
2012 © Copyright lies with the respective authors and their institutions.

www.ARCOMEM.eu

ARCOMEM: ARchive COmunities MEMories

Collaborative Project (ICT-2009-270239)

Priority: FP7-ICT-2009-6 Challenge 4 – “Digital Libraries and Content”

D5.2 Intelligent and adaptive content acquisition V1

Deliverable Co-ordinator: Pierre Senellart

Deliverable Co-ordinating Institution: Télécom ParisTech (IT)

Other Authors: Florent Carpentier (EA), Muhammad Faheem (IT),
Georges Gouriten (IT), Gerhard Gossen (LUH), Katerina Doka (ATHENA),
Vassilis Plachouras (ATHENA), Yannis Stavrakas (ATHENA)

 (The list of contributors is not exhaustive.)

This deliverable describes the first versions of the components involved in the Web
crawling process of the ARCOMEM project (work package 5 on intelligent content
acquisition): each component (crawlers, interface with the online analysis, and
knowledge base) is described using a standard template for easy reference, detailing in
particular the current state of the component in terms of features and scalability, as well
as envisioned experiments to evaluate the performance over the state of the art, and
future works for the remaining of the project.

Document Identifier: ARCOMEM/2012/D5.2/v1.1 Date due: June 30, 2012

Class Deliverable: ARCOMEM EU-ICT-2009-270239 Submission date: June 29, 2012

Project start date: January 1, 2011 Version: v1.1

Project duration: 3 years State: Final version

 Distribution: Public

http://www.arcomem.eu/

D5.2 Intelligent and adaptive content acquisition V1 Page 2 of 31

2012 © Copyright lies with the respective authors and their institutions.

ARCOMEM Consortium

This document is a part of the ARCOMEM research project funded by the ICT Programme of the
Commission of the European Communities by the grant number ICT-2009-270239. The following
partners are involved in the project:

The University of Sheffield (USFD) – Coordinator

Department of Computer Science
Regent Court
211 Portobello
Sheffield, S1 4DP
United Kingdom
Contact person: Hamish Cunningham, Wim Peters
E-mail address: ARCOMEM-
coord@lists.dcs.shef.ac.uk

Leibniz Universität Hannover (LUH)

Forschungszentrum L3S
Appelstrasse 9a
30169 Hannover
Germany
Contact person: Thomas Risse

E-mail address: risse@L3S.de

Yahoo Iberia SLU (YIS)

Avinguda Diagonal 177, 8th floor, Barcelona,
08018, CAT, Spain

Contact person: Alejandro Jaimes

E-mail address: ajaimes@yahoo-inc.com

Internet Memory Foundation (EA)

45 ter rue de la revolution
93100 Montreuil
France
Contact person: Julien Masanes

E-mail address: julien@internetmemory.org

University of Southampton (SOTON)

Room 4011, Building 32
Highfield campus
University of Southampton
SO17 1BJ
Contact person: Paul Lewis
E-mail address: phl@ecs.soton.ac.uk

Athens Technology Center (ATC)

10, Rizariou Street
15233, Halandri
Athens, Greece

Contact person: Dimitris Spiliotopoulos
E-mail address: d.spiliotopoulos@atc.gr

ATHENA Research and Innovation Center in
Information Communication & Knowledge
Technologies (ATHENA)

National Technical University of Athens
School of Electrical and Computer Engineering
Division of Computer Science
Iroon Polytechniou 9
Athens, 15780
Greece

Contact person: Nectarios Koziris
E-mail address: nkoziris@imis.athena-innovation.gr

Télécom ParisTech (IT)

46 rue Barrault
75634 Paris Cedex 13
France
Contact person: Pierre Senellart

E-mail address: pierre.senellart@telecom-paristech.fr

Deutsch Welle (DW)

Neue Medien / Distribution
Voltastr. 6
13355 Berlin,
Germany
Contact person: Birgit Gray

E-mail address: birgit.gray@dw-world.de

SUDWESTRUNDFUNK (SWR)

Hans-Bredow-Strasse,
D-76522 Baden-Baden
Germany
Contact person: Robert Fischer

E-mail address: robert.fischer@swr.de

HELLENIC PARLIAMENT (HEP)

Amalias 14,
10557,
Athens
Greece
Contact person: Dimitris Koryzis
E-mail address: dkoryzis@parliament.gr

PARLAMENTSDIREKTION (AUP)

Dr. Karl Renner-Ring 3
A-1017 Vienna
Contact person: Guenther Schefbeck

E-mail address: guenther.schefbeck@parlament.gv.at

D5.2 Intelligent and adaptive content acquisition V1 Page 3 of 31

2012 © Copyright lies with the respective authors and their institutions.

Work Package Participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to the writing of this document or its
parts:

1. Télécom ParisTech (IT)

2. ATHENA Research and Innovation Center in Information Communication & Knowledge
Technologies (ATHENA)

3. Internet Memory Foundation (EA)

4. Leibniz Universität Hannover (LUH)

Change Log

Version Date Amended by Changes

0.1 11/05/12 Pierre Senellart (IT) Initial template for describing components

1.0 10/06/11 Pierre Senellart (IT) Incorporating content from all partners, final draft before
internal review

1.1 29/06/11 Pierre Senellart (IT) Final version, incorporating comments from the internal
reviewers

Executive Summary

We describe the first versions of the components involved in the Web crawling process of the
ARCOMEM project (work package 5 on intelligent content acquisition): the three crawlers (a
modified version of Heritrix, IMF’s large-scale crawler, a social API crawler), the online processing
chain (application-aware helper, prioritization module), and the ARCOMEM knowledge base.
These components are articulated in the manner described in deliverables D5.1 and D7.2. In
addition to describing these components in detail, we put a special focus on issues related to
licensing, scalability, and evaluation. We also describe extensions to these components that will be
developed over the rest of the project.

D5.2 Intelligent and adaptive content acquisition V1 Page 4 of 31

2012 © Copyright lies with the respective authors and their institutions.

Table of Contents

ARCOMEM Consortium .. 2

Work Package Participants .. 3

Change Log ... 3

Executive Summary .. 3

Table of Contents .. 4

1. Modified Heritrix Crawler .. 6

Summary .. 7

Status .. 7

Future work ... 7

Scalability .. 7

Evaluation ... 8

Detailed description ... 8
Link Extraction .. 8
Writing Web resources.. 8
URL injection service .. 9
Adaptive prioritization.. 9

2. Large scale crawler ... 11

Summary .. 11

Status .. 11

Future work ... 11

Scalability .. 12

Evaluation ... 12

Detailed description ... 12
Architecture overview.. 12
URL store design .. 14
References .. 15

3. API Crawler .. 16

Summary .. 16

Status .. 16

Future work ... 16

Scalability .. 16

Evaluation ... 16

Detailed description ... 17

4. Application-aware helper .. 18

Summary .. 18

Status .. 18

Future work ... 18

Scalability .. 19

Evaluation ... 19

Detailed description ... 20
ABSTRACT ... Erreur ! Signet non défini.
PROBLEM .. 20

D5.2 Intelligent and adaptive content acquisition V1 Page 5 of 31

2012 © Copyright lies with the respective authors and their institutions.

STATE OF THE ART .. Erreur ! Signet non défini.
PROPOSED APPROACH .. Erreur ! Signet non défini.
METHODOLOGY .. 21
REFERENCES ... 22

5. Knowledge Base .. 27

Summary .. 27

Status .. 27

Future work ... 27

Scalability .. 28

Evaluation ... 28

Detailed description ... 28
HBase indexing ... 29
Join Execution ... 30

D5.2 Intelligent and adaptive content acquisition V1 Page 6 of 31

2012 © Copyright lies with the respective authors and their institutions.

