins” from the “File” menu. This will bring
up a window listing all the known plugins. For each plugin there are two check-boxes — one
labelled “Load now”, which will load the plugin, and the other labelled “Load always” which
will add the plugin to the list of auto-loadable plugins. A “Delete” button is also provided —
which will remove the plugin from the list of known plugins. Note the the installed plugins
will return to the list of known plugins next time when GATE is started. They can only be
removed by physically removing (or moving) the actual directory on disk outside the GATE
plugins directory.

When using GATE as a library the following API calls are relevant to working with plugins:
Class gate.Gate

public static void addKnownPlugin(URL pluginURL) adds the plugin to the list of
known plugins.

Developing Language Processing Components with GATE 36

public static void removeKnownPlugin(URL pluginURL) tells the system to “forget”
about one previously known directory. If the specified directory was loaded, it will
be unloaded as well - i.e. all the metadata relating to resources defined by this direc-
tory will be removed from memory.

public static void addAutoloadPlugin(URL pluginUrl) adds a new directory to the
list of plugins that are loaded automatically at start-up.

public static void removeAutoloadPlugin(URL pluginURL) tells the system to remove
a plugin URL from the list of plugins that are loaded automatically at system start-up.
This will be reflected in the user’s configuration data file.

Class gate.CreoleRegister

public void registerDirectories(URL directoryUrl) loads anew CREOLE directory.
The new plugin is added to the list of known plugins if not already there.

public void removeDirectory(URL directory) unloads a loaded CREOLE plugin.

3.5 Troubleshooting

On Windoze 95 and 98, you may need to increase the amount of environment space
available for the gate.bat script. Right click on the script, hit the memory tab and increase
the ‘initial environment’ value to maximum.

Note that the gate.bat script uses javaw.exe to run GATE which means that you will see
no console for the java process. If you have problems starting GATE and you would like to
be able to see the console to check for messages then you should edit the gate.bat script
and replace javaw.exe with java.exe in the definition of the JAVA environment variable.

When our F'TP server is overloaded you may get a blank download link in the email sent
to you after you register. Please try again later.

3.6 |D] Get Started with the GUI

Probably the best way to learn how to use the GATE graphical development environment is
to look at the animated demonstrations and tutorials on the ‘movies’ page. There is also a
shorter manual aimed at those who just want to use GATE for annotating texts and viewing
the results.

This section gives a short description of what is where in the main window of the system.

http://gate.ac.uk/demos/movies.html
http://gate.ac.uk/sale/am/annotationmanual.pdf

Developing Language Processing Components with GATE 37

) Gate 3.0-alpha build 1667 _ & x|
File Options Tools Help
m,sate Mezsagas ﬁ DCs Hnmepagel
- @ Applications Annotations
- = x
#* ANNIE_0038C 2 | The Department of Computer Science - The University of Sheffield 4 §
Language Resources W Original markups &
'ﬁ DCE Homepage I:I E
" N ir}
Processing Resaurces " big o=
AMMIE OrthoMateher_0 T hody o
&
AMMIE ME Transducer, News I br o
ANMIE POS Tagger_0C I div 5
ANNIE Sentance Spiite £120,000 Award to Upgrade Computers - R 2
- in Student Labs =
B} ANNIE Gazetteer 0030 Dur students come lst, 2nd and 3rd in " head =
", ANNMIE Enalish Tokenig Microsoft's Imagine Cup UR I onr g
Document Reset PR_C O i
Data stores I g
™ link
b
" span
™ table
Getting here | Staff list | Search | University ™ thody
The Departwent of Computer Science ru
Regent. Court
211 Portobello Strest I title
4 | sheffield, 31 4DF. ot
UNITED KINGDOM. Tel: +44 (0) 114 22 21800
MirmeTyne = | frextrhtml Fax: +44 (0) 114 22 21810
[yate SourceURL [+ [pttp fiw Email: deptBdes.shef.ac.uk
Mew
Annotations
4 _’I Document Editar | Initialisation Parameters | OLD Document Editor

Figure 3.1: Main Window

Figure 3.1 shows the main window of the application, with a single document loaded. There
are five main areas of the window:
1. the menus bar along the top, with ‘File’ etc.;

2. in the top left of the main area, a tree starting from ‘GATE’ and containing ‘Applica-
tions’, ‘Language Resources’ etc. — this is the resources tree;

3. in the bottom left of the main area, a black rectangle, which is the small resource
viewer;

4. on the right of the main area, containing tabs with ‘Messages’ and ‘GATE Docu-
ment_0001F’, the main resource viewer,

5. the messages bar along the bottom (where it says ‘Finished dumping...”).
The menu and the messages bars do the usual things. Longer messages are displayed in the
messages tab in the main resource viewer area.

The resource tree and resource viewer areas work together to allow the system to display
diverse resources in various ways. Visual Resources integrated with GATE can have a small

Developing Language Processing Components with GATE 38

view or a large view. For example, data stores have a small view; documents have a large
view.

All the resources, applications and datastores currently loaded in the system appear in the
resources tree; double clicking on a resource will load a viewer for the resource in one of the
resource view areas.

3.7 |D,F] Configure GATE

When the GATE development environment is started, or when Gate.init () is called from
the API, GATE loads various sorts of configuration data stored as XML in files generally
called something like gate.xml or .gate.xml. This data holds information such as:

e whether to save settings on exit;
e what fonts the GUI should use;

e where the local Oracle database lives.
All of this type of data is stored at two levels (in order from general to specific):

e the site-wide level, which by default is located the gate.xml file in top level directory
of the GATE installation (i.e. the GATE home. This location can be overridden by the
Java system property gate.site.config;

e the user level, which lives in the user’s HOME directory on UNIX or their profile
directory on Windoze (note that parts of this file are overwritten by GATE when
saving user settings). The default location for this file can be overridden by the Java
system property gate.user.config.

Where configuration data appears on several different levels, the more specific ones overwrite
the more general. This means that you can set defaults for all GATE users on your system,
for example, and allow individual users to override those defaults without interfering with
others.

Configuration data can be set from the GUI via the ‘Options’ menu, ‘Configuration’ choice.
The user can change the appearance of the GUI (via the Appearance submenu), which
includes the options of font and the “look and feel”. The “Advanced” submenu enables the
user to include annotation features when saving the document and preserving its format, to
save the selected Options automatically on exit, and to save the session automatically on
exit. The Input Methods menu (available via the Options menu) enables the user to change
the default language for input. These options are all stored in the user’s .gate.xml file.

Developing Language Processing Components with GATE 39

When using GATE from the framework, you can also set the site config location using
Gate.setSiteConfigFile(File) prior to calling Gate.init ().

3.7.1 [F] Save Config Data to gate.xml

Arbitrary feature/value data items can be saved to the user’s gate.xml file via the following
API calls:
To get the config data: Map configData = Gate.getUserConfig().

To add config data simply put pairs into the map: configData.put("my new config key",
"value") ;.

To write the config data back to the XML file: Gate.writeUserConfig() ;.

Note that new config data will simply override old values, where the keys are the same. In
this way defaults can be set up by putting their values in the main gate.xml file, or the site
gate.xml file; they can then be overridden by the user’s gate.xml file.

3.8 Build GATE

Note that you don’t need to build GATE unless you're doing development on the system
itself.

Prerequisites:

e A conforming Java environment as above.

e A copy of the GATE sources and the build scripts — either the SRC distribution package
from the nightly snapshots or a copy of the code obtained through Subversion (see
Section 3.2.3).

e An appreciation of natural beauty.

GATE now includes a copy of the ANT build tool which can be accessed through the scripts
included in the bin directory (use ant.bat for Windows 98 or ME, ant.cmd for Windows
NT, 2000 or XP, and ant.sh for Unix platforms).

To build gate, cd to gate and:

1. Type:
bin/ant

Developing Language Processing Components with GATE 40

2. [optional] To test the system:
bin/ant test
(Note that DB tests may fail unless you can connect to Sheffield’s Oracle server.)

3. [optional] To make the Javadoc documentation:
bin/ant doc

4. You can also run GATE using Ant, by typing:
bin/ant run

5. To see a full list of options type: bin/ant help

(The details of the build process are all specified by the build.xml file in the gate directory.)

You can also use a development environment like Borland JBuilder (click on the gate. jpx
file), but note that it’s still advisable to use ant to generate documentation, the jar file and so
on. Also note that the run configurations have the location of a gate.xml site configuration
file hard-coded into them, so you may need to change these for your site.

3.9 [D] Use GATE with Maven or JPF

This section is based on contributions by Georg ttl and William Oberman.

To use GATE with Maven you need a definition of the dependencies in POM format. There’s
an example POM here.

To use GATE with JPF (a Java plugin framework) you need a plugin definition like this one.

3.10 [D,F| Create a New CREOLE Resource

CREOLE resources are Java Beans (see chapter 4). They come in three types: Language
Resource, Processing Resource and Visual Resource (see chapter 1 section 1.3.1). To create
a new resource you need to:

e write a Java class that implements GATE’s beans model;

file:maven/pom.xml
file:maven/plugin.xml

Developing Language Processing Components with GATE

e compile the class, and any others that it uses, into a Java Archive (JAR) file;

e write some XML configuration data for the new resource;

e tell GATE the URL of the new JAR and XML files.

41

The GATE development environment helps you with this process by creating a set of direc-
tories and files that implement a basic resource, including a Java code file and a Makefile.

This process is called ‘bootstrapping’.

For example, let’s create a new component called GoldFish, which will be a Processing
Resource that looks for all instances of the word ‘fish’ in a document and adds an annotation

of type ‘GoldFish’.

First start the GATE development environment (see section 3.2). From the ‘Tools’ menu

E5 BootSirap Wizard E |

Rezource name, 2.0. mytiomph

|GoldEish

Fasouree package, &, shemeld craalemamh

|shetfield.crenle example

Rasource ype

|Frnr:ea singResoumme

Implementing class name, g Morpher

|[oldFish

Intadaces implermented

|gE|tE.F'm|:esgingH29uur|:e

Create in falder ...

|IZF'|ITI|!4

Finizh Cancel |

Figure 3.2: BootStrap Wizard Dialogue

Browse |

select ‘BootStrap Wizard’, which will pop up the dialogue in figure 3.2. The meaning of the

data entry fields:

e The ‘resource name’ will be displayed when GATE loads the resource, and will be the
name of the directory the resource lives in. For our example: GoldFish.

Developing Language Processing Components with GATE 42

e ‘Resource package’ is the Java package that the class representing the resource will be
created in. For our example: sheffield.creole.example.

e ‘Resource type’ must be one of Language, Processing or Visual Resource. In this
case we're going to process documents (and add annotations to them), so we select
ProcessingResource.

e ‘Implementing class name’ is the name of the Java class that represents the resource.
For our example: GoldFish.

e The ‘interfaces implemented’ field allows you to add other interfaces (e.g.
gate.creole.ControllerAwarePR?) that you would like your new resource to im-
plmenent. In this case we just leave the default (which is to implement the
gate.ProcessingResource interface).

e The last field selects the directory that you want the new resource created in. For our

example: z:/tmp.

Now we need to compile the class and package it into a JAR file. The bootstrap wizard
creates an Ant build file that makes this very easy — so long as you have Ant set up properly,
you can simply run

ant jar

This will compile the Java source code and package the resulting classes into GoldFish. jar.
If you don’t have your own copy of Ant, you can use the one bundled with GATE
- suppose your GATE is installed at /opt/gate-5.0-snapshot, then you can use
/opt/gate-5.0-snapshot/bin/ant jar to build.

You can now load this resource into GATE; see

e section 3.11 for how to instantiate the resource from the framework;

e section 3.12 for how to load the resource in the development environment;

e section 3.13 for how to configure and further develop your resource (which will, by
default, do nothing!).

