
Research Infrastructure Proposal for the IRF: GATE Application
Services for the Large Data Collider

What is the Large Data Collider (LDC)?
The vision: provide research infrastructure for IR.

The hardware: "An SGI Altix 4700 with 80 processor
nodes with 360 GB random access memory operate
in the form of a large virtual system called LDC
(Large Data Collider), modelled on CERN's LHC
(Large Hadron Collider)."

Next steps: software infrastructure to support
running experiments on the Altix. This note proposes
one element of that software.

What are GATE Application Services
(GAS)?
GATE (http://gate.ac.uk/) is a platform for R&D in
human language
processing with a
component-based
architecture. GAS
layers a Service-
Oriented Architecture
on top of GATE to
provide distribution of
compute-intensive
tasks over multiple
processors. It is
transparent to the
external user how
many machines are actually used to execute a
particular task.

The GAS architecture utilises two types of
components:

• The web service endpoint, that accepts
requests from clients and queues them for
processing.

• One or more workers that take the queued
requests and process them.

The two sides communicate using the Java
Messaging System (JMS), a framework for reliable
messaging between Java components. If a particular
service is heavily loaded it is a simple matter to add
extra worker nodes to spread the load, and workers
can be added or removed dynamically without
needing to shut down the web services. The
configuration and wiring together of these
components is handled using the Spring Framework.

GAS is one part of SAFE, the Semantic Application
Factory Environment (http://gate.ac.uk/safe).

Attracting Researchers to the LDC
The IRF can become a supplier of research
infrastructure for IR and other language-related work.
The first steps have been taken by funding the LDC
hardware and providing a first data set for
experimentation.

One problem is that the startup cost for a researcher
wishing to use the LDC is still relatively high,
involving adaptation of their experimental setups to
remote working on a highly parallel machine,
marshalling of data and results to share with their
home systems, and so on.

This proposal is to remove some of that load and
make experimentation on the LDC easier for a large
class of research tasks. In doing so we'll take a step
towards a new type of virtual publication, where the
data, software and platform for an experimental result
are all persisted and made available to the peer
community. We'll call this this part of the picture
PERLS: Persistent Experiment Repositories for
Language Science.

The proposal: GAS on the LDC
The proposal is to deploy GAS on the LDC and
provide mechanisms for researchers to upload their
experiment definitions, have them executed on the
parallel hardware, and the results made available
back to them over the web. Coupled with GATE's
integrated development environment this will enable
remote development, debugging and evaluation of
experimental language analysers at a larger scale
than is currently possible on typical experimental
setups.
GAS's J2EE-based SOA has a number of benefits in
this context:

• It allows us to exploit hardware parallelism
without changing our code as the SGI Linux
port already supports process-level task
distribution across processor nodes. (In effect
GAS on the LDC will behave as if there were
80 high-spec servers linked together by a high
speed bus and a storage area network.)

• Distributed computing and parallelisation
require a lot of heavy lifting; in our case a lot
of this work is done for us by libraries from
Sun and the Java community, leading to low
development overhead, high robustness and
longevity.

http://gate.ac.uk/
http://gate.ac.uk/safe
http://www.springframework.org/

PERLS: Persistent Experiment Repositories for Language Science

"Science" has as many definitions as there are
philosophers, but an important element of several of
its forms is experiment. Practitioners form
hypotheses, design procedures to test those
hypotheses, and publish the results in ways
intended to allow their peers to reproduce them.
A common problem, especially in areas related to
human behaviour or intelligence, is precisely how to
measure results, and progress in computational
processing of human language has increasingly
been driven by the provision of standard test
collections and evaluation metrics that provide a
level playing field on which to compare hypotheses
and related experimental systems. This practice has
contributed greatly to experimental repeatability,
which is a key factor in the sharing of results across
a research community. Without the infrastructure
that test collections and evaluation tools provide it is
much more difficult to reproduce published work,
much more difficult to confirm theories, and much
more difficult to distinguish a novel contribution from
a reiteration.

(This discussion may seem commonplace to those
from other disciplines; the issue commonly arises in
fields connected in one way or another to the field
of Artificial Intelligence. This is probably partly for
cultural reasons related to the practitioner groups
and partly because of unresolved difficulties in
defining the subject matter (quite understandable in
this case, where we're rather like lab rats who've
been promoted to principal investigators and now
have to study ourselves!). Consequently the
increase in experiment-driven work described
above has often gone hand-in-hand with a step
back from the project of simulating intelligence and
the adoption of more limited goals, for example the
turn from language understanding research to
information extraction research in the 1990s.)

Three factors in recent history mean that it has now
become possible to extend the reach of our
experimental infrastructures in several ways, and in
doing so increase the power and impact of our
research. Over the last several decade there has

been a long-running conformance of compute
power increase to Moore's 'law', and at the same
time network bandwidth has similarly extended in
both volume and geographical reach. Lastly,
software and the platforms that it runs on have
become mobile (able to move between different
hardware systems). Taken together, these factors
mean we can publish not only our results, but the
complete set of platform, software, configuration,
intermediate data and measurement tools that
underly the results, and we can do so in forms
which allow the dynamic recombination of the
elements of our work in new experiments of
ourselves and our colleagues. For the areas of
Information Retrieval, Natural Language Processing
and Speech Recognition, we can start to build
Persistent Experiment Repositories for Language
Science: PERLS.

Characteristics of PERLS repositories:

• Distributed reproducible experiments. Web-
based interfaces and mobile code that allow
experiments defined and executed in one
place to be persisted in another and
retrieved and reproduced from a third.

• Multiple repositories. Setting up a repository
needs to be easy enough for research
groups of a handful of people to create and
maintain their own.

• Platform neutral. Software system longevity
is typically compromised by technology
churn in the underlying platform. One
answer to this is to use free software, which
has a better track record (and isn't under
pressure to force users to upgrade through
incompatible changes). Another answer is to
use OS-level virtualisation (Xen, VMWare,
VirtualBox, etc.) to provide computational
environment persistence.

• Versionned. Both software and data need to
be persisted in version controlled storage.

• Informed by related Grid and eScience
programmes.