Introduction

In addition to the architecture described in deliverable D5.1, work on WP5 of ARCOMEM has
focused on developing the different part of the crawler infrastructure required for the project. Next,
we describe each of these components in full, namely:

1. Modified Heritrix Crawler (ATHENA). Heritrix is the standard open-source crawler for
archiving, developed under the framework of the International Internet Preservation
Consortium. We have extended the functionalities of this crawler to interface with the
ARCOMEM HBase object store and to manage in a dynamic manner the priorities assigned
to resources to crawl.

2. Large-Scale Crawler (EA). Internet Memory Foundation is developing a scalable Web
crawler (with improved scalability compared to Heritrix) that fits into the ARCOMEM
architecture: priority management, interaction with online analysis modules, crawl of
complex content, etc.

3. API Crawler (IT). The API crawler serves to retrieve structured content from social
networking states that provide an HTTP API (e.g., Twitter, Facebook, etc.). Sometimes this
is the only way to retrieve relevant content that can be used for providing seeds to regular
Web crawls and for enabling social analysis of the graph structure of the network.

4. Application-Aware Helper (IT). The application-aware helper detects the kind of Web
application (e.g., the particular CMS) that generated the page currently processed by the
Web crawler and suggests relevant crawling actions for this particular application.

5. Prioritization Module (LUH). The prioritization module combines the input of the crawl
specification, the feedback of the online analysis modules and the application-aware helper,
into a priority score for resources to crawl.

6. Knowledge Base (ATHENA). All structured information produced and used by ARCOMEM
modules is stored in a scalable triple store, relying on an underlying HBase implementation.

For each of these modules, we provide:

 A brief summarized description;

 Its inputs and outputs;

 Its interactions with other ARCOMEM modules;

 Its license, programming language, and provider;

 A description of the current status and future work;

 An account of the stability and planned evaluation of the module; and

 A detailed description with references where appropriate

D5.2 Intelligent and adaptive content acquisition V1 Page 7 of 31

2012 © Copyright lies with the respective authors and their institutions.

1. Modified Heritrix Crawler

Summary

The modified Heritrix Crawler is the outcome of the feasibility study we are performing in order to
investigate the extent to which Heritrix can be adapted to the needs of ARCOMEM. To this end, we
have developed modules for Heritrix that allow it to store crawled Web resources to HBase as well
as to update adaptively the priorities with which the Web resources are scheduled to be crawled.

Input: The input is a crawl specification consisting of the seeds of the crawl and information
regarding the frequency with which to, potentially, re-crawl the seeds with optional regular
expressions to restrict the scope of the crawl.

Output: The output is the crawled Web resources, which are stored to HBase.

Interactions: The modified Heritrix Crawler interacts with the ARCOMEM DB into which it writes
the crawled content. It also interacts with the online analysis from which it receives scored URLs to
schedule for crawling.

License: The source code is released under GNU General Public License, Version 3.0 –
http://www.gnu.org/copyleft/gpl.html

Programming language: Java

Provider: ATHENA

Status

Currently, we have implemented the following main components:

 Anchor text extraction and link extraction from RSS feeds;

 Writing crawled Web resources to HBase;

 URL injection service listening for incoming requests to schedule URLs for crawling with
specified priority; and

 Adaptive prioritization.

Future work

Further efforts on this component will involve the investigation of efficient implementation of
crawling AJAX-enabled Web applications and the evaluation of advanced prioritization methods
that take advantage of the ability of the crawler to perform dynamic prioritization of the priorities of
already scheduled Web resources.

Scalability

We have performed test crawls using the modified Heritrix crawler which was configured to write
crawled Web resources to an instance of HBase running on a cluster consisting of two servers.
The crawler was also configured to use a simple online analysis which assigned priority scores to
discovered links in the crawled Web resources. The modified Heritrix crawler achieved an average
download rate of 5.8 URLs per second during a period of ten hours using 20 worker threads that
download and process Web resources. During this period, the crawler performed a total of 214,000
URL requests and had discovered a total of 1,634,000 URLs.

D5.2 Intelligent and adaptive content acquisition V1 Page 8 of 31

2012 © Copyright lies with the respective authors and their institutions.

Evaluation

We plan to evaluate the efficiency of the dynamic prioritization and the HBase communications
using the following methodology. The baseline crawler will be a standard Heritrix crawler that
crawls Web resources and writes them to WARC files in a local filesystem. Firstly, we will compare
the baseline crawler with a modified Heritrix crawler which writes content to an instance of HBase
but schedules the links to follow directly back to its frontier. Secondly, we will compare the baseline
crawler to a modified Heritrix crawler which writes content to an instance of HBase and receives
links to crawl from the online analysis of ARCOMEM.

Detailed description

Next, we describe in detail the implemented modules we provide for the modified Heritrix crawler.
The version of Heritrix we start from is 3.1.0.

Link Extraction

One of the initial requirements was to extract the anchor text of links in addition to the
corresponding URLs. The default HTML link extractor of Heritrix uses a set of regular expressions
to locate outgoing hyperlinks in a fetched Web page. In order to be able to record the anchor text
of outgoing hyperlinks from a fetched Web page, we extended the link extractor provided in the
standard distribution of Heritrix which uses an HTML parser. For each outgoing hyperlink with
anchor text, the modified parser adds the associated anchor text as metadata. The modified HTML
link extractor extends the class JerichoExtractorHTML.

We have also created a link extractor module for extracting links from RSS feeds. In particular, the
RSS link extractor identifies links within the LINK XML elements that are used within RSS feeds.
The link extractor correctly identifies cases where the link is inside a CDATA section.

Writing Web resources

Heritrix is designed to write content to ARC or WARC files which are typically large, compressed
files containing many crawled resources. We have enabled Heritrix to write content to an HBase by
modifying HBase-Writer – an existing open source project – and employing IMHBaseCore – a
library developed by IMF to facilitate access to HBase without specifying all the details of the table
schema.

We enable Heritrix to write to HBase by implementing a pool of writers of which there are two
versions:

 The first one uses a custom schema for the HBase tables, reflecting the information
provided by Heritrix plus some additional metadata such as the outgoing links and their
associated text. The required changes in the code of open source project HBase-Writer are
meant to fix compatibility issues between version 0.9-SNAPSHOT and the latest version of
Heritrix 3.1.0 due to changes in the interfaces of Heritrix. We did not use the latest version
of HBase-Writer at the time of implementation because of inefficiencies in the
communication with HBase where a new connection is used for every URL stored in
HBase.

 The second version uses the library IMHBaseCore developed by IMF to encapsulate the
details of the schema. It uses the same design as the first one described above.

We have also implemented a writer that stores the crawled content to a relational database, such
as MySQL, for testing and evaluation purposes.

D5.2 Intelligent and adaptive content acquisition V1 Page 9 of 31

2012 © Copyright lies with the respective authors and their institutions.

All three versions, which write content to either HBase or MySQL, can be configured in the
standard Heritrix crawler configuration file and they are interchangeable. Moreover, the names of
the tables and columns can be specified in the configuration file.