The default Java code that was created for our GoldFish resource looks like this:

/*
* GoldFish.java

2See section 4.6.

http://gate.ac.uk/gate/doc/javadoc/gate/creole/ControllerAwarePR.html
http://ant.apache.org

Developing Language Processing Components with GATE

You should probably put a copyright notice here. Why not use the
GNU licence? (See http://www.gnu.org/.)

hamish, 26/9/2001

* X ¥ X * *

$Id: howto.tex,v 1.130 2006/10/23 12:56:37 ian Exp $
/

*

package sheffield.creole.example;

import java.util.x;
import gate.*;

import gate.creole.*;
import gate.util.*;

/*x
* This class is the implementation of the resource GOLDFISH.
*/
@CreoleResource(name = "GoldFish",
comment = "Add a descriptive comment about this resource")
public class GoldFish extends AbstractProcessingResource
implements ProcessingResource {

} // class GoldFish

The default XML configuration for GoldFish looks like this:

<!-- creole.xml GoldFish -->
<!-— hamish, 26/9/2001 -->
<!-- $Id: howto.tex,v 1.130 2006/10/23 12:56:37 ian Exp $ -->

<CREOLE-DIRECTORY>
<JAR SCAN="true">GoldFish.jar</JAR>
</CREOLE-DIRECTORY>

43

The directory structure containing these files is shown in figure 3.3. GoldFish. java lives
in the src/sheffield/creole/example directory. creole.xml and build.xml are in the
top GoldFish directory. The lib directory is for libraries; the classes directory is where
Java class files are placed; the doc directory is for documentation. These last two, plus

GoldFish. jar are created by Ant.

This process has the advantage that it creates a complete source tree and build structure
for the component, and the disadvantage that it creates a complete source tree and build
structure for the component. If you already have a source tree, you will need to chop out the

Developing Language Processing Components with GATE 44

v [GoldFish
7 build.properties
build.xml
» | classes
creole.xml
b [doc
= GoldFish.jar
3 lib
" README
Fesources
! src
v | sheffield

v [crecle

v [example
li| GoldFish.java

v

4 v

Figure 3.3: BootStrap directory tree

bits you need from the new tree (in this case GoldFish. java and creole.xml) and copy it
into your existing one.

3.11 [F| Instantiate CREOLE Resources

This section describes how to create CREOLE resources as objects in a running Java virtual
machine. This process involves using GATE’s Factory class, and, in the case of LRs, may
also involve using a DataStore.

CREOLE resources are Java Beans; creation of a resource object involves using a default
constructor, then setting parameters on the bean, then calling an init() method?®. The
Factory takes care of all this, makes sure that the GUT is told about what is happenning (when
GUI components exist at runtime), and also takes care of restoring LRs from DataStores.
So a programmer using GATE should never call the constructor of a resource: always
use the Factory.

The valid parameters for a resource are described in the resource’s section of its creole.xml
file or in Java annotations on the resource class — see section 4.9.

3This method is not part of the beans spec.

Developing Language Processing Components with GATE 45

Creating a resource via the Factory involves passing values for any create-time parameters
that require setting to the Factory’s createResource method. If no parameters are passed,
the defaults are used. So, for example, the following code creates a default ANNIE part-of-
speech tagger:

FeatureMap params = Factory.newFeatureMap(); // empty map: default parameters
ProcessingResource tagger = (ProcessingResource)
Factory.createResource("gate.creole.POSTagger", params);

Note that if the resource created here had any parameters that were both mandatory and
had no default value, the createResource call would throw an exception. In this case, all
the information needed to create a tagger is available in default values given in the tagger’s
XML definition:

<RESOURCE>
<NAME>ANNIE POS Tagger</NAME>
<COMMENT>Mark Hepple’s Brill-style POS tagger</COMMENT>
<CLASS>gate.creole.P0STagger</CLASS>
<PARAMETER NAME="document"
COMMENT="The document to be processed"
RUNTIME="true">gate.Document</PARAMETER>

<PARAMETER NAME="rulesURL" DEFAULT="gate:/creole/heptag/ruleset"
COMMENT="The URL for the ruleset file"
OPTIONAL="true">java.net.URL</PARAMETER>
</RESQURCE>

Here the two parameters shown are either ‘runtime’ parameters, which are set before a PR is
executed, or have a default value (in this case the default rules file is distributed with GATE
itself).

When creating a Document, however, the URL of the source for the document must be
provided?. For example:

URL u = new URL("http://gate.ac.uk/hamish/");

FeatureMap params = Factory.newFeatureMap() ;

params.put ("sourceUrl", u);

Document doc = (Document)
Factory.createResource("gate.corpora.DocumentImpl", params);

The document created here is transient: when you quit the JVM the document will no
longer exist. If you want the document to be persistent, you need to store it in a DataStore.

4Alternatively a string giving the document source may be provided.

Developing Language Processing Components with GATE 46

Assuming that you have a DataStore already open called myDataStore, this code will ask
the data store to take over persistence of your document, and to synchronise the memory
representation of the document with the disk storage:

Document persistentDoc = myDataStore.adopt(doc, mySecurity);
myDataStore.sync(persistentDoc) ;

Security:

User access to the LRs is provided by a security mechanism of users and groups, similar
to those on an operating system. When users create/save LRs into Oracle, they specify
reading and writing access rights for users from their group and other users. For example,
LRs created by one user/group can be made read-only to others, so they can use the data,
but not modify it. The access modes are:

e others: read/none;
e group: modify/read/none;

e owner: modify/read.

If needed, ownership can be transferred from one user to another. Users, groups and LR
permissions are administered in a special administration tool, by a privileged user. For more
details see chapter 14.

When you want to restore a document (or other LR) from a data store, you make the same
createResource call to the Factory as for the creation of a transient resource, but this time
you tell it the data store the resource came from, and the ID of the resource in that datastore:

URL u =; // URL of a serial data store directory
SerialDataStore sds = new SerialDataStore(u.toString());
sds.open() ;

// getLrIlds returns a list of LR Ids, so we get the first one
Object 1rId = sds.getLrIds("gate.corpora.DocumentImpl").get(0);

// we need to tell the factory about the LR’s ID in the data
// store, and about which data store it is in - we do this
// via a feature map:

FeatureMap features = Factory.newFeatureMap();
features.put(DataStore.LR_ID_FEATURE_NAME, 1rId);
features.put(DataStore.DATASTORE_FEATURE_NAME, sds);

// read the document back
Document doc = (Document)
Factory.createResource("gate.corpora.DocumentImpl", features);

Developing Language Processing Components with GATE A7

3.12 |D| Load CREOLE Resources

3.12.1 Loading Language Resources

Load a language resource by right clicking on “Language Resources” and selecting a language
resource type (document, corpus or annotation schema). Choose a name for the resource,
and choose any parameters as necessary.

For a document, a file or url should be selected as the value of “sourceUrl” (double clicking
in the “values” box brings up a tree structure to enable selection of documents). Other
parameters can be selected or changed as necessary, such as the encoding of the document,
and whether it should be markup aware.

There are three ways of adding documents to a corpus:

1. When creating the corpus, clicking on the icon under Value brings up a popup window
with a list of the documents already loaded into GATE. This enables the user to add
any documents to the corpus.

2. Alternatively, the corpus can be loaded first, and documents added later by double
clicking on the corpus and using the 4+ and - icons to add or remove documents to the
corpus. Note that the documents must have been loaded into GATE before they can
be added to the corpus.

3. Once loaded, the corpus can be populated by right clicking on the corpus and selecting
“Populate”. With this method, documents do not have to have been previously loaded
into GATE, as they will be loaded during the population process. Select the directory
containing the relevant files, choose the encoding, and check or uncheck the “recurse
directories” box as appropriate. The initial value for the encoding is the platform
default.

Additionally, right-clicking on a loaded document in the tree and selecting the “New corpus
with this document” option creates a new transient corpus named Corpus for document
name containing just this document. To add a new annotation schema, simply choose the
name and the path or Url. For more information about schema, see 6.4.1.

3.12.2 Loading Processing Resources

This section describes how to load and run CREOLE resources not present in ANNIE. To
load ANNIE, see Section 3.17. For technical descriptions of these resources, see Chapter 9.
First ensure that the necessary plugins have been loaded (see Section 3.4). If the resource
you require does not appear in the list of Processing Resources, then you probably do not
have the necessary plugin loaded. Processing resources are loaded by selecting them from the

Developing Language Processing Components with GATE 48

set of Processing Resources (right click on Processing Resources or select “New Processing
Resource” from the File menu), adding them to the application and selecting the necessary
parameters (e.g. input and output Annotation Sets).

3.12.3 Loading and Processing Large Corpora

When trying to process a larger corpus (i.e. one that would not fit in memory at one time)
the use of a datastore and persistent corpora is required.

Open or create a datastore and then create a corpus. Save the so far empty corpus to the
datastore — this will convert it to a persistent corpus.

When populating or processing the persistent corpus, the documents contained will only be
loaded one by one thus reducing the amount of memory required to only that necessary for
loading the largest document in the collection.

3.13 [D,F] Configure CREOLE Resources

For full details on how to supply configuration data for resources can be found in section 4.9.

e To collect PRs into an application and run them, see section 3.14.

e GATE’s internal creole.xml file (note that there are no JAR entries there, as the file
is bundled with GATE itself).

3.14 [D] Create and Run an Application

Once all the resources have been loaded, an application can be created and run. Right click
on “Applications” and select “New” and then either “Corpus Pipeline” or “Pipeline”. A
pipeline application can only be run over a single document, while a corpus pipeline can be
run over a whole corpus.

To build the pipeline, double click on it, and select the resources needed to run the applica-
tion (you may not necessarily wish to use all those which have been loaded). Transfer the
necessary components from the set of “loaded components” displayed on the left hand side
of the main window to the set of “selected components” on the right, by selecting each com-
ponent and clicking on the left and right arrows, or by double-clicking on each component.
Ensure that the components selected are listed in the correct order for processing (starting

http://gate.ac.uk/gate/src/gate/resources/creole/creole.xml

Developing Language Processing Components with GATE 49

from the top). If not, select a component and move it up or down the list using the up/down
arrows at the left side of the pane. Ensure that any parameters necessary are set for each
processing resource (by clicking on the resource from the list of selected resources and check-
ing the relevant paramters from the pane below). For example, if you wish to use annotation
sets other than the Default one, these must be defined for each processing resource. Note
that if a corpus pipeline is used, the corpus needs only to be set once, using the drop-down
menu beside the “corpus” box. If a pipeline is used, the document must be selected for
each processing resource used. Finally, right-click on “Run” to run the application on the
document or corpus.

For how to use the conditional versions of the pipelines see section 3.15.

3.15 |[D]| Run PRs Conditionally on Document Features

The “Conditional Pipeline” and “Conditional Corpus Pipeline” application types are condi-
tional versions of the pipelines mentioned in section 3.14 and allow processing resources to
be run or not according to the value of a feature on the document. In terms of graphical
interface, the only addition brought by the conditional versions of the applications is a box
situated underneath the lists of available and selected resources which allows the user to
choose whether the currently selected processing resource will run always, never or only on
the documents that have a particular value for a named feature.

If the Yes option is selected then the corresponding resource will be run on all the documents
processed by the application as in the case of non- conditional applications. If the No option
is selected then the corresponding resource will never be run; the application will simply
ignore its presence. This option can be used to temporarily and quickly disable an application
component, for debugging purposes for example.

The If value of feature option permits running specific application components conditionally
on document features. When selected, this option enables two text input fields that are used
to enter the name of a feature and the value of that feature for which the corresponding
processing resource will be run. When a conditional application is run over a document, for
each component that has an associated condition, the value of the named feature is checked
on the document and the component will only be used if the value entered by the user
matches the one contained in the document features.

3.16 [D] View Annotations

To view a document, double click on the filename in the left hand pane. Note that it may
take a few seconds for the text to be displayed if it is long.

Developing Language Processing Components with GATE 50

To view the annotation sets, click on AnnotationSets on the right pane. This will bring up the
annotation sets viewer, which displays the annotation sets available and their corresponding
annotation types. Note that the default annotation set has no name. If no application has
been run, the only annotations to be displayed will be those corresponding to the document
format analysis performed automatically by GATE on loading the document (e.g. HTML
or XML tags). If an application has been run, other annotation types and/or annotation
sets may also be present. The fonts and colours of the annotations can be edited by double
clicking on the annotation name.

Select the annotation types to be viewed by clicking on the appropriate checkbox(es). The
text segments corresponding to these annotations will be highlighted in the main text win-
dow.

To view the annotations and their features, click on Annotations at the top or bottom of the
main window. The annotation viewer will appear above or below the main text, respectively.
It will only contain the annotations selected from the annotation sets. These lists can be
sorted in ascending and descending order by any column, by clicking on the corresponding
column heading. Clicking on an entry in the table will also highlight the respective matching
text portion.

Hovering over some part of the text in the main window will bring up a popup box containing
a list of the annotations associated with it (assuming that the relevant annotation types have
been selected from the annotation set viewer).

Annotations relating to coreference (if relevant) are displayed separately in the coreference
viewer. This operates in the same way as the annotation sets viewer.

At any time, the main viewer can also be used to display other information, such as Messages,
by clicking on the header at the top of the main window. If an error occurs in processing,
the messages tab will flash red, and an additional popup error message may also occur.

Text in a loaded document can be edited in the document viewer. The usual platform specific
cut, copy and paste keyboard shortcuts should also work, depending on your operating
system (e.g. CTRL-C, CTRL-V for Windows). To prevent the new annotation windows
popping up when a piece of text is selected, hide the AnnotationSets view (the tree on the
right) first to make it inactive. The highlighted portions of the text will still remain visible.

3.17 |[D| Do Information Extraction with ANNIE

This section describes how to load and run ANNIE (see Chapter 8) from the development
environment. To embed ANNIE in other software, see section 3.26.

From the File menu, select “Load ANNIE system”. To run it in its default state, choose
“With Defaults”. This will automatically load all the ANNIE resources, and create a corpus

Developing Language Processing Components with GATE 51

pipeline called ANNIE with the correct resources selected in the right order, and the default
input and output annotation sets.

If “Without Defaults” is selected, the same processing resources will be loaded, but a popup
window will appear for each resource, which enables the user to specify a name and location
for the resource. This is exactly the same procedure as for loading a processing resource indi-
vidually, the difference being that the system automatically selects those resources contained
within ANNIE. When the resources have been loaded, a corpus pipeline called ANNIE will
be created as before.

The next step is to add a corpus (see Section 3.12.1), and select this corpus from the drop-
down Corpus menu in the Serial Application editor. Finally click on Run (from the Serial
Application editor, or by right clicking on the application name and selecting “Run”). To
view the results, double click on the filename in the left hand pane. No Annotation Sets nor
Annotations will be shown until annotations are selected in the Annotation Sets; the Default
set is indicated only with an unlabelled right-arrowhead which must be selected in order to
make visible the available annotations.

3.18 [D]| Modify ANNIE

You will find the ANNIE resources in gate/plugins/ANNIE /resources. Simply locate the
existing resources you want to modify, make a copy with a new name, edit them, and load
the new resources into GATE as new Processing Resources (see Section 3.12.2).

3.19 [D] Create and Edit Test Data

Since many NLP algorithms require annotated corpora for training, GATE’s development
environment provides easy-to-use and extendable facilities for text annotation. The anno-
tation can be done manually by the user or semi-automatically by running some processing
resources over the corpus and then correcting/adding new annotations manually. Depend-
ing on the information that needs to be annotated, some ANNIE modules can be used or
adapted to bootstrap the corpus annotation task.

To create annotations manually:

e Select the text you want to annotate

e The most recent annotation type to have been used will be displayed in a popup box.
If this is not the one you want, use the menu to change it. If it is correct, you need do
nothing further. You can add or change features and their values using the menu in
the box.

Developing Language Processing Components with GATE 52

e To delete an annotation, click on the red X in the popup box.

The popup menu only contains annotation types present in the Annotation Schema and
those already listed in the relevant Annotation Set. To create a new Annotation Schema,
see Section 3.20. The popup menu can be edited to add a new annotation type, however.

The new annotation created will automatically be placed in the annotation set that has been
selected (highlighted) by the user. To create a new annotation set, type the name of the new
set to be created in the box below the list of annotation sets, and click on ”New”.

Figure 3.4 demonstrates adding the Organization annotation for the string “University of
Sheffield” (highlighted in grey) to the Default Annotation set.

) Gate 3.0-alpha build 1667 1=
2t
File Options Tools Help
&,Gate Messages ﬁ dUCUTﬂEﬂIl
E| @8 Applications Annotations
Lo ANMIE_003BG il o i £
: = — =
2-[E] Language Resources W Organization 2
(Y oot FT.com | TotalSearch | Global Archiwe | Print w Original markups E
Processing Resources e 1
i document. vrite (getAdHTHL ('ban' ,465,60)) ; W
ANNIE OrthoMatcher_0 = o
@
ANMIE NE Transducer, I body o
ANMIE POS Tagger A0 Return to Article | Print this Page B z
ANNIE Sentance Splitte ™ head H
ANMIE Gazettear_003C Airlines teke over rumning of air traffic control ™ it z
*, BNMIE English Tokenis I iwg =
&) Document Reset PR_[FT.con site, Jul 27, 2001 I link
EY FEVIN DONE, AEROSPACE CORRESFONDENT
@ Data stores [mll
Seven UK airlines including British Airways, Virgin Atlantic, BMI [™ script
British Midland and Easylet, d p * 4P %| |- iz6ie
air traffic control system, —
wost controversial pu}:hc—prlorgan'za“m LI M
[= &l < [)f -
Completion of the National i
critical time for the government as it tries to push through the
PPP for the London Underground.
A _’I The sale to a strategic investor of a 46 per cent stake in Nats is
the first time in Europe that management control of en route air
imeTyns + [hestintrnl traffic services has passed into private hands.
jgate.SourcelRL 7] file:iCuia It has been carried out despite a pledge by Labour before the 1997
=l general election that UK air was "not for sale.”
Tnder the terms of the deal, which was approved by the European
competition authorities in May, the government has retained a 49
per cent stake and a golden share, while a 5 per cent stake iz to
he allocated to Nats' 5,700 staff. Jid| ey
Annotations
q _'I Diocument Editor | Initialisation Parameters | OLD Document Editor

documentloaded in 0.094 seconds

Figure 3.4: Adding an Organization annotation to the Default Annotation Set

To add a second annotation to a selected piece of text, or to add an overlapping annotatin to
an existing one, press the CTRL key to avoid the existing annotation popup appearing, and
then select the text and create the new annotation. Again by default the last annotation type
to have been used will be displayed; change this to the new annotation type. When a piece
of text has more than one annotation associated with it, on mouseover all the annotations
will be displayed. Selecting one of them will bring up the relevant annotation popup.

Developing Language Processing Components with GATE 53

3.19.1 Schema-driven editing

An alternative annotation editor component is available which constrains the available an-
notation types and features much more tightly, based on the annotation schemas that are
currently loaded. This is particularly useful when annotating large quantities of data or for
use by less skilled users.

To use this, you must load the Schema_Annotation_Editor plugin. With this plugin loaded,
the annotation editor will only offer the annotation types permitted by the currently loaded
set of schemas, and when you select an annotation type only the features permitted by the
schema are available to edit®. Where a feature is declared as having an enumerated type the
available enumeration values are presented as an array of buttons, making it easy to select
the required value quickly.

3.19.2 Saving the test data

The data can either be dumped out as a file (see Section 3.31 or saved in a data store (see
Section 3.21.

3.20 [D,F| Create a New Annotation Schema

GUI

An annotation schema file can be loaded or unloaded in GATE just like any other language
resource. Once loaded into the system, the SchemaAnnotationEditor will use this definition
when creating or editing annotations.

API

Another way to bring an annotation schema inside GATE is through creole.xml file. By using
the AUTOINSTANCE element, one can create instances of resources defined in creole.xml.
The gate.creole.AnnotationSchema (which is the Java representation of an annotation schema
file) initializes with some predefined annotation definitions (annotation schemas) as specified
by the GATE team.

Ezample from GATE’s internal creole.xml (in src/gate/resources/creole):

<!-- Annotation schema -->
<RESOURCE>

Sexisting features outwith the schema, e.g. those created by previously-run processing resources, are not
editable but not modified or removed by the editor.

Developing Language Processing Components with GATE 54

<NAME>Annotation schema</NAME>
<CLASS>gate.creole.AnnotationSchema</CLASS>
<COMMENT>An annotation type and its features</COMMENT>
<PARAMETER NAME="xmlFileUrl" COMMENT="The url to the definition file"
SUFFIXES="xml;xsd">java.net.URL</PARAMETER>
<AUTOINSTANCE>
<PARAM NAME ="xmlFileUrl" VALUE="schema/AddressSchema.xml" />
</AUTOINSTANCE>
<AUTOINSTANCE>
<PARAM NAME ="xmlFileUrl" VALUE="schema/DateSchema.xml" />
</AUTOINSTANCE>
<AUTOINSTANCE>
<PARAM NAME ="xmlFileUrl" VALUE="schema/FacilitySchema.xml" />
</AUTOINSTANCE>
<l-- etc. —-—>
</RESOURCE>

In order to create a gate.creole. AnnotationSchema object from a schema annotation file, one
must use the gate.Factory class.

Eg:

FeatureMap params = new FeatureMap();

param.put ("xmlFileUrl",annotSchemaFile.toURL()) ;
AnnotationSchema annotSchema =
Factory.createResurce("gate.creole.AnnotationSchema", params);

Note: All the elements and their values must be written in lower case, as XML is defined as
case sensitive and the parser used for XML Schema inside GATE searches is case sensitive.

In order to be able to write XML Schema definitions, the ones defined in GATE
(resorces/creole/schema) can be used as a model, or the user can have a look at
http: / /www.wS.orq/2000/10/XMLSchema for a proper description of the semantics of the
elements used.

Some examples of annotation schemas are given in Section 6.4.1.

3.21 [D] Save and Restore LRs in Data Stores

To save a text in a data store, a new data store must first be created if one does not already
exist. Create a data store by right clicking on Data Store in the left hand pane, and select the
option ”Create Data Store”. Select the data store type you wish to use. Create a directory
to be used as the data store (note that the data store is a directory and not a file).

You can either save a whole corpus to the datastore (in which case the structure of the

Developing Language Processing Components with GATE 55

corpus will be preserved) or you can save individual documents. The recommended method
is to save the whole corpus. To save a corpus, right click on the corpus name and select the
”Save to...” option (giving the name of the datastore created earlier). To save individual
documents to the data store, right clicking on each document name and follow the same
procedure.

To load a document from a data store, do not try to load it as a language resource. Instead,
open the data store by right clicking on Data Store in the left hand pane, select “Open
Data Store” and choose the data store to open. The data store tree will appear in the main
window. Double click on a corpus or document in this tree to open it. To save a corpus and
document back to the same datastore, simply select the ”Save” option.

3.22 |D] Save Resource Parameter State to File

Resources, and applications that are made up of them, are created based on the settings
of their parameters (see section 3.12). It is possible to save the data used to create a an
application to file and re-load it later. To save the application to file, right click on it in
the resources tree and select “Save application state”, which will give you a file creation
dialogue.

To restore the application later, select “Restore application from file” from the “File” menu.

Note that the data that is saved represents how to recreate an application — not the resources
that make up the application itself. So, for example, if your application has a resource that
initialises itself from some file (e.g. a grammar) then that file must still exist when you
restore the application.

The file resulted from saving the application state contains the values of the initialisation
parameters for all the processing resources contained by the stored application. For the pa-
rameters of type URL (which are typically used to select external resources such as grammars
or rules files) a transformation is applied so that all the paths are relative to the location of
the file used to store the state. This means that the resource files used by an application do
not need to be in the same location as when the application was initially created but rather
in the same location relative to the location of the application file. This allows the creation
and deployment of portable applications by keeping the application file and the resource files
used by the application together. The easiest way of deploying a portable GATE application
is to store the application file and the application resources under the same top directory
which will become the deployment unit.