URL injection service

In order to facilitate the integration of Heritrix crawler with other components of the ARCOMEM
framework (in particular the online analysis), we have implemented a Heritrix module that waits for
HTTP POST requests which schedule, on demand, URLs for crawling. The expected data is an
array of JSON objects with the following fields:

Field name Value type Description

url String the URL to schedule

score double a number that overwrites the current priority in the
crawler’s queue.

blacklisted Boolean If true, the URL is blacklisted from crawling and
future requests to update its priority are ignored.

The URL injection service consists of two threads running in parallel. The first thread implements a
basic server listening for incoming requests on a specific port. Each valid request is read and
written to a queue of requests to process, in order not to block the thread listening for incoming
requests to receive new requests. The second thread checks the list of queued requests and
processes them one by one, scheduling the links for crawling to the frontier of Heritrix.

The main use of the URL injection service is to accept links for crawling from the online analysis,
but it can also receive links from any other services which discovers links in the crawled data, such
as the API crawler.

Adaptive prioritization

A requirement of ARCOMEM is to perform adaptive prioritization of Web pages where the priority
of a Web page can be updated many times, even if the URL is already scheduled for crawling in
the queues of the crawler. By default Heritrix only supports setting the priority of a URL once when
the corresponding URL is initially inserted in the crawler's frontier. To overcome this limitation, we
have implemented the reordering of the queues in Heritrix as follows.

The default frontier of Heritrix, namely BdbFrontier, uses BerkeleyDB to store a queue of all the
URLs that have been scheduled for fetching. The queue is treated as a set of virtual queues (one
virtual queue per crawled host). The position of a URL in the queue depends on a key that consists
of four parts. The first part is the host of the URL, ensuring that the URL is inserted in the
corresponding virtual queue. The second part is a flag that controls whether a URL should be
crawled immediately. This flag is useful for crawling objects embedded in a URL (e.g. images,
scripts) soon after we fetch the URL in which they are embedded. The third part is a byte
corresponding to the priority of the URL – called precedence in Heritrix. The fourth part
corresponds to a counter that increases by one for every URL scheduled for a given host. When
the priorities for all URLs are equal, the URLs are ordered in a breadth-first-search order. The
counter ensures that no two URLs will be put in the same queue position, even when we update
priorities.

Next, we describe two approaches we use to update the priorities of already scheduled links in the
frontier of Heritrix.

D5.2 Intelligent and adaptive content acquisition V1 Page 10 of 31

2012 © Copyright lies with the respective authors and their institutions.

Crawler-coordinated priority updates: In the first approach, Heritrix crawls and writes content to
ARCOMEM DB. In parallel, an external process, comprising the online analysis modules,
computes priorities for discovered hyperlinks and stores the priorities in a table in ARCOMEM DB.
Then, Heritrix reads the priorities for the queued links when the corresponding queue is in
snooze mode, meaning that Heritrix does not remove entries from this queue for crawling due to
politeness. Below, we describe in detail this mechanism.

The frontier implementation starts a queue reordering thread that sleeps for a fixed time and wakes
up to update priorities of scheduled URLs. The URLs to update are selected from the snoozed
queues (the snoozed queues are those work queues from which the crawler does not currently
select URLs to fetch in order to respect the politeness delays). We select URLs from a snoozed
queue until the queue is exhausted or it wakes up in less than D milliseconds in the future. For
every selected URL from the snoozed queue, the queue reordering thread reads a priority value
and if the read value is different from the one associated with the URL, the priority is updated and
the URL is repositioned in the queue. Figure 1 provides a schematic view of the updating of
priorities.

Figure 1. Crawler-coordinated updating of priorities

ARCOMEM DB-coordinated priority updates: In the second approach, Heritrix crawls and stores
the content of URLs in ARCOMEM DB. However, it does not schedule the discovered links for
crawling. Instead, it waits to receive scored links through the URL injection service from the online
analysis modules running on ARCOMEM DB (or any other process that sends scored links in the
expected format). Hence, Heritrix operates as a crawl service where an external process requests
a set of URLs to be crawled.

If a received link does not exist in the queues of Heritrix, it is inserted with the specified priority. If a
received link already exists in the queues of Heritrix then the previous entry is removed and the
new entry is inserted into the queue in a position that corresponds to its priority. The random
access required to locate an already existing entry in Heritrix, is not supported by default. The
queues of Heritrix only support a peek of the first entry and a scan operation. Using these two
operators to locate a URL in a given queue would be very slow. So to overcome this limitation, we
introduce an index that maps a URL to a key, where the key is the one used to place the URL entry
in the queues of Heritrix. In this way, locating a previously scheduled URL in the queues of Heritrix
is performed in constant time.

D5.2 Intelligent and adaptive content acquisition V1 Page 11 of 31

2012 © Copyright lies with the respective authors and their institutions.

2. Large-Scale Crawler

Summary

The large scale crawler retrieves content from the web and stores it in an HBase repository. It aims
at being scalable: crawling at a fast rate from the start and slowing down as little as possible as the
amount of visited URLs grows to hundreds of millions, all while observing politeness conventions
(rate regulation, robots.txt compliance, etc.).

Input: URLs with a score (seeds, then URLs output by the analysis process)

Output: Web resources written to WARC files. We also have developed an importer to load these
WARC files into HBase. Some metadata is also extracted: HTTP status code, identified out links,
MIME type, etc.

Interactions: For use in the ARCOMEM system, the crawler is configured to exclusively enqueue
URLs from external processes (instead of enqueueing URLs that it extracts from the documents it
fetches). It will receive seeds to bootstrap a crawl as well as discovered URLs (along with priority
scores) from the analysis modules. Crawled content gets written asynchronously to the HBase
repository.

License: proprietary

Programming language: Erlang, Python

Provider: IMF

Status

The crawler is operational: it has run satisfactorily during one month on a nine-server cluster,
crawling over a billion resources from the web.

We have implemented mainly:

 HTTP downloading with streaming for large resources;

 HTML parsing to extract links;

 per pay-level domain and per IP address rate limitation;

 robots.txt enforcement;

 discovered links distribution in the cluster, topology change adaptation;

 efficient URL store;

 scoping framework;

 language detection;

 PLD in-degree calculation; and

 URL priority handling in the URL store.

Future work

The initial implementation offers reasonable performance (see below) but we believe it is still
possible to improve it. We will identify the parts of the code that should benefit the most from
optimisations. In particular, some CPU intensive parts may be rewritten in C.

The initial priority handling in the URL store will go through more extensive testing.

D5.2 Intelligent and adaptive content acquisition V1 Page 12 of 31

2012 © Copyright lies with the respective authors and their institutions.

Scalability

We aim at sustaining 100 requests per second on average over four weeks on each server of a
cluster, on mid-range hardware.

Evaluation

We compare the number of URLs fetched per second by a standard Heritrix crawler with our
crawler running on identical hardware and using a similar configuration (scope, in particular) on a
large-scale crawl (at least a billion URLs).

With nine, 8-core virtual machines with 32GB of RAM each, our initial tests show a better initial rate
(85 requests per second) and a limited degradation to 55 requests per second after 4 weeks with
over a billion URLs crawled.

Unlike Heritrix, our crawler was built from the ground up with distribution in mind. It does not
require distributing a static node list to all cluster instances nor does it require external utilities to
copy lists of URLs as they get discovered. It also detects nodes joining or leaving the cluster and
changes the URL distribution mapping to account changes without any manual intervention.