Developing Language Processing Components with GATE 56

3.23 |D,F| Perform Evaluation with the Annotation-
Diff tool

Section 13 describes the theory behind this tool.

3.23.1 GUI

The annotation tool is activated by selecting it from the Tools menu at the top of the window.
It will appear in a new window. Select the key and response documents to be used (note
that both must have been previously loaded into the system), the annotation sets to be used
for each, and the annotation type to be evaluated.

Note that the tool automatically intersects all the annotation types from the selected key
annotation set with all types from the response set.

On a separate note, you can perform a diff on the same document, between two different
annotation sets. One annotation set could contain the key type and another could contain
the response one.

After the type has been selected, the user is required to decide how the features will be
compared. It is important to know that the tool compares them by analyzing if features
from the key set are contained in the response set. It checks for both the feature name and
feature value to be the same.

There are three basic options to select:

e To take all the features from the key set into consideration
e To take only the user selected ones

e To ignore all the features from the key set.

If false positives are to be measured, select the annotation type (and relevant annotation set)
to be used as the denominator (normally, Token or Sentence). The weight for the F-Measure
can also be changed - by default it is set to 0.5 (i.e. to give precision and recall equal weight).
Finally, click on “Evaluate” to display the results. Note that the window may need to be
resized manually, by dragging the window edges or internal bars as appropriate).

In the main window, the key and response annotations will be displayed. They can be
sorted by any category by clicking on the relevant column header. The key and response
annotations will be aligned if their indices are identical, and are color coded according to
the legend displayed.

Developing Language Processing Components with GATE 57

Precision, recall, F-measure and false positives are also displayed below the annotation tables,
each according to 3 criteria - strict, lenient and average. See sections 13.1 and 13.4 for more
details about the evaluation metrics.

The results can be saves to an HTML file by pressing the ”Export to HTML” button. This
creates an HTML snapshot of what the AnnotationDiff interface shows at that moment.The
columns and rows in the table will be shown in the same order, and the hidden columns will
not appear in the HTML file. The colours will also be the same.

3.24 [D] Use the Corpus Benchmark Evaluation tool

The Corpus Benchmark tool can be run in two ways: standalone and GUI mode. Section
13.3 describes the theory behind this tool.

3.24.1 GUI mode

To use the tool in GUI mode, first make sure the properties of the tool have been set
correctly (see section 3.24.2 for how to do this). Then select “Corpus Benchmark Tool” from
the Options menu. There are 3 ways in which it can be run:

e Default mode compares the stored processed set with the current processed set and
the human-annotated set. This will give information about how well the system is
doing compared with a previous version.

¢ Human marked against stored processing results compares the stored processed
set with the human-annotated set.

¢ Human marked against current processing results compares the current pro-
cessed set with the human-annotated set.

Once the mode has been selected, choose the directory where the corpus is to be found. The
corpus must have a directory structure consisting of “clean” and “marked” subdirectories
(note that these names are case sensitive). The clean directory should contain the raw
texts; the marked directory shuold contain the human-annotated texts. Finally, select the
application to be run on the corpus (for “default” and “human v current” modes).

If the tool is to be used in Default or Current mode, the corpus must first be processed with
the current set of resources. This is done by selecting “Store corpus for future evaluation”
from the Corpus Benchmark Tool. Select the corpus to be processed (from the top of the
subdirectory structure, i.e. the directory containing the marked and stored subdirectories).
If a “processed” subdirectory exists, the results will be placed there; if not, one will be
created.

Developing Language Processing Components with GATE 58

Once the corpus has been processed, the tool can be run in Default or Current mode. The
resulting HTML file will be output in the main GATE messages window. This can then be
pasted into a text editor and viewed in an internet browser for easier viewing.

The tool can be used either in verbose or non-verbose mode, by selecting the verbose option
from the menu. In verbose mode, any score below the user’s pre-defined threshold (stored in
corpus_tool.properties file) will show the relevant annotations for that entity type, thereby
enabling the user to see where problems are occurring.

3.24.2 How to define the properties of the benchmark tool
The properties of the benchmark tool are defined in the file corpus_tool.properties, which
should be located in the directory from which GATE is run (usually gate/build or gate/bin).

The following properties should be set:

e the threshold for the verbose mode (by default this is set to 0.5);

e the name of the annotation set containing the human-marked annotations (annotSet-
Name);

e the name of the annotation set containing the system-generated annotations (output-
SetName);

the annotation types to be considered (annotTypes);

the feature values to be considered, if any (annotFeatures).

The default Annotation Set has to be represented by an empty String. Note also that
outputSetName and annotSetName must be different. If they are the same, then use the
Annotation Set Transfer PR to change one of them.

An example file is shown below:

threshold=0.7

annotSetName=Key

outputSetName=ANNIE
annotTypes=Person;0Organization;Location;Date;Address;Money
annotFeatures=type;gender

3.25 [D] Write JAPE Grammars

JAPE is a language for writing regular expressions over annotations, and for using patterns
matched in this way as the basis for creating more annotations. JAPE rules compile into

Developing Language Processing Components with GATE 59

finite state machines. GATE’s built-in Information Extraction tools use JAPE (amongst
other things). For information on JAPE see:

e chapter 7 describes how to write JAPE rules;

e chapter 8 describes the built-in [E components;

e appendix B describes how JAPE is implemented and formally defines the language’s
grammar;

e appendix C describes the default Named Entity rules distributed with GATE.

3.26 [F] Embed NLE in other Applications

Embedding GATE-based language processing in other applications is straightforward:

e add gate.jar and the JAR files in gate/1ib to the CLASSPATH,

o tell Java that the GATE Unicode Kit is an extension (-Djava.ext.dirs=/home/hamish/gate/bj
for example);

e initialise GATE with gate.Gate.init();

e program to the framework API.
For example, this code will create the ANNIE extraction system:

public static void main(String args[]) throws GateException, IOException {
// initialise the GATE library
Gate.init();

// initialise ANNIE

// create a corpus pipeline controller to run ANNIE with

annieController =
(SerialAnalyserController) Factory.createResource(
"gate.creole.SerialAnalyserController", Factory.newFeatureMap(),
Factory.newFeatureMap(), "ANNIE_" + Gate.genSym()

);

// load each PR as defined in ANNIEConstants
for(int i = 0; i < ANNIEConstants.PR_NAMES.length; i++) {

Developing Language Processing Components with GATE 60

FeatureMap params = Factory.newFeatureMap(); // use default parameters
ProcessingResource pr = (ProcessingResource)
Factory.createResource (ANNIEConstants.PR_NAMES[i], params);

// add the PR to the pipeline controller
annieController.add(pr);
} // for each ANNIE PR

If you want to use resources from any plugins other than ANNIE, you need to load the
plugins before calling createResource:

Gate.init();

// need Tools plugin for the Morphological analyser
Gate.getCreoleRegister () .registerDirectories(

new File(Gate.getPluginsHome(), "Tools").toURL()
)

ProcessingResource morpher = (ProcessingResource)
Factory.createResource("gate.creole.morph.Morph") ;

Instead of creating your processing resources individually using the Factory, you can create
your application in the GUI, save it using the “save application state” option (see sec-
tion 3.22), and then load the saved state from your code. This will automatically reload any
plugins that were loaded when the state was saved, you do not need to load them manually.

Gate.init();

CorpusController controller = (CorpusController)
PersistenceManager.loadObjectFromFile(new File("savedState.xgapp"));

// loadObjectFromUrl is also available

There are longer examples available at http://gate.ac.uk/GateExamples/doc/.

http://gate.ac.uk/GateExamples/doc/

Developing Language Processing Components with GATE 61

3.27 |F] Use GATE within a Spring application

GATE provides helper classes to allow GATE resources to be created and managed by the
Spring framework. For Spring 2.0 or later, GATE provides a custom namespace handler that
makes them extremely easy to use. To use this namespace, put the following declarations in
your bean definition file:

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:gate="http://gate.ac.uk/ns/spring"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://gate.ac.uk/ns/spring
http://gate.ac.uk/ns/spring.xsd">

You can have Spring initialise GATE:

<gate:init gate-home="WEB-INF" user-config-file="WEB-INF/user.xml">
<gate:preload-plugins>
<value>WEB-INF/ANNIE</value>
<value>http://example.org/gate-plugin</value>
</gate:preload-plugins>
</gate:init>

To create a GATE resource, use the <gate:resource> element.

<gate:resource id="sharedOntology" scope="singleton"
resource-class="gate.creole.ontology.owlim.OWLIMOntologyLR">
<gate:parameters>
<entry key="rdfXmlURL">
<value type="org.springframework.core.io.Resource"
>WEB-INF/ontology.rdf</value>
</entry>
</gate:parameters>
</gate:resource>

If you are familiar with Spring you will see that <gate:parameters> uses the same format as
the standard <map> element, but values whose type is a Spring Resource will be converted
to URLSs before being passed to the GATE resource.

You can load a GATE saved application with

http://www.springframework.org

Developing Language Processing Components with GATE 62

<gate:saved-application location="WEB-INF/application.gapp" scope="prototype">
<gate:customisers>
<gate:set-parameter pr-name="custom transducer" name="ontology"
ref="sharedOntology" />
</gate:customisers>
</gate:saved-application>

”Customisers” are used to customise the application after it is loaded. In the example
above, we load a singleton copy of an ontology which is then shared between all the separate
instances of the (prototype) application. The <gate:set-parameter> customiser accepts
all the same ways to provide a value as the standard Spring <property> element (a ”value”
or "ref” attribute, or a sub-element - <value>, <list>, <bean>, <gate:resource> ...).

The <gate:add-pr> customiser provides support for the case where most of the application
is in a saved state, but we want to create one or two extra PRs with Spring (maybe to inject
other Spring beans as init parameters) and add them to the pipeline.

<gate:saved-application ...>
<gate:customisers>
<gate:add-pr add-before="OrthoMatcher" ref="myPr" />
</gate:customisers>
</gate:saved-application>

By default, the <gate:add-pr> customiser adds the target PR at the end of the pipeline,
but an add-before or add-after attribute can be used to specify the name of a PR before
(or after) which this PR should be placed. Alternatively, an index attribute places the PR
at a specific (0-based) index into the pipeline. The PR to add can be specified either as a
"ref” attribute, or with a nested <bean> or <gate:resource> element.

These custom elements all define various factory beans. For full details, see the JavaDocs for
gate.util.spring (the factory beans) and gate.util.spring.xml (the gate: namespace

handler).

Note: the former approach using factory methods of the gate.util.spring.SpringFactory
class will still work, but should be considered deprecated in favour of the new factory beans.

3.28 [F] Use GATE within a Tomcat Web Application

Embedding GATE in a Tomcat web application involves several steps.

1. Put the necessary JAR files (gate.jar and all or most of the jars in gate/1ib) in your
webapp/WEB-INF/1ib.

http://gate.ac.uk/gate/doc/javadoc/gate/util/spring/package-summary.html
http://gate.ac.uk/gate/doc/javadoc/gate/util/spring/xml/package-summary.html

Developing Language Processing Components with GATE 63

2. Put the plugins that your application depends on in a suitable location (e.g.
webapp/WEB-INF/plugins).

3. Create suitable gate.xml configuration files for your environment.

4. Set the appropriate paths in your application before calling Gate.init ().

This process is detailed in the following sections.

3.28.1 Recommended Directory Structure

You will need to create a number of other files in your web application to allow GATE to
work:

e Site and user gate.xml config files - we highly recommend defining these specifically for
the web application, rather than relying on the default files on your application server.

e The plugins your application requires.
In this guide, we assume the following layout:

webapp/

WEB-INF/
gate.xml
user-gate.xml
plugins/

ANNIE/
etc.

3.28.2 Configuration files

Your gate.xml (the “site-wide configuration file”) should be as simple as possible:

<?xml version="1.0" encoding="UTF-8" 7>
<GATE>
<GATECONFIG Save_options_on_exit="false"
Save_session_on_exit="false" />
</GATE>

Similarly, keep the user-gate.xml (the “user config file”) simple:

Developing Language Processing Components with GATE 64

<?xml version="1.0" encoding="UTF-8" 7>

<GATE>
<GATECONFIG Known_plugin_path=";"
Load_plugin_path=";" />
</GATE>

This way, you can control exactly which plugins are loaded in your webapp code.

3.28.3 Initialization code

Given the directory structure shown above, you can initialize GATE in your web application
like this:

// imports

public class MyServlet extends HttpServlet {
private static boolean gatelnited = false;

public void init() throws ServletException {
if (!gateInited) {
try {
ServletContext ctx = getServletContext();

// use /path/to/your/webapp/WEB-INF as gate.home
File gateHome = new File(ctx.getRealPath("/WEB-INF"));

Gate.setGateHome (gateHome) ;
// thus webapp/WEB-INF/plugins is the plugins directory, and
// webapp/WEB-INF/gate.xml is the site config file.

// Use webapp/WEB-INF/user-gate.xml as the user config file, to avoid
// confusion with your own user config.
Gate.setUserConfigFile(new File(gateHome, "user-gate.xml"));

Gate.init();

// load plugins, for example...

Gate.getCreoleRegister() .registerDirectories(
ctx.getResource("/WEB-INF/plugins/ANNIE")) ;

gatelnited = true;

}
catch(Exception ex) {

Developing Language Processing Components with GATE 65

throw new ServletException("Exception initialising GATE",
ex) ;

Once initialized, you can create GATE resources using the Factory in the usual way (for
example, see section 3.26 for an example of how to create an ANNIE application). You should
also read section 3.29 for important notes on using GATE in a multithreaded application.

Instead of an initialization servlet you could also consider doing your initialization in a
ServletContextListener, or using Spring (see section 3.27).

3.29 [F] Use GATE in a Multithreaded Environment

GATE can be used in multithreaded applications, so long as you observe a few restrictions.
First, you must initialise GATE by calling Gate.init () exactly once in your application, typ-
ically in the application startup phase before any concurrent processing threads are started.

Secondly, you must not make calls that affect the global state of GATE (e.g. loading or
unloading plugins) in more than one thread at a time. Again, you would typically load all
the plugins your application requires at initialisation time. It is safe to create instances of
resources in multiple threads concurrently.

Thirdly, it is important to note that individual GATE processing resources, language re-
sources and controllers are by design not thread safe — it is not possible to use a single
instance of a controller/PR/LR in multiple threads at the same time — but for a well written
resource it should be possible to use several different instances of the same resource at once,
each in a different thread. When writing your own resource classes you should bear the
following in mind, to ensure that your resource will be useable in this way.

e Avoid static data. Where possible, you should avoid using static fields in your class,
and you should try and take all configuration data via the CREOLE parameters you
declare in your creole.xml file. System properties may be appropriate for truly static
configuration, such as the location of an external executable, but even then it is gen-
erally better to stick to CREOLE parameters — a user may wish to use two different
instances of your PR, each talking to a different executable.

e Read parameters at the correct time. Init-time parameters should be read in the init ()
(and reInit()) method, and for processing resources runtime parameters should be
read at each execute().

Developing Language Processing Components with GATE 66

e Use temporary files correctly. If your resource makes use of external temporary files
you should create them using File.createTempFile() at init or execute time, as
appropriate. Do not use hardcoded file names for temporary files.

e [f there are objects that can be shared between different instances of your resource,
make sure these objects are accessed either read-only, or in a thread-safe way. In
particular you must be very careful if your resource can take other resource instances
as init or runtime parameters (e.g. the Flexible Gazetteer, section 9.5).

Of course, if you are writing a PR that is simply a wrapper around an external library that
imposes these kinds of limitations there is only so much you can do. If your resource cannot
be made safe you should document this fact clearly.

All the standard ANNIE PRs are safe when independent instances are used in different
threads concurrently, as are the standard transient document, transient corpus and controller
classes. A typical pattern of development for a multithreaded GATE-based application is:

e Develop your GATE processing pipeline in the GATE GUI
e Save your pipeline as a .gapp file.

e In your application’s initialisation phase, load n copies of the pipeline using
PersistenceManager.loadObjectFromFile() (see the Javadoc documentation for de-
tails) and either give one to each thread or store them in a pool (e.g. a LinkedList).

e When you need to process a text, get one copy of the pipeline from the pool, and
return it to the pool when you have finished processing.

3.30 [D,F] Add support for a new document format

In order to add a new document format, one needs to extend the gate.DocumentFormat
class and to implement an abstract method called:

public void unpackMarkup(Document doc) throws
DocumentFormatException

This method is supposed to implement the functionality of each format reader and to create
annotation on the document. Finally the document’s old content will be replaced with a
new one containing only the text between markups (see the GATE API documentation for
more details on this method functionality).

If one needs to add a new textual reader will extend the gate.corpora. TextualDocument-
Format and override the unpackMarkup(doc) method.

Developing Language Processing Components with GATE 67

This class needs to be implemented under the Java bean specifications because it will be
instantiated by GATE using Factory.createResource () method.

The init () method that one needs to add and implement is very important because in here
the reader defines its means to be selected successfully by GATE. What one need to do is
to add some specific information into certain static maps defined in DocumentFormat class,
that will be used at reader detection time.

After that, a definition of the reader will be placed into the one’s creole.xml file and the
reader will be available to GATE.

We present for the rest of the section a complete three steps example of adding such a reader.
The reader we describe in here is an XML reader.

Step 1

Create a new class called Xm1DocumentFormat that extends
gate.corpora.TextualDocumentFormat.

Step 2

Implement the unpackMarkup (Document doc) which performs the required functionality for
the reader. Add XML detection means in init() method:

public Resource init() throws ResourcelnstantiationException{

// Register XML mime type

MimeType mime = new MimeType("text",'"xml");

// Register the class handler for this mime type

mimeString2ClassHandlerMap.put (mime.getType()+ "/" + mime.getSubtype(),
this);

// Register the mime type with mine string

mimeString2mimeTypeMap.put (mime.getType() + "/" + mime.getSubtype(), mime);

// Register file sufixes for this mime type

suffixes2mimeTypeMap.put ("xml" ,mime) ;

suffixes2mimeTypeMap.put ("xhtm" ,mime) ;

suffixes2mimeTypeMap.put ("xhtml" ,mime) ;

// Register magic numbers for this mime type

magic2mimeTypeMap.put ("<?xml" ,mime) ;

// Set the mimeType for this language resource

setMimeType (mime) ;

return this;

}// init

More details about the information from those maps can be found in Section 6.5.1
Step 3

Add the following creole definition in the creole.xml document.

Developing Language Processing Components with GATE 68

<RESOURCE>
<NAME>My XML Document Format</NAME>
<CLASS>mypackage . Xm1DocumentFormat</CLASS>
<AUTOINSTANCE/>
<PRIVATE/>

</RESOURCE>

More information on the operation of GATE’s document format analysers may be found in
section 6.5.

3.31 [D] Dump Results to File

There are three main ways to dump out the results of, for example, some language analysis
or Information Extraction process running over documents:

1. preserving the original document format, with optional added annotations;

2. in GATE’s own XML serialisation format (including all the annotations on the docu-
ment);

3. by writing your own dump algorithm as a ProcessingResource.

This section describes how to use the first two options.

Both types of data export are available in the popup menu triggered by right-clicking on a
document in the resources tree (see section 3.6): type 1 is called ‘save preserving format’
and type 2 is called ‘save as XML’.

Selecting the save as XML option leads to a file open dialogue; give the name of the file you
want to create, and the whole document and all its data will be exported to that file. If you
later create a document from that file, the state will be restored. (Note: because GATE’s
annotation model is richer than that of XML, and because our XML dump implementation
sometimes cuts corners®, the state may not be identical after restoration. If your intention
is to store the state for later use, use a DataStore instead.)

The save preserving format option also leads to a file dialogue; give a name and the data
you require will be dumped into the file. The difference is that the file will preserve the
original format of the source document. You can add annotations to the dump file: if there
is a document viewer open in the main resource viewer area (see section 3.6), then any
annotations that are selected (i.e. are visible in the table at the bottom of the viewer) will

6Gorey details: features of annotations and documents in GATE may be any virtually any Java object;
serialising arbitrary binary data to XML is not simple; instead we serialise them as strings, and therefore
they will be re-loaded as strings.

Developing Language Processing Components with GATE 69

be included in the output dump. This is the best way to use the system to add markup
based on some analysis process: select those annotations in the document viewer, save
preserving format and you will have a file identical to the original source document with
just the annotations you selected added. By default, the added annotations will contain
no feature data; if you want the process to also dump features, set the ‘Include annotation
features...” option in the advanced options dialogue (see section 3.7). Note that GATE’s
model of annotation allows graph structures, which are difficult to represent in XML (XML
is a tree-structured representation format). During the dump process, annotations that cross
each other in ways that can’t be represented straightforwardly in XML will be discarded,
and a warning message printed.

3.32 [D] Stop GUI ‘Freezing’ on Linux

There is a problem with some versions of Linux that causes the GUI to appear to freeze.
The problem occurs when you take some action, like loading a resource or browsing for a
file, that pops up a dialogue box. This box sometimes fails to appear in a visible area of the
screen, at which point the rest of the GUI waits for you to do something intelligent with the
dialogue box, while you wait for the GUI to do something. This is an excellent feature for
those without tight deadlines to meet, and the best solution is to stop work and go home
for a long while. Alternatively, you can play ‘hunt the dialogue box’.

This feature is available totally free of charge.

3.33 |D] Stop GUI Crashing on Linux

On some configurations of Red Hat 7.0 the GUI crashes on startup. The solution is to limit
the initial stack size prior to launch: ulimit -s 2048.

3.34 [D] Stop GATE Restoring GUI Sessions/Options

GATE will remember GUI options and the state of the resource tree when it exits. The
options are saved by default; the session state is not saved by default. This default behaviour
can be changed from the “Advanced” tab of the “Configuration” choice on the “Options”
menu.

If a problem occurs and the saved data prevents GATE from starting, you can fix it by
deleting the configuration and session data files. These are stored in your home directory,
and are called gate.xml and gate.sesssion or .gate.xml and .gate.sesssion depending
on platform. On Windoze your home is:

Developing Language Processing Components with GATE 70

95, 98, NT: Windows Directory/profiles/username

2000, XP: Windows Drive/Documents and Settings/username

3.35 Work with Unicode

GATE provides various facilities for working with Unicode beyond those that come as default
with Java”:

1. a Unicode editor with input methods for many languages;
2. use of the input methods in all places where text is edited in the GUI;
3. a development kit for implementing input methods;

4. ability to read diverse character encodings.

1 using the editor:

In the GUI, select ‘Unicode editor’ from the ‘Tools’ menu. This will display an editor window,
and, when a language with a custom input method is selected for input (see next section),
a virtual keyboard window with the characters of the language assigned to the keys on the
keyboard. You can enter data either by typing as normal, or with mouse clicks on the virtual
keyboard.

2 configuring input methods:

In the editor and in GATE’s main window, the ‘Options’ menu has an ‘Input methods’ choice.
All supported input languages (a superset of the JDK languages) are available here. Note
that you need to use a font capable of displaying the language you select. By default GATE
will choose a Unicode font if it can find one on the platform you’re running on. Otherwise,
select a font manually from the ‘Options’ menu ‘Configuration’ choice.

3 using the development kit:
GUK, the GATE Unicode Kit, is documented at http://gate.ac.uk/gate/doc/javadoc/guk/package-
summary.html.

4 reading different character encodings:

When you create a document from a URL pointing to textual data in GATE, you have to
tell the system what character encoding the text is stored in. By default, GATE will set this
parameter to be the empty string. This tells Java to use the default encoding for whatever
platform it is running on at the time — e.g. on Western versions of Windoze this will be

"Implemented by Valentin Tablan, Mark Leisher and Markus Kramer. Initial version developed by Mark
Leisher.

http://gate.ac.uk/gate/doc/javadoc/guk/package-summary.html
http://gate.ac.uk/gate/doc/javadoc/guk/package-summary.html

Developing Language Processing Components with GATE 71

[SO-8859-1, and Eastern ones ISO-8859-9. A popular way to store Unicode documents is
in UTF-8, which is a superset of ASCII (but can still store all Unicode data); if you get
an error message about document I/O during reading, try setting the encoding to UTF-8,
or some other locally popular encoding. (To see a list of available encodings, try opening a
document in GATE’s unicode editor — you will be prompted to select an encoding.)