Detailed description

Besides the standard features expected from any crawler, such as per-host rate limitation,
robustness against network problems, crawler traps, etc., the IMF crawler aims at behaving better
than the state of the art open source crawlers for large scale crawls. These crawlers typically see
their performance degrading very quickly once a few million URLs have been crawled and the
associated data structures can no longer be held entirely in RAM. The main challenges associated
with scaling are the management of the sets of URLs and the storage of the crawled content. In the
IMF crawler they have been addressed by relying on two distinct approaches:

 The crawler component results from a completely new design that aims at removing
bottlenecks in the existing crawling architecture. We built on some recent achievements
(e.g., [1]) and enabled a collaboration with a group of experts from the University of Milan
[2] who contributed to the new architecture.

 The repository relies on HBase which has been chosen after an extended set of
experiments and comparisons.

Architecture overview

D5.2 Intelligent and adaptive content acquisition V1 Page 13 of 31

2012 © Copyright lies with the respective authors and their institutions.

Figure 2. Architecture of the distributed crawler

Figure 2 depicts the main processes on each cluster node. The rectangles depict many processes
with same function. The ovals represent individual processes or subsystems made of many
processes.

The fetcher controller is in charge of spawning fetchers, limited to spawning as many as is allowed
by the configuration (mainly to respect memory constraints) and by the number of available URLs
in the URL store. It asks the URL store for a batch of URLs (all belonging to the same pay level
domain [PLD or second-level domain]), resolves the domain name to an IP address and ensures
no other fetcher in the entire cluster is crawling this IP address. It then spawns a fetcher and
passes it the URL batch. The fetcher gets the robots.txt file and starts crawling all the allowed
URLs, respecting the required delay between each fetch. For each resource, three main steps are
performed:

 fetching (HTTP request);

 analysing the document according to its type in search of new URLs. It may also run other
analyses which may be useful at run time; for example, language identification;

 writing the content plus extracted or derived information into a WARC file (depending on the
configuration and filtering settings)

 filtering according to the scope configuration before sending to the distribution module.

When a fetcher has processed all of its URLs, it exits and the fetcher controller will try to replace it
with new fetcher with a fresh batch of URLs.

The distribution module maintains a consistent hashing ring that reflects the current cluster
topology. It forwards URLs to the appropriate node for them to be queued in the local URL store.

To enhance performance, most operations involving URLs group them in batches.

The URL distribution being based on the pay level domain, it is easy to guarantee that no more
than one fetcher in the whole cluster will be crawling a specific host at any time. However, there is
no guarantee that different pay level domains are not mapped to the same IP address. To ensure
rate control for IP addresses, we use a global IP addresses registry.

The WARC files get copied asynchronously to a specific directory in a Hadoop file system (HDFS).
A periodic import task will insert the content from the HDFS into HBase. This makes the crawler
quite independent from the storage system. In particular, the crawler can continue to work without
HBase for as long as it has available disc space.

D5.2 Intelligent and adaptive content acquisition V1 Page 14 of 31

2012 © Copyright lies with the respective authors and their institutions.

Counters and events

To follow the numerous events occurring inside the crawler as tens of thousands of concurrent
processes run, a flexible system is necessary. We have implemented node-local filtering of events
by subsystem and severity, and centralising by sending events as syslog messages to a unique
server. By default, events are counted. To spare resources, it is also possible to count an event
without sending it through the filtering and display machinery.

Counting is performed by two subsystems:

 RRD (Round Robin Database) files allow tracking and plotting (currently using manual
commands) of trends over a recent period, focusing on different time scales: the last hour,
day or week. To achieve this, it records deltas.

 A Mnesia (an Erlang database) table holds the value of each counter over the whole
capture, independently from its duration.

All the counters in both systems are per-node and per-cluster.

URL store design

Basics

The URL store is a critical element for large scale crawlers. Adding and checking for the presence
of a URL in a set containing millions of them is a bottleneck when relying on traditional methods
such as standard databases (e.g. Berkeley DB) or bloom filters (the error rate growing as the
number of visited URLs increases).

The IMF crawler's URL store design borrows a lot from DRUM, as described in [1]. It relies on
queuing to disc membership queries (this URL was discovered, must we fetch it?) in buckets.
Periodically, a flush is performed: these queries get sorted by URL pay level domain hash and
compared to the visited URLs set, also sorted this way. A new version of the set of URLs to be
visited is produced in the same process. All three corresponding files being sorted, the flush only
requires sequential access to these large files.

Improvements

To limit to some extent the time a flush takes, buckets have a size limit.

To translate on-line analysis scores into priorities, we divide the buckets into priority levels and
flush more frequently the higher priority buckets.

In the original design, while a flush is in progress, the whole structure is unavailable for dequeueing
operations. We have worked around this limitation by splitting it into bands. A band can be seen as
an independent URL store for a subset of the URLs for this node: it has buckets, visited and to-be-
visited structures. The first bits of the hash are used to select the band. A single band is flushed at
a time. During the flush, URLs are served to the fetcher controller from the other bands. To allow
enqueueing operations to continue, even in the band being flushed (nothing stops fetchers from all
over the cluster from discovering URLs belonging to this band), if there is only one bucket, it is
simply closed and a new one is created.

To ensure large pay level domains do not get an unfair proportion of fetcher resources, a PLD
index was added. For each PLD in a band, it keeps information including where its URLs start in
the file holding the URLs to be visited and how many URLs were dequeued for it. When the fetcher
controller asks for a URL batch, the next PLD is selected from the index, implementing a round
robin scheme.

As a defence against spam, we have implemented the scheme described in [1] relying on pay level
domain in-degree. Counting the number of links pointing to a page or domain to determine the
`value' of the target can easily be defeated by artificially creating many links to the target. Counting
how many domains have links (any number thereof) to a target is an improvement but can also

D5.2 Intelligent and adaptive content acquisition V1 Page 15 of 31

2012 © Copyright lies with the respective authors and their institutions.

easily be foiled by using free sub domains (someone having purchased example.com can create
for free as many sub domains (a.example.com, b.example.com...) as he pleases). On the other
hand, creating an artificially high number of links from different pay level domains is impractical
because of the economical cost.

For each (target) PLD, we store its PLD in-degree in the PLD index. We also store a bloom filter to
keep track of the different PLDs pointing to it and the in-degree counter. Each in-degree (up to a
certain threshold) is associated to a certain budget and we stop crawling from a PLD when its
budget is reached.

References

[1] IRLbot: Scaling to 6 Billion Pages and Beyond, H.-T. Lee, D. Leonard, X. Wang, and D.
Loguinov, in ACM Transactions on the Web, vol. 3, 2009

[2] UbiCrawler: a scalable fully distributed Web crawler, Paolo Boldi and Bruno Codenotti and
Massimo Santini and Sebastiano Vigna, in Softw., Pract. Exper., vol. 34, 2004, pages 711-726

D5.2 Intelligent and adaptive content acquisition V1 Page 16 of 31

2012 © Copyright lies with the respective authors and their institutions.

3. API Crawler

Summary

The API Crawler is a solution to manage keyword-based crawls of different social platforms using
their Web APIs. It is controlled via a RESTful Web interface.

Input: List of tuples (keyword, platform)

Output: Triples stored in the triple store and WARC files stored in the HDFS

Interactions: Triple store, HDFS, keyword input potentially coming from different components
(Application Aware Helper, crawler cockpit)

License: GNU / GPL v3

Programming language: Python

Provider: IT

Status

 Operational keyword-based crawls on the five targeted social platforms (YouTube, Twitter,
Facebook, Google+, flickr)

 RESTful Web control interface

 Operational interface with the triple store

 Basic raw data storage

Future work

 Finalize crawling strategies on the different platforms

 Add the option to pause a crawl campaign

 WARC raw data storage

Scalability

 Main limitations come from the API rate

o With the five platforms, APIs could accept about up to 5,000 requests per hour

 Amount of keywords will have to be limited

 Request processing is lightweight, it can run on a single machine

Evaluation

 Maintainability, flexibility and simplicity of the system

o # lines of code,

o user friendliness (qualitative)

o resource consumption

D5.2 Intelligent and adaptive content acquisition V1 Page 17 of 31

2012 © Copyright lies with the respective authors and their institutions.

 Performance of the crawls: precision and recall

Detailed description

We based the ARCOMEM API Crawler on another system we created named API Blender.

API Blender

With the growing success of the social Web, most Web developers have to interact with at least
one social Web platform which implies studying the related API specifications. These are often only
informally described, may contain errors, lack harmonization and, generally speaking, make the
developer’s work difficult.

Most attempts to solve this problem, such as proposing formal description languages for Web
service APIs, have had limited success outside of B2B applications; we believe it is due to their
top-down nature. In addition, a programmer dealing with one or several of these APIs has to deal
with a number of related tasks such as data integration, request chaining or policy management,
that are cumbersome to implement. Inspired by the SPORE project, we created API Blender, an
open-source solution to describe, interact with and integrate the most common social Web APIs.
For API Blender, we introduced two new lightweight description formats for requests and services
and demonstrate their relevance with respect to current platform APIs. We released our Python
implementation of API Blender along with its authentication, policy management and multi-platform
data integration features.

More information can be found on the github repository: https://github.com/netiru/apiblender and in
the published work about API Blender:

G. Gouriten and P. Senellart, API Blender: A Uniform Interface to Social Platform APIs. In Proc.
WWW, Lyon, France, April 2012. Developer track.
http://pierre.senellart.com/publications/gouriten2012api.pdf

We then configured the API Blender to adapt it to our authentication and data integration needs.
We also created crawling strategies adapted to each platform, chaining specific requests. We
developed an interface with the triple store through a socket, to ensure communication between
the Python and the Java software.

Eventually, we designed a RESTful web interface that allows the creation of a campaign, the ability
to add keyword-based crawls on the different platforms and to then check the workload of the
crawler globally or by campaign.

Our main future work is to assess the different crawling strategies for the different platforms, add
support of full complex crawl campaign and implement WARC raw data storage in the HDFS.

https://github.com/netiru/apiblender

D5.2 Intelligent and adaptive content acquisition V1 Page 18 of 31

2012 © Copyright lies with the respective authors and their institutions.

4. Application-Aware Helper

Summary

The goal of this software component is to make the crawler aware of the particular kind of Web
application being crawled, in terms of general classification of websites (wiki, social network, blog,
web forum, etc.), technical implementation (Mediawiki, Wordpress, etc.), and their specific
instances (Twitter, CNN, etc.).

Input: HTML content as string, base URL, list of out-links

Output: Augmented document (original text document and structured objects extracted from web
page) and extracted links with score will be sent to ARCOMEM framework module. Extracted
semantic objects, crawling actions, and out-links with score will also be stored in the ARCOMEM
database.

Interactions: API crawler, RDF store, ARCOMEM framework module, selection and online
analysis module.

License: GPL-3.0

Programming language: Java

Provider: IT

Status

 System detects several web applications including Wordpress, Vbulletin, phpBB, Twitter,
etc.

 System also efficiently recognizes the specific level inside a Web application that ensures
the right crawling approach is applied accordingly.

 Integrated with the Yfilter system (a NFA based filtering system) for efficient indexing of
detection pattern, in order to quickly find the relevant Web application.

 The system extracts semantic objects and links from the Web page. Links are assigned a
score to facilitate the selection in the online analysis module. Semantic Objects are also
stored in an RDF Store.

Future work

A number of interesting challenges warrant further investigation and will be our agenda for the rest
of this Project:

1. Using XPath 1.0 expressions for detection patterns faces some expressiveness limitations:
in some cases, for instance, regular expressions may be required to identify a Web
application. We have the option of switching to XPath 2.0 expressions or to add extension
functions for this purpose but we should strive also at keeping a language that is as
declarative as possible for optimization purposes.

2. One significant challenge is to investigate the possible automatic, unsupervised, learning of
new Web applications (by the inference of common patterns) and the adaptation to slight
changes in the templates that render the wrappers unusable.

3. We also must ensure throughout our work the possible fine integration with the crawler(s)
by developing mechanism for interacting with the other components. Among the challenges
here is the fact that the crawler should still be responsible for all Web interactions, in order

D5.2 Intelligent and adaptive content acquisition V1 Page 19 of 31

2012 © Copyright lies with the respective authors and their institutions.

to maintain politeness constraints, whereas, for instance, some crawling actions may
require going through an external program (an API crawler or an OXPath evaluator).

Scalability

The application aware helper will be assisted with a knowledge base that will help in recognizing a
specific web application and related crawling actions. Since the knowledge base will grow and
there will exist several detection patterns for many web applications, we have to ensure the web
application detection module does not slow up the crawling process and affect overall
performance.

To ensure scalability, after integration of the application aware helper with the crawler, we have
used the Yfilter system (a NFA based filtering system) for efficient indexing of detection patterns in
order to quickly find the relevant Web application. Here each state is represented by XPath
expression patterns and common steps of the path expression are represented only once in a
structure. The introduction of Yfilter in the Web application detection module improves the
performance dynamically and now the system is well synchronized with the other sub modules of
crawling process.

Evaluation

The application aware helper performance will be evaluated based on

1. Efficiency

That will be ensured by quickly detecting a web application, the level of web applications
and then further triggering most relevant crawling actions. The efficiency of application aware
helper mostly depends on effort needs to detect a particular web application that we have
improved by introducing the Yfilter system.

2. Usefulness and Effectiveness

Usefulness depends on the applicability of our system on real world Web crawls. Our system
assists the crawler during crawling process and helps in detecting a particular web application
and crawling actions that one needs to apply for extracting links and semantic objects. Our
system improves the performance and effectiveness of a traditional crawler by reducing the
effort that a crawler needs when crawling a web page for most related and useful information.

In a traditional crawling approach, a crawler crawls websites irrespective of the nature of the
(content management system. Social websites e.g. web forum, holds dynamic content and
without understanding the nature of a particular web application, a crawler may crawls
impropriate information.

A traditional crawler may crawl data that could be redundant and irrelevant. Let’s see the
example of a Web forum that usually stores content in a database. When a user makes a
request, the response page is automatically generated using a predefined template. When two
requests require the same piece of content, the server will return two dynamic pages with same
or similar content but with two different URLs. These dynamic pages create redundancy that
will require more resources to be crawled and lower the quality of the final archive. Blog
systems also contain redundant information: for instance, there may be both monthly and
yearly archives that contain duplicate content organized slightly differently. When crawling Web
forums and blogs with the traditional crawler approach, we will encounter many of these
redundant cases. In extreme cases, the crawler can fall in a spider trap because it has infinitely
many links to crawl. There are also several noisy links such as to a print-friendly pages or
advertisements, etc., which would be better to avoid during the construction of the archive.

The application aware helper avoids the crawler from crawling redundant information, noisy
links and getting caught in a spider trap. First it detects the Web application in use and then

D5.2 Intelligent and adaptive content acquisition V1 Page 20 of 31

2012 © Copyright lies with the respective authors and their institutions.

detects the sub-level of the web application in use (e.g. forum page or index page). Detecting
the level of web application helps in identifying the related part of a web page that needs to
crawl. This helps us avoiding the noisy links and initiates the most relevant crawling actions at
particular web page level.