3.36 Work with Oracle and PostgreSQL

GATE’s Oracle layer is documented separately in http://gate.ac.uk/gate/doc/persistence.pdf.
Note that running an Oracle installation is not for the faint-hearted!

GATE version 2.2 has been adapted to work with Postgres 7.3. The compatibility with
PostgreSQL 7.2 has been preserved. Since version 7.3 the Postgres server doesn’t downcast
from int4 to int2 automatically. However, the JDBC drivers seem to have a bug and send
the SMALLINT (aka INT2) parameters as INT (aka INT4). This causes some stored pro-
cedures (i.e. all that have input parameters of type INT2) not be recognised. We have fixed
this problem by modifying the stored procedures to expose the parameters as INT4 and to
manually downcast them inside the stored procedure body.

Please note also the following:

PostgreSQL 7.3 refuses to index values larger than 8Kb/3 (2730 bits). The previous versions
probably did the same but without raising an exception.

The only case when such a situation can occur in GATE is when a feature has a TEXTUAL
value larger than 2730b. This will be signalled by an exception being raised about the value
being too large for the index.

To ”solve” this, one can remove the index on the ft_character_value field of the t_feature
table. This will have the usual effects caused by removing an index (incapacity of performing
efficient searches).

http://gate.ac.uk/gate/doc/persistence.pdf

Chapter 4

CREOLE: the GATE Component
Model

...Noam Chomsky’s answer in Secrets, Lies and Democracy (David Barsamian
1994; Odonian) to “What do you think about the Internet?”

“I think that there are good things about it, but there are also aspects of it that
concern and worry me. This is an intuitive response — I can’t prove it — but my
feeling is that, since people aren’t Martians or robots, direct face-to-face contact
is an extremely important part of human life. It helps develop self-understanding
and the growth of a healthy personality.

“You just have a different relationship to somebody when you’re looking at them
than you do when you're punching away at a keyboard and some symbols come
back. I suspect that extending that form of abstract and remote relationship,
instead of direct, personal contact, is going to have unpleasant effects on what
people are like. It will diminish their humanity, I think.”

Chomsky, quoted at http://photo.net/wtr/dead-trees/53015.htm.

The GATE architecture is based on components: reusable chunks of software with well-
defined interfaces that may be deployed in a variety of contexts. The design of GATE is
based on an analysis of previous work on infrastructure for LE, and of the typical types
of software entities found in the fields of NLP and CL (see in particular chapters 4-6 of
[Cunningham 00]). Our research suggested that a profitable way to support LE software
development was an architecture that breaks down such programs into components of various
types. Because LE practice varies very widely (it is, after all, predominantly a research field),
the architecture must avoid restricting the sorts of components that developers can plug into
the infrastructure. The GATE framework accomplishes this via an adapted version of the
Java Beans component framework from Sun. Section 4.2 describes Java’s component model,
Java Beans; section 4.3 describes GATE’s extended Beans model.

72

http://photo.net/wtr/dead-trees/53015.htm

Developing Language Processing Components with GATE 73

GATE components may be implemented by a variety of programming languages and
databases, but in each case they are represented to the system as a Java class. This class
may do nothing other than call the underlying program, or provide an access layer to a
database; on the other hand it may implement the whole component.

GATE components are one of three types:

e LanguageResources (LRs) represent entities such as lexicons, corpora or ontologies;

e ProcessingResources (PRs) represent entities that are primarily algorithmic, such as
parsers, generators or ngram modellers;

e VisualResources (VRs) represent visualisation and editing components that participate

in GUIs.

Section 4.4 discusses the disctinction between Language Resources and Processing Resources.
Collectively, the set of resources integrated with GATE is known as CREOLE: a Collection
of REusable Objects for Language Engineering.

In the rest of this chapter:

e section 4.5 describes the lifecycle of GATE components;
e section 4.6 describes how Processing Resources can be grouped into applications;

e section 4.7 describes the relationship between Language Resources and their data
stores;

e section 4.8 summarises GATE’s set of built-in components;

e section 4.9 describes how configuration data for Resource types is supplied to GATE.

4.1 The Web and CREOLE

GATE allows resource implementations and Language Resource persistent data to be dis-
tributed over the Web, and uses Java annotations and XML for configuration of resources
(and GATE itself).

Resource implementations are grouped together as “plugins”, stored at a URL (when the
resources are in the local file system this can be a file:/ URL). When a plugin is loaded
GATE it looks for a configuration file called creole.xml relative to the plugin URL and uses
the contents of this file to determine what resources this plugin declares and where to find
the classes that implement the resource types (typically these classes are stored in a JAR file
in the plugin directory). Configuration data for the resources may be stored directly in the

Developing Language Processing Components with GATE 74

creole.xml file, or it may be stored as Java annotations on the resource classes themselves; in
either case GATE retrieves this configuration information and adds the resource definitions
to the CREOLE register. When a user requests an instantiation of a resource, GATE creates
an instance of the resource class in the virtual machine.

Language resource data can be stored in binary serialised form in the local file system, or in
an RDBMS like Oracle. In the latter case, communication with the database is over JDBC!,
allowing the data to be located anywhere on the network (or anywhere you can get Oracle
running, that is!).

4.2 Java Beans: a Simple Component Architecture

All GATE resources are Java Beans, the Java platform’s model of software components.
Beans are simply Java classes that obey certain interface conventions. These conventions
allow development tools such as GATE, or Borland JBuilder, to manipulate software com-
ponents without knowing very much about them. The advantage of this is that users of such
systems can extend them in diverse ways without having to touch the underlying core of the
development tools.

The key parts of the Java Beans specification as used in GATE are:

e accessor and mutator methods for data members are named after those members plus
get and set (meaning that the tool can figure out how to use a member, or property,
of a bean, from information provided by Java reflection);

e beans must have no-argument constructors (so that tools can construct instances of
beans without knowing about complex initialisation parameters).

The rest of this section says a little more about the Beans specification; skip to the next if
you're only interested in how it works in GATE.

Quoting from [Campione et al. 98] at Sun’s Java website:

The JavaBeans API makes it possible to write component software in the Java
programming language. Components are self-contained, reusable software units
that can be visually composed into composite components, applets, applications,
and servlets using visual application builder tools. JavaBean components are
known as Beans.

In this context we may think of the GATE development environment as a ‘builder tool’.
While the emphasis in the quoted text is on visual representation of components, note that

'The Java DataBase Connectivity layer.

http://java.sun.com/docs/books/tutorial/javabeans/

Developing Language Processing Components with GATE 75

GATE (and other) beans can also be plugged together ‘invisibly’; this is what the framework
does and how GATE beans are typically deployed into other applications.

Components expose their features (for example, public methods and events) to
builder tools for visual manipulation. A Bean’s features are exposed because
feature names adhere to specific design patterns. A JavaBeans-enabled builder
tool can then examine the Bean’s patterns, discern its features, and expose those
features for visual manipulation. A builder tool maintains Beans in a palette or
toolbox. You can select a Bean from the toolbox, drop it into a form, modify it’s
appearance and behavior, define its interaction with other Beans, and compose
it and other Beans into an applet, application, or new Bean. All this can be done
without writing a line of code.

In GATE you develop sets of beans that do language processing tasks and then the framework
wires them together without any code from you.

e Builder tools discover a Bean’s features (that is, its properties, methods, and
events) by a process known as introspection. Beans support introspection
in two ways:

— By adhering to specific rules, known as design patterns, when naming
Bean features. The Introspector class examines Beans for these design
patterns to discover Bean features. The Introspector class relies on
the core reflection API. ...

The next section describes GATE’s extended beans model.

4.3 The GATE Framework

We can think of the GATE framework as a backplane into which plug beans-based CREOLE
components. The user gives the system a list of URLs to search when it starts up, and
components at those locations are loaded by the system.

The backplane performs these functions:

e component discovery, bootstrapping, loading and reloading;
e management and visualisation of native data structures for common information types;

e generalised data storage and process execution.

Developing Language Processing Components with GATE 76

A set of components plus the framework is a deployment unit which can be embedded in
another application.

The key task of the development environment is to facilitate constructing components, and
viewing and measuring their results.

4.4 Language Resources and Processing Resources

This section describes in more detail the Language Resource and Processing Resource termi-
nology introduced earlier. If you're happy with these terms you can safely skip this section.

Like other software, LE programs consist of data and algorithms. The current orthodoxy in
software development is to model both data and algorithms together, as objects®. Systems
that adopt the new approach are referred to as Object-Oriented (OO), and there are good
reasons to believe that OO software is easier to build and maintain than other varieties
[Booch 94, Yourdon 96].

In the domain of human language processing R&D, however, the terminology is a little
more complex. Language data, in various forms, is of such significance in the field that it
is frequently worked on independently of the algorithms that process it. For example: a
treebank® can be developed independently of the parsers that may later be trained from
it; a thesaurus can be developed independently of the query expansion or sense tagging
mechanisms that may later come to use it. This type of data has come to have its own
term, Language Resources (LRs) [LREC-1 98], covering many data sources, from lexicons to
corpora.

In recognition of this distinction, we will adopt the following terminology:

Language Resource (LR): refers to data-only resources such as lexicons, corpora, the-
sauri or ontologies. Some LRs come with software (e.g. Wordnet has both a user
query interface and C and Prolog APIs), but where this is only a means of accessing
the underlying data we will still define such resources as LRs.

Processing Resource (PR): refers to resources whose character is principally program-
matic or algorithmic, such as lemmatisers, generators, translators, parsers or speech
recognisers. For example, a part-of-speech tagger is best characterised by reference to
the process it performs on text. PRs typically include LRs, e.g. a tagger often has a
lexicon; a word sense disambiguator uses a dictionary or thesaurus.

Additional terminology worthy of note in this context: language data refers to LRs which are
at their core examples of language in practice, or ‘performance data’, e.g. corpora of texts or

20lder development methods like Jackson Structured Design [Jackson 75] or Structured Analysis
[Yourdon 89] kept them largely separate.
3A corpus of texts annotated with syntactic analyses.

Developing Language Processing Components with GATE 7

speech recordings (possibly including added descriptive information as markup); data about
language refers to LRs which are purely descriptive, such as a grammar or lexicon.

PRs can be viewed as algorithms that map between different types of LR, and which typically
use LRs in the mapping process. An MT engine, for example, maps a monolingual corpus
into a multilingual aligned corpus using lexicons, grammars, etc.*

Further support for the PR/LR terminology may be gleaned from the argument in favour of
declarative data structures for grammars, knowledge bases, etc. This argument was current
in the late 1980s and early 1990s [Gazdar & Mellish 89], partly as a response to what has
been seen as the overly procedural nature of previous techniques such as augmented transition
networks. Declarative structures represent a separation between data about language and
the algorithms that use the data to perform language processing tasks; a similar separation
to that used in GATE.

Adopting the PR/LR distinction is a matter of conforming to established domain practice
and terminology. It does not imply that we cannot model the domain (or build software
to support it) in an Object-Oriented manner; indeed the models in GATE are themselves
Object-Oriented.

4.5 The Lifecycle of a CREOLE Resource

CREOLE resources exhibit a variety of forms depending on the perspective they are viewed
from. Their implementation is as a Java class plus an XML metadata file living at the same
URL. When using the development environment, resources can be loaded and viewed via the
resources tree (left pane) and the ”create resource” mechanism. When programming with the
framework, they are Java objects that are obtained by making calls to GATE’s Factory class.
These various incarnations are the phases of a CREOLE resource’s ‘lifecycle’. Depending
on what sort of task you are using GATE for, you may use resources in any or all of these
phases. For example, you may only be interested in getting a graphical view of what GATE’s
ANNIE Information Extraction system (see chapter 8) does; in this case you will use the
GUI to load the ANNIE resources, and load a document, and create an ANNIE application
and run it on the document. If, on the other hand, you want to create your own resources,
or modify the Java code of an existing resource (as opposed to just modifying its grammar,
for example), you will need to deal with all the lifecylce phases.