This effectiveness will be tested by comparing the proportion of Web pages relevant to an
archivist topic crawled by a regular Web crawler versus a crawler assisted with the application-
aware helper.

Detailed description

We provide a detailed description here of the application-aware helper, using the material
published in:

Faheem Muhammad. Intelligent Crawling of Web Applications for Web Archiving. Proc. PhD
Symposium WWW 2012.

Proposed approach

Our main claim is that different crawling techniques should be applied to different types of Web
applications. This means having different crawling strategies for different forms of social Web sites
(blogs, wikis, social networks, social bookmarks, microblogs, music networks, Web forums, photo
networks, video networks, etc.), for specific content management systems (e.g., WordPress,
phpBB), and for specific sites (e.g., Twitter, Facebook). Our proposed approach detects the type of
Web application (general type, content management system, or site) currently being processed by
the crawler and the kind of Web pages inside this Web application (e.g., a user profile on a social
network) and decide on further crawling actions (follow a link, use an API, submit a form, extract
structured content) accordingly.

To adapt the behaviour of traditional crawlers according to our requirements, we have chosen to
extend the traditional architecture of a Web crawler in the way depicted in Figure 3. Here page
fetching is replaced by some more elaborate resource fetching component that is able to retrieve
resources that are not just accessible by a simple HTTP GET request (but by a succession of such
requests, by a POST request or by the use of an API) or that are individual Web objects inside a
Web page (e.g., a blog post, a comment, a poster’s name). An application-aware helper module is
then introduced in place of the usual link extraction function in order to identify the Web application
that is currently being crawled and decide and categorize crawling actions that can be performed
on this particular Web application.

These modifications will be implemented via the ARCOMEM framework into two Web crawlers: the
proprietary crawler of the Internet Memory Foundation (with whom we are closely collaborating)
and into a customized version of Heritrix [23] developed by the ATHENA research lab [2].

 Figure 3. Extended Architecture of the Web Crawler.

Queue

Management

Resource

Fetching

Application

Aware Helper

Resource

Fetching

D5.2 Intelligent and adaptive content acquisition V1 Page 21 of 31

2012 © Copyright lies with the respective authors and their institutions.

Methodology

This section introduces the application-aware helper module. This module assists the archiving
crawler for acquiring content from the social Web in an intelligent and adaptive manner. This
module enriches the functionalities of the crawler and makes the crawling process more efficient.

Knowledge base of Web applications. The crawler will be assisted by a knowledge base of Web
applications that describes how to crawl a Web site in an intelligent manner. This knowledge base
will specify how to detect specific Web applications and which crawling actions should be
executed. The knowledge base will be arranged in a hierarchical manner from general
categorizations to specific instances (Web sites) of this Web application. For example the social
media Web sites can be categorized into blogs, Web forums, microblogs, video networks, etc.
Then we can further categorize these specific types of Web applications on the basis of the
content management system they are based on. For instance, Wordpress, Movable Type, etc., are
examples of blog content management system, whereas phpBB and vBulletin, etc, are examples
of Web forum content management systems.

Moreover, a given Web application usually consists of different kinds of Web pages: in a Web
forum, there are pages that display lists of forums, pages that display the list of posts under
specific forums, and pages that point to individual posts with their comments. Thus, the knowledge
base will describe the different kinds of Web pages under a specific Web application and then,
based on this, we can define different crawling actions that should be executed against this
specific page level.

The knowledge base is to be specified in a declarative language, so as to be easily shared and
updated, hopefully maintained by non-programmers and also possibly automatically learned from
examples. The W3C has normalized a Web Application Description Language (WADL) [12] that
allows describing resources of HTTP-based application in a machine processable format. WADL is
used for describing the set of resources, their relationship with each other, the method that can be
applied on each resource, resource representation formats, etc. WADL may be a candidate format
of our knowledge base but does not satisfy all our needs: the description of Web application
recognition patterns and Web application interactions go beyond simple GET and POST requests.
Consequently, our knowledge-based will be described in custom XML format, well-adapted to the
tree structure of the hierarchy of Web applications and page levels.

Web application detection module. One main challenge in intelligent crawling and content
extraction is to identify the Web application and then perform the best crawling strategy
accordingly. There is not much work done on the Web application identification, but there are a
few efforts for classifying Web pages under different categorized Web applications [1, 16, 15].

To detect a particular Web application, our knowledge base allows describing several rules, based
on URL patterns, HTTP metadata, textual content, XPath patterns, references to a classifier and,
possibly, Web-graph–based features. The identification of the page level inside a Web application
can also be done by categorizing the page according to structural properties.

Let us take the example of the vBulletin Web forum content management system that can be
identified by searching for a reference to a vbulletin_global.js JavaScript script by using a simple
//script/@src Xpath expression. Pages at the level of “list of forums” are identified when they
match the //a[@class="forum"]/@href XPath expressions.

Crawling and extraction. After detecting the application to which the current Web page belongs, the
next stage is to determine the corresponding crawling actions. Crawling action scopes go beyond
just a list of URLs to add to the queue. It can be any action that involves using APIs to extract
relevant data from the detected social network site, performing complicated interactions with AJAX
based applications or identifying Web objects in a particular Web application. More specifically,
crawling actions are of two kinds:

Navigation actions: to navigate to another Web page or Web resources.

Extraction actions: to extract individual semantic objects from Web pages (e.g., timestamp, the blog
post, the comments).

D5.2 Intelligent and adaptive content acquisition V1 Page 22 of 31

2012 © Copyright lies with the respective authors and their institutions.

We similarly want a declarative language for describing all crawling actions (again, the hope is to
have an easily maintainable knowledge base including machine maintainability). We therefore
need a navigation and extraction language able to access data from the deep Web as well as
regular URLs. We will use OXPath [9]. OXPath is an extension of Xpath with added facilities for
interacting with Web applications and extracting relevant data. It allows the simulation of user
actions to interact with scripted multipage interfaces of the Web application (the evaluator relies
either on a Mozilla based or Web kit-based browser). It inherits from XPath as well as allowing the
use of CSS-based selectors. It makes possible to navigate through different pages by using clicks
and even allows to extracting information from previous pages. An open-source implementation is
available that will be integrated into our system.

References

[1] E. Amitay, D. Carmel, A. Darlow, R. Lempel, and A. Soffer. The connectivity sonar: Detecting
site functionality by structural patterns. In HT, 2003.

[2] ARCOMEM Project. http://www.ARCOMEM.eu/, 2011–2014.

[3] L. Barbosa and J. Freire. Searching for hidden-Web databases. In WebDB, 2005.

[4] L. Barbosa and J. Freire. An adaptive crawler for locating hidden-web entry points. In WWW,
2007.

[5] B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In
COLT, 1992.

[6] R. Cai, J.-M. Yang, W. Lai, Y. Wang, and L. Zhang. iRobot: An intelligent crawler for Web
forums. In WWW, 2008.

7] S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawling: A new approach to topic-
specific Web resource discovery. Computer Networks, 31(11–16), 1999.

[8] Y. Diao, M. ALTINEL, M. J. Franklin, H. Zhang, and P. Fischer. Path sharing and predicate
evaluation for high-performance XML filtering. ACM TODS, 2003.

[9] T. Furche, G. Gottlob, G. Grasso, C. Schallhart, and A. J. Sellers. OXPath: A language for
scalable, memory-efficient data extraction from web applications. PVLDB, 4(11), 2011.

[10] D. Gibson, K. Punera, and A. Tomkins. The volume and evolution of web page templates. In
WWW, 2005.

[11] Y. Guo, K. Li, kai Zhang, and G. Zhang. Board forum crawling: A Web crawling method for
Web forums. In WIC, 2006.

[12] M. Hadley. Web application description language. http://www.w3.org/Submission/wadl/.

[13] International Business Times. http://www.ibtimes.com/articles/175488/20110706/obama-
twitter-townhall.htm, 2011.

[14] P. Kolari, T. Finin, and A. Joshi. Svms for the Blogosphere: Blog Identification and Splog
Detection. In AAAI, 2006.

[15] C. Lindemann and L. Littig. Coarse-grained classification of Web sites by their structural
properties. In CIKM, 2006.

[16] C. Lindemann and L. Littig. Classifying Web sites. In WWW, 2007.

[17] M. Liu and T. W. Ling. A rule-based query language for HTML. In DASFAA, 2001.

[18] J. Masanès. Web archiving. Springer, 2006.

[19] E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support vector
machines. In Workshop on Neural Networks for Signal Processing, 1997.

http://www.arcomem.eu/

D5.2 Intelligent and adaptive content acquisition V1 Page 23 of 31

2012 © Copyright lies with the respective authors and their institutions.

[20] A. Sahuguet and F. Azavant. Building light-weight wrappers for legacy Web data-sources
using W4F. In VLDB, 1999.

[21] N. Sawa, A. Morishima, S. Sugimoto, and H. Kitagawa. Wraplet: Wrapping your Web contents
with a lightweight language. In SITIS, 2007.

[22] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan. Declarative information extraction

using Datalog with embedded extraction predicates. In VLDB, 2007.

[23] K. Sigurðsson. Incremental crawling with Heritrix. In IWAW, 2005.

[24] J.-Y. Su, D.-J. Sun, I.-C. Wu, and L.-P. Chen. On design of browser-oriented data extraction
system and plug-ins. In JMST, 2010.

[25] S. Zheng, R. Song, J.-R. Wen, and D. Wu. Joint optimization of wrapper generation and
template detection. In SIGKDD, 2007.

D5.2 Intelligent and adaptive content acquisition V1 Page 24 of 31

2012 © Copyright lies with the respective authors and their institutions.

5. Prioritization Module

Summary

The prioritization module focuses and targets the crawl according to the crawl specification. It

aggregates the results of the online analysis components to calculate priority scores for pages that

have not been crawled yet and sends these scores back to the crawler.

Input: Crawled web objects, crawl specification

Output: Priority scores for out-links of the web objects

Interactions: Online phase components, AAH

License: LGPL

Programming language: Java

Provider: LUH

Status

The module is working and interacts with all other components using a weighted sum to aggregate

scores.

Future work

1. Improve the calculated priority scores by using a machine learning method to aggregate the

inputs of the different analysis components. This allows us to learn the weights for each

analysis component and use non-linear combinations over inputs (e.g. ignore all other

values for links for which the AAH returns -1.0)

2. Based on 1, we want to dynamically adapt weights during the crawl to be able to get the

best results on different crawls. For example, we can decrease the weight of text in anchor

texts if most of the crawled web pages use “click here” links.

3. Aggregate priority scores across documents: If multiple web pages link to the same URL

we need to aggregate the scores that are calculated using the individual pages only. This

aggregation needs to be aware of the time at which the pages were crawled and the

duration of the crawl, e.g. in a short-term crawl the priority of a web page receiving many

relevant in-links in a short time needs to be very high.

Scalability

The scalability goal for the prioritization module is to be able to process web pages at the same

rate as the crawler retrieves them which means that the cluster should be able to process about 10

web pages per second. However, in the current implementation the prioritization module calls the

AAH and the online analysis modules as part of its processing, so the scalability of those

components limits the possible throughput.

D5.2 Intelligent and adaptive content acquisition V1 Page 25 of 31

2012 © Copyright lies with the respective authors and their institutions.

Evaluation

To evaluate the prioritization module we will compare the relevance of web pages crawled during a

breadth-first crawl to the web pages crawled in a focussed crawl. Here we will compare (a) the

average relevance of web pages crawled during one period of the crawl and (b) the total relevance

of the crawled pages. This measures approximate precision and recall of the crawl and have been

used before in related work.

Figure 4. Flow diagram of the prioritization module

We will start by simulating a crawl on the WARC files produced during the financial crisis crawl and

use this to experiment with different parameter settings. Once we have achieved a high enough

quality we will launch several crawls for different topics with different crawl specifications and crawl

durations.

Detailed description

The prioritization module is the connection between the crawler and the online analysis modules. It

receives crawled documents from the crawler, runs the online analysis modules on those and

aggregates the analysis results into a priority score. This score is sent back to the crawler and

used to update the order of the crawler queue.

The prioritization module watches the HBase document store for the insertion of new document.

We have experimented with two different methods: The first is to use an HBase region observer on

the crawl table, the second is to do periodic table scans using map/reduce jobs. In the region

observer approach we install a class directly in the HBase process that is notified whenever a

database operation occurs, in our case an insert to the crawl table. If the inserted row is a web

D5.2 Intelligent and adaptive content acquisition V1 Page 26 of 31

2012 © Copyright lies with the respective authors and their institutions.

page that needs to be analysed, it is forwarded to a background processing thread pool where the

actual online analysis runs. This approach has the advantage of low latency because the

prioritization module gets direct notifications of new pages. Additionally, there is no need for any

I/O operations because the relevant data is already in memory. However, in this approach the

online analysis and HBase are highly coupled. In our experiments this lead to problems when the

prioritization module could not process the incoming pages fast enough. In this case the queue of

documents to be processed grew quite large which caused longer garbage collector pauses and

eventually slowed HBase operations down below the point where they were usable.

To increase stability we therefore switched to an approach where we periodically start map/reduce

jobs on the crawler table. These check for not yet processed documents, run the online analysis on

them and then set a flag attribute on the row to indicate that it was processed already. As the

map/reduce jobs need to scan the entire table to find new rows, this leads to increased I/O rate

and a much higher latency. However, we gain increased robustness: if the online analysis process

fails, we can just restart the map/reduce job and all unprocessed documents will be handled.

Furthermore, we can more easily distribute the processing load across the cluster by changing the

assignment of jobs to cluster nodes.

The actual prioritization consists of three phases. In the first phase we run the application aware

helper on the web page to detect regions of interest in the document and discard irrelevant parts.

The input document is now split into one or more document parts. Each document part is

processed separately from now on.

In the second phase the online analysis modules are run on the content of the document part.

Currently we use a textual analysis module using GATE, a URL scoring module using URL

patterns and a simple spam link filter using a black list. Additional modules can be added easily.

The textual analysis module does some basic NLP pre-processing on the text and extracts relevant

entities. We then check the extracted entities and the document text against the entities and

keywords given in the crawl specification and give a score of 1.0 if there is at least one match. The

matching is run at several granularities: whole document, paragraph around anchor and only

anchor text. This allows us to boost link anchors that are closer to keyword or entity matches.

Each analysis module can produce a score for the current document and one for each out-link.

Some analysis modules (e.g. the URL analysers) omit the document score, while others can only

provide document scores (e.g. the text analysis). In the latter case the document score is

propagated to each out-link contained in the analysed document.