The various phases may be summarised as:

Creating a new resource from scratch (bootstrapping). To create the binary image
of a resource (a Java class in a JAR file), and the XML file that describes the resource
to GATE, you need to create the appropriate . java file(s), compile them and package
them as a .jar. The GATE development environment provides a bootstrap tool to

4This point is due to Wim Peters.

Developing Language Processing Components with GATE 78

start this process — see section 3.10. Alternatively you can simply copy code from an
existing resource.

Instantiating a resource in the framework. To create a resource in your own Java
code, use GATE’s Factory class (this takes care of parameterising the resource, restor-
ing it from a database where appropriate, etc. etc.). Section 3.11 describes how to do
this.

Loading a resource in the development environment. To load a resource in the de-
velopment environment, use the various “New ... resource” options from the File
menu and elsewhere. See section 3.12.

Resource configuration and implementation. GATE’s bootstrap tool will create an
empty resource that does nothing. In order to achieve the behaviour you require,
you’ll need to change the configuration of the resource (by editing the creole.xml
file) and/or change the Java code that implements the resource. See section 4.9.

More details of the specifics of tasks related to these phases are available in chapter 3.

4.6 Processing Resources and Applications

PRs can be combined into applications. Applications model a control strategy for the exe-
cution of PRs. In the framework applications are called ‘controllers’ accordingly.

Currently only sequential, or pipeline, execution is supported. There are two main types of
pipeline:

Simple pipelines simply group a set of PRs together in order and execute them in turn.
The implementing class is called SerialController.

Corpus pipelines are specific for LanguageAnalysers — PRs that are applied to documents
and corpora. A corpus pipeline opens each document in the corpus in turn, sets that
document as a runtime parameter on each PR, runs all the PRs on the corpus, then
closes the document. The implementing class is called SerialAnalyserController.

Conditional versions of these controllers are also available. These allow processing resources
to be run conditionally on document features. See Section 3.15 for how to use these.

There is also a real-time version of the corpus pipeline. When creating such a controller,
a timeout parameter needs to be set which determines the maximum amount of time (in
milliseconds) allowed for the processing of a document. Documents that take longer to

Developing Language Processing Components with GATE 79

process, are simply ignored and the execution moves to the next document after the timeout
interval has lapsed.

All controllers have special handling for processing resources that implement the interface
gate.creole.ControllerAwarePR. This interface provides methods that are called by the
controller at the start and end of the whole application’s execution — for a corpus pipeline,
this means before any document has been processed and after all documents in the corpus
have been processed, which is useful for PRs that need to share data structures across the
whole corpus, build aggregate statistics, etc. For full details, see the JavaDoc documentation
for ControllerAwarePR.

4.7 Language Resources and Datastores

Language Resources can be stored in Data Stores. Data Stores are an abstract model of
disk-based persistence, which can be implemented by various types of storage mechanism.
Currently two such mechanisms are implemented:

Serial Data Stores are based on Java’s serialisation system, and store data directly into
files and directories.

Oracle Data Stores store data into an Oracle RDBMS. For details of how to set up an
Oracle DB for GATE, see http://gate.ac.uk/gate/doc/persistence.pdf.

PostgreSQL Data Stores store data into a PostgreSQL RDBMS. For details of how to
set up a PostgreSQL DB for GATE, see http://gate.ac.uk/gate/doc/persistence.pdf.

4.8 Built-in CREOLE Resources

GATE comes with various built-in components:
e Language Resources modelling Documents and Corpora, and various types of Annota-
tion Schema — see chapter 6.
e Processing Resources that are part of the ANNIE system — see chapter 8.
e Visual Resources for viewing and editing corpora, annotations, etc.

e Other miscellaneous resources — see chapter 9.

http://gate.ac.uk/gate/doc/javadoc/gate/creole/ControllerAwarePR.html
http://gate.ac.uk/gate/doc/persistence.pdf
http://gate.ac.uk/gate/doc/persistence.pdf

Developing Language Processing Components with GATE 80

4.9 CREOLE Resource Configuration

This section describes how to supply GATE with the configuration data it needs about a
resource, such as what its parameters are, how to display it if it has a visualisation, etc.
Several GATE resources can be grouped into a single plugin, which is a directory containing
an XML configuration file called creole.xml. Configuration data for the plugin’s resources
can be given in the creole.xml file or directly in the Java source file using Java 5 annotations.

A creole.xml file has a root element <CREOLE-DIRECTORY>, but the further contents of this
element depend on the configuration style. The following three sections discuss the different
styles — all- XML, all-annotations and a mixture of the two.

4.9.1 Configuration with XML

To configure your resources in the creole.xml file, the <CREOLE-DIRECTORY> element should
contain one <RESOURCE> element for each resource type in the plugin. The <RESOURCE> ele-
ments may optionally be contained within a <CREOLE> element (to allow a single creole.xml
file to be built up by concatenating multiple separate files). For example:

<CREOLE-DIRECTORY>

<CREOLE>
<RESOURCE>
<NAME>Minipar Wrapper</NAME>
<JAR>MiniparWrapper.jar</JAR>
<CLASS>minipar.Minipar</CLASS>
<COMMENT>MiniPar is a shallow parser. It determines the
dependency relationships between the words of a sentence.</COMMENT>
<HELPURL>http://gate.ac.uk/cgi-bin/userguide/sec:misc-creole:minipar</HELPURL>
<PARAMETER NAME="document"
RUNTIME="true"
COMMENT="document to process">gate.Document</PARAMETER>
<PARAMETER NAME="miniparDataDir"
RUNTIME="true"
COMMENT="location of the Minipar data directory">
java.net.URL
</PARAMETER>
<PARAMETER NAME="miniparBinary"
RUNTIME="true"
COMMENT="Name of the Minipar command file">
java.net.URL
</PARAMETER>

Developing Language Processing Components with GATE 81

<PARAMETER NAME="annotationInputSetName"
RUNTIME="true"
OPTIONAL="true"
COMMENT="Name of the input Source">
java.lang.String

</PARAMETER>

<PARAMETER NAME="annotationOutputSetName"
RUNTIME="true"
OPTIONAL="true"
COMMENT="Name of the output AnnotationSetName">
java.lang.String

</PARAMETER>

<PARAMETER NAME="annotationTypeName"
RUNTIME="false"
DEFAULT="DepTreeNode"
COMMENT="Annotations to store with this type">
java.lang.String

</PARAMETER>

</RESQURCE>
</CREOLE>
</CREOLE-DIRECTORY>

Basic resource-level data

Each resource must give a name, a Java class and the JAR file that it can be loaded from.
The above example is taken from the Minipar plugin in GATE, and defines a single resource
with a number of parameters.

The full list of valid elements under <RESOURCE> is as follows:

NAME the name of the resource, as it will appear in the “New” menu in the GATE GUI.
If omitted, defaults to the bare name of the resource class (without a package name).

CLASS the fully qualified name of the Java class that implements this resource.

JAR names JAR files required by this resource (paths are relative to the location of
creole.xml). Typically this will be the JAR file containing the class named by the
<CLASS> element, but additional <JAR> elements can be used to name third-party JAR
files that the resource depends on.

COMMENT a descriptive comment about the resource, which will appear as the tooltip
when hovering over an instance of this resource in the resources tree in the GUI. If
omitted, no comment is used.

Developing Language Processing Components with GATE 82

HELPURL a URL to a help document on the web for this resource. It is used in the help
browser inside GATE.

INTERFACE the interface type implemented by this resource, for example new types of
document would specify <INTERFACE>gate.Document</INTERFACE>.

ICON the icon used to represent this resource in the GATE GUI. This is a path inside the
plugin’s JAR file, for example <ICON>/some/package/icon.png</ICON>. If the path
specified does not start with a forward slash, it is assumed to name an icon from the
GATE default set, which is located in gate.jar at gate/resources/img. If no icon is
specified, a generic language resource or processing resource icon (as appropriate) is
used.

PRIVATE if present, this resource type is hidden in the GUI, i.e. it is not shown in
the “New” menus. This is useful for resource types that are intended to be created
internally by other resources, or for resources that have parameters of a type that
cannot be set in the GUI. <PRIVATE/> resources can still be created in Java code using
the Factory.

AUTOINSTANCE (and HIDDEN-AUTOINSTANCE) tells GATE to automati-
cally create instances of this resource when the plugin is loaded. Any number of auto
instances may be defined, GATE will create them all. Each <AUTOINSTANCE> element
may optionally contain <PARAM NAME="..." VALUE="..." /> elements giving param-
eter values to use when creating the instance. Any parameters not specified explicitly
will take their default values. Use <HIDDEN-AUTOINSTANCE> if you want the auto in-
stances not to show up in the GATE GUI — this is useful for things like document
formats where there should only ever be a single instance in GATE and that instance
should not be deleted.

For visual resources, a <GUI> element should also be provided. This takes a TYPE attribute,
which can have the value LARGE or SMALL. LARGE means that the visual resource is a large
viewer and should appear in the main part of the GATE window on the right hand side,
SMALL means the VR is a small viewer which appears in the space below the resources tree
in the bottom left. The <GUI> element supports the following sub-elements:

RESOURCE_DISPLAYED the type of GATE resource this VR can display. Any re-
source whose type is assignable to this type will be displayed with this viewer, so for
example a VR that can display all types of document would specify gate.Document,
whereas a VR that can only display the default GATE document implementation would
specify gate.corpora.Document Impl.

MAIN_VIEWER if present, GATE will consider this VR to be the “most important”
viewer for the given resource type, and will ensure that if several different viewers are
all applicable to this resource, this viewer will be the one that is initially visible.

Developing Language Processing Components with GATE 83

For annotation viewers, you should specify an <ANNOTATION_TYPE_DISPLAYED> element giv-
ing the annotation type that the viewer can display (e.g. Sentence).

Resource parameters

Resources may also have parameters of various types. These resources, from the GATE
distribution, illustrate the various types of parameters:

<RESOURCE>
<NAME>GATE document</NAME>
<CLASS>gate.corpora.DocumentImpl</CLASS>
<INTERFACE>gate.Document</INTERFACE>
<COMMENT>GATE transient document</COMMENT>
<0R>
<PARAMETER NAME="sourceUrl"
SUFFIXES="txt;text;xml;xhtm;xhtml;html;htm;sgml;sgm;mail;email;eml;rtf"
COMMENT="Source URL">java.net.URL</PARAMETER>
<PARAMETER NAME="stringContent"
COMMENT="The content of the document'">java.lang.String</PARAMETER>
</0R>
<PARAMETER
COMMENT="Should the document read the original markup"
NAME="markupAware" DEFAULT="true">java.lang.Boolean</PARAMETER>
<PARAMETER NAME="encoding" OPTIONAL="true"
COMMENT="Encoding" DEFAULT="">java.lang.String</PARAMETER>
<PARAMETER NAME="sourceUrlStartOffset"
COMMENT="Start offset for documents based on ranges"
OPTIONAL="true">java.lang.Long</PARAMETER>
<PARAMETER NAME="sourceUrlEndOffset"
COMMENT="End offset for documents based on ranges"
OPTIONAL="true">java.lang.Long</PARAMETER>
<PARAMETER NAME="preserveUriginalContent"
COMMENT="Should the document preserve the original content"
DEFAULT="false">java.lang.Boolean</PARAMETER>
<PARAMETER NAME="collectRepositioningInfo"
COMMENT="Should the document collect repositioning information"
DEFAULT="false">java.lang.Boolean</PARAMETER>
<ICON>1r.gif</ICON>
</RESOQURCE>

<RESOURCE>
<NAME>Document Reset PR</NAME>

Developing Language Processing Components with GATE 84

<CLASS>gate.creole.annotdelete.AnnotationDeletePR</CLASS>
<COMMENT>Document cleaner</COMMENT>
<PARAMETER NAME="document" RUNTIME="true'">gate.Document</PARAMETER>
<PARAMETER NAME="annotationTypes" RUNTIME="true"
OPTIONAL="true">java.util.ArrayList</PARAMETER>
</RESOQURCE>

Parameters may be optional, and may have default values (and may have comments to
describe their purpose, which is displayed by the GUI during interactive parameter setting).

Some PR parameters are execution time (RUNTIME), some are initialisation time. E.g. at
execution time a doc is supplied to a language analyser; at initilisation time a grammar may
be supplied to a language analyser.

The <PARAMETER> tag takes the following attributes:

NAME: name of the JavaBean property that the parameter refers to, i.e. for a parameter
named “someParam” the class must have setSomeParam and getSomeParam methods.”

DEFAULT: default value (see below).

RUNTIME: doesn’t need setting at initialisation time, but must be set before calling
execute (). Only meaningfull for PRs

OPTIONAL: not required
COMMENT: for display purposes

ITEM_CLASS_NAME: (only applies to parameters whose type is java.util.Collection
or a type that implements or extends this) this specifies the type of elements the collec-
tion contains, so the GUI can use the right type when parameters are set. If omitted,
the GUI will pass in the elements as Strings.

SUFFIXES: (only applies to parameters of type java.net.URL) a semicolon-separated list
of file suffixes that this parameter typically accepts, used as a filter in the file chooser
provided by the GUI to select a local file as the parameter value.

It is possible for two or more parameters to be mutually exclusive (i.e. a user must specify
one or the other but not both). In this case the <PARAMETER> elements should be grouped
together under an <0R> element.

The type of the parameter is specified as the text of the <PARAMETER> element, and the type
supplied must match the return type of the parameter’s get method. Any reference type

5The JavaBeans spec allows is instead of get for properties of the primitive type boolean, but GATE
does not support parameters with primitive types. Parameters of type java.lang.Boolean (the wrapper
class) are permitted, but these have get accessors anyway.

Developing Language Processing Components with GATE 85

(class, interface or enum) may be used as the parameter type, including other resource types
— in this case the GUI will offer a list of the loaded instances of that resource as options for
the parameter value. Primitive types (char, boolean, ...) are not supported, instead you
should use the corresponding wrapper type (java.lang.Character, java.lang.Boolean,
...). If the getter returns a parameterized type (e.g. List<Integer>) you should just specify
the raw type (java.util.List) here®.

The DEFAULT string is converted to the appropriate type for the parameter -
java.lang.String parameters use the value directly, primitive wrapper types e.g.
java.lang.Integer use their respective valueOf methods, and other built-in Java types
can have defaults specified provided they have a constructor taking a String.

The type java.net.URL is treated specially: if the default string is not an absolute URL (e.g.
http://gate.ac.uk/) then it is treated as a path relative to the location of the creole.xml file.
Thus a DEFAULT of "resources/main. jape" in the file file:/opt/MyPlugin/creole.xml
is treated as the absolute URL file:/opt/MyPlugin/resources/main. jape.

For Collection-valued parameters multiple values may be specified, separated by semi-
colons, e.g. "foo;bar;baz"; if the parameter’s type is an interface — Collection or one of
its sub-interfaces (e.g. List) — a suitable concrete class (e.g. ArrayList, HashSet) will be
chosen automatically for the default value.

For parameters of type gate.FeatureMap multiple name=value pairs can be specified, e.g.
"kind=word;orth=upperInitial". For enum-valued parameters the default string is taken
as the name of the enum constant to use. Finally, if no DEFAULT attribute is specified, the
default value is null.

4.9.2 Configuring resources using annotations

Annotation-driven configuration is only available in snapshot builds of GATE, build 2988
and later (subversion revision 9845)

As an alternative to the XML configuration style, GATE provides Java 5 annotation types
to embed the configuration data directly in the Java source code. @CreoleResource is
used to mark a class as a GATE resource, and parameter information is provided through
annotations on the JavaBean set methods. At runtime these annotations are read and
mapped into the equivalent entries in creole.xml before parsing. The metadata annotation
types are all marked @Documented so the CREOLE configuration data will be visible in the
generated JavaDoc documentation.

For more detailed information, see the JavaDoc documentation for gate.creole.metadata.

To use annotation-driven configuration a creole.xml file is still required but it need only

6In this particular case, as the type is a collection, you would specify java.lang.Integer as the
ITEM_CLASS_NAME.

http://gate.ac.uk/gate/doc/javadoc/gate/creole/metadata/package-summary.html

Developing Language Processing Components with GATE 86

contain the following:

<CREOLE-DIRECTORY>
<JAR SCAN="true">myPlugin.jar</JAR>
<JAR>1lib/thirdPartyLib. jar</JAR>
</CREOLE-DIRECTORY>

This tells GATE to load myPlugin. jar and scan its contents looking for resource classes
annotated with @CreoleResource. Other JAR files required by the plugin can be specified
using other <JAR> elements without SCAN="true".

Basic resource-level data

To mark a class as a CREOLE resource, simply use the @CreoleResource annotation (in
the gate.creole.metadata package), for example:

import gate.creole.AbstractLanguageAnalyser;
import gate.creole.metadata.x*;

@CreoleResource(name = "GATE Tokeniser",
comment = "Splits text into tokens and spaces")
public class Tokeniser extends AbstractLanguageAnalyser {

The @CreoleResource annotation provides slots for all the values that can be specified under
<RESOURCE> in creole.xml, except <CLASS> (inferred from the name of the annotated class)
and <JAR> (taken to be the JAR containing the class):

name (String) the name of the resource, as it will appear in the “New” menu in the GATE
GUL If omitted, defaults to the bare name of the resource class (without a package
name). (XML equivalent <NAME>)

comment (String) a descriptive comment about the resource, which will appear as the
tooltip when hovering over an instance of this resource in the resources tree in the
GUL If omitted, no comment is used. (XML equivalent <COMMENT>)

helpURL (String) a URL to a help document on the web for this resource. It is used in
the help browser inside GATE. (XML equivalent <HELPURL>)

isPrivate (boolean) should this resource type be hidden from the GUI, so it does not appear
in the “New” menus? If omitted, defaults to false (i.e. not hidden). (XML equivalent
<PRIVATE/>)

Developing Language Processing Components with GATE 87

icon (String) the icon to use to represent the resource in the GUI If omitted, a generic
language resource or processing resource icon is used. (XML equivalent <ICON>, see
the description above for details)

interfaceName (String) the interface type implemented by this resource, for example
a new type of document would specify "gate.Document" here. (XML equivalent
<INTERFACE>)

autolnstances (array of @AutoInstance annotations) definitions for any instances of this
resource that should be created automatically when the plugin is loaded. If omitted, no
auto-instances are created by default. (XML equivalent, one or more <AUTOINSTANCE>
and/or <HIDDEN-AUTOINSTANCE> elements, see the description above for details)

For visual resources only, the following elements are also available:

guiType (GuiType enum) the type of GUI this resource defines. (XML equivalent
<GUI TYPE="LARGE|SMALL" >)

resourceDisplayed (String) the class name of the resource type that this VR displays, e.g.
"gate.Corpus". (XML equivalent <RESOURCE_DISPLAYED>)

mainViewer (boolean) is this VR the “most important” viewer for its displayed resource
type? (XML equivalent <MAIN_VIEWER/>, see above for details)

For annotation viewers, you should specify an annotationTypeDisplayed element giving
the annotation type that the viewer can display (e.g. Sentence).

Resource parameters

Parameters are declared by placing annotations on their JavaBean set methods. To mark
a setter method as a parameter, use the @CreoleParameter annotation, for example:

@CreoleParameter (comment = "The location of the list of abbreviations")
public void setAbbrListUrl(URL 1listUrl) {

GATE will infer the parameter’s name from the name of the JavaBean property in the usual
way (i.e. strip off the leading set and convert the following character to lower case, so in
this example the name is abbrListUrl). The parameter name is not taken from the name
of the method parameter. The parameter’s type is inferred from the type of the method
parameter (java.net.URL in this case).

The annotation elements of @CreoleParameter correspond to the attributes of the
<PARAMETER> tag in the XML configuration style:

Developing Language Processing Components with GATE 88

comment (String) an optional descriptive comment about the parameter. (XML equivalent
COMMENT)

defaultValue (String) the optional default value for this parameter. The value is specified
as a string but is converted to the relevant type by GATE according to the conversions
described in the previous section. Note that relative path default values for URL-valued
parameters are still relative to the location of the creole.xml file, not the annotated
class. (XML equivalent DEFAULT)

suffixes (String) for URL-valued parameters, a semicolon-separated list of default file suf-
fixes that this parameter accepts. (XML equivalent SUFFIXES)

collectionElementType (Class) for Collection-valued parameters, the type of the ele-
ments in the collection. This can usually be inferred from the generic type informa-
tion, for example public void setIndices(List<Integer> indices), but must be
specified if the set method’s parameter has a raw (non-parameterized) type. (XML
equivalent ITEM_CLASS_NAME)

Mutually-exclusive parameters (such as would be grouped in an <OR> in creole.xml) are
handled by adding a disjunction="[label" to the @CreoleParameter annotation — all pa-
rameters that share the same label are grouped in the same disjunction.

Optional and runtime parameters are marked using extra annotations, for example:

@0ptional

ORunTime

@CreoleParameter

public void setAnnotationSetName(String asName) {

Inheritance

Unlike with pure XML configuration, when using annotations a resource will inherit any
configuration data that was not explicitly specified from annotations on its parent class
and on any interfaces it implements. Specifically, if you do not specify a comment, inter-
faceName, icon, annotationTypeDisplayed or the GUI-related elements (guiType and re-
sourceDisplayed) on your @CreoleResource annotation then GATE will look up the class
tree for other @CreoleResource annotations, first on the superclass, its superclass, etc.,
then at any implemented interfaces, and use the first value it finds. This is useful if you are
defining a family of related resources that inherit from a common base class.

The resource name and the isPrivate and mainViewer flags are not inherited.

Parameter definitions are inherited in a similar way. This is one of the big advantages of
annotation configuration over pure XML — if one resource class extends another then with

Developing Language Processing Components with GATE 89

pure XML configuration all the parent class’s parameter definitions must be duplicated in
the subclass’s creole.xml definition. With annotations, parameters are inherited from the
parent class (and its parent, etc.) as well as from any interfaces implemented. For exam-
ple, the gate.LanguageAnalyser interface provides two parameter definitions via annotated
set methods, for the corpus and document parameters. Any @CreoleResource annotated
class that implements LanguageAnalyser, directly or indirectly, will get these parameters
automatically.

Of course, there are some cases where this behaviour is not desirable, for example if a subclass
calculates a value for a superclass parameter rather than having the user set it directly. In
this case you can hide the parameter by overriding the set method in the subclass and using
a marker annotation:

O@HiddenCreoleParameter
public void setSomeParam(String someParam) {
super.setSomeParam(someParam) ;

3

The overriding method will typically just call the superclass one, as its only purpose is to
provide a place to put the @HiddenCreoleParameter annotation.

Alternatively, you may want to override some of the configuration for a parameter but inherit
the rest from the superclass. Again, this is handled by trivially overriding the set method
and re-annotating it:

// superclass

Q@CreoleParameter (comment = "Location of the grammar file",
suffixes = "jape")

public void setGrammarUrl(URL grammarLocation) {

}
@0ptional
ORunTime

@CreoleParameter (comment = "Feature to set on success")
public void setSuccessFeature(String name) {

// subclass

// override the default value, inherit everything else

Developing Language Processing Components with GATE 90

@CreoleParameter(defaultValue = "resources/defaultGrammar. jape")
public void setGrammarUrl(URL url) {
super.setGrammarUrl (url);

3

// we want the parameter to be required in the subclass

@0ptional(false)

@CreoleParameter

public void setSuccessFea