The final phase of the online analysis is the priority aggregation: The scores provided by the

individual analysis modules are aggregated into one final score for each out-link. Here we currently

use only a weighted average over the individual scores using provided weights.

Finally, the calculated scores are sent to the crawler queue using a JSON over HTTP protocol: The

prioritization module sends a POST request to a specified URL where the body is a JSON encoded

list of updates, for example:

[{"url": "http://google.com/", "score": 0.3}, {"url": "http://spam.net/",

"blacklisted": true}]

Each update object has a URL and either a numeric score or a boolean “blacklisted” field. In the

case of a numeric score, the value is used to add the URL to the crawler queue with the given

priority or to update the priority of a URL already in the queue. If the “blacklisted” field is true, then

the URL is added to the crawler’s internal list of URLs that should never be crawled. Further

updates to this URL are ignored.

D5.2 Intelligent and adaptive content acquisition V1 Page 27 of 31

2012 © Copyright lies with the respective authors and their institutions.

5. Knowledge Base

Summary

The Knowledge Base is a component that plays a central role in the platform. Its task is to provide
storing, indexing and retrieving mechanisms for all the semantic data produced and utilized by the
rest of the architectural components. More specifically it handles semi-structured data that derives
from the annotation of Web Objects, as performed by the online and the offline processing
modules. Such annotations are described using an RDF schema that interlinks ETOEs and points
to actual content residing in the Object Store. Thus, the problem translates to building an efficient
processing engine that appropriately indexes and stores RDF triples and offers SPARQL querying
capabilities while maintaining scalability and high-performance characteristics.

Interactions: Applications (Broadcaster and Parliament Archivist Tools, Web Archive), Online
Analysis Tools (ETOE Detection), Offline Analysis Tools (ETOE Extraction, Social Web Analysis),
Dynamics Analysis (Evolution Analysis), Crawler (Resource Fetching, Application Aware Helper)

License: GNU General Public License, version 3 (GPL-3.0)

Programming language: Java

Provider: ATHENA

Status

The main functionalities of the Knowledge Base have been implemented. In general, the
Knowledge Base currently supports the insertion of triples in the n-triple format, either sequentially
or in bulk, and the search and retrieval of the stored triples by offering SPARQL querying
capabilities. Such SPARQL queries can include filters on numerical properties.

More specifically, the main operations supported by Knowledge Base are:

 Sequential triple import: This method is used for one-by-one insertion of triples.

 Input: 1 triple (Jena-style)

 Bulk triple import: This method allows for the mass insertion of multiple triples.

 Input: n-triple text file

 Querying: This method offers the capability of searching through the stored triples and
retrieving

 Input: SparQL string

 Output: Iterator over ResultSet

To ensure the ease of use and adoption of the Knowledge Base, the well known and widely used
Jena API for RDF has been implemented.

Future work

Our main goals for future improvements are:

 Better indexing scheme that will lead to smaller response times.

 New join algorithms for distributed execution of SPARQL joins.

 Provide further SPARQL functionalities like: filters, unions etc.

 Support OWL reasoning.

D5.2 Intelligent and adaptive content acquisition V1 Page 28 of 31

2012 © Copyright lies with the respective authors and their institutions.

Scalability

Knowledge Base features unique characteristics that enable efficient processing of both simple
and multi-join SPARQL queries on virtually unlimited number of triples. Our join algorithms execute
joins according to query selectivity to reduce processing. The system makes adaptive choices
among centralized and distributed (MapReduce-based) join execution for fast query responses.
Knowledge Base is expected to handle billions of triples using a small cluster of commodity
machines.

Evaluation

The Knowledge Base will be tested against other state of the art distributed and centralized RDF
databases like RDF-3X1 and HadoopRDF2. We are going to compare:

 Loading times for various datasets

 Query responses for various SPARQL benchmark queries

 Import scalability for different number of resources

 Querying scalability for different number of resources

 Concurrent query throughput for selective SPARQL queries

Detailed description

In Figure 5, we present an overview of Knowledge Base's architecture. The system stores
distributed indexes of RDF triples using HBase tables. Triples can be loaded sequentially or using
a bulk MapReduce job. We support standard SPARQL querying. Queries are parsed using Jena's
SPARQL parser to ensure syntax correctness and create the query graph. The Join Planner
module iterates over the query graph and greedily chooses the join that needs to be executed,
according to the selectivity and the cost of all possible joins. Each join is executed by the Join
Executor module that decides which algorithm (distributed M/R or centralized) will be used for
every join. Centralized joins are executed in a single cluster node while distributed joins launch
M/R jobs to process them. Below we describe each module in more detail.

1
 www.mpi-inf.mpg.de/~neumann/rdf3x

2
 http://code.google.com/p/hadooprdf/

D5.2 Intelligent and adaptive content acquisition V1 Page 29 of 31

2012 © Copyright lies with the respective authors and their institutions.

MapReduce &
NoSQL Cluster

NoSQL Index

MapReduce
Bulk Import

H2RDF

Jena Parser

RDF data

Join Planner

Join Executor

Query
Graph

Create and
execute

MapReduce
Or Centralized

execution

C
lie

n
ts

SPARQL
queries

Query
output

Figure 5. H2RDF architecture

HBase indexing

Our goal is the efficient execution of all different SPARQL queries. To achieve that, we
materialize three of the six possible indices, namely the spo (subject-predicate-object), pos and
osp combinations. A six index approach can have better performance only for certain queries that
contain filters on variables. For all other queries, 3 indices suffice for optimal performance.

Indices are stored in HBase tables in the form of key-value pairs. In this section we
describe the spo index. The same description holds for the other two indices. We use the name
SP_O to indicate that we keep a B+ tree based on the combination of subject and predicate
values.

The SP_O index is responsible for triple patterns that have either bound subject or bound
subject and predicate. The concatenation of subject and predicate values creates the row key,
whereas the column identifiers of the current row consist of all the objects associated with the
particular subject-predicate combination. All indices store only the 8-byte MD5Hashes of s, p, or o
values. A table containing the reverse MD5Hash to value mappings is kept and used during object
retrieval. Index statistics (i.e., the number of objects for the specific subject-predicate combination
and the number of predicate-object combinations for every subject) are kept in special columns
and rows of each index table. Subject-predicate bound queries are answered with an exact-key
lookup for the row identifier that results from the sp combination. Subject bound queries are
answered with a range query [subject,increment(subject)).

Query pattern Index

Subject Predicate Object

_ _ _ all

? _ _ pos

_ ? _ osp

_ _ ? spo

? ? _ osp

_ ? ? spo

? _ ? pos

? ? ? all

This table shows the eight different types of triple patterns, corresponding to all
combinations of bindings in a triple. For each pattern, the table indicates the index that can be

D5.2 Intelligent and adaptive content acquisition V1 Page 30 of 31

2012 © Copyright lies with the respective authors and their institutions.

used to retrieve the corresponding data efficiently. “?" denotes the existence of a variable in a
triple's position, while “_” means that the position is bound (i.e., fixed). For example, the triple
pattern (?, _, _) can be answered using the POS index, as it has bound predicate and object. The
patterns having all positions bound (_, _, _) or all unbound (?, ?, ?), can be answered by any index.
For (_, _, _), we can select the index having the smallest B+ tree depth which is usually OSP. For
(?, ?, ?) we choose an index considering any joins that must be performed on the triple pattern.

Join Execution

A key point in implementing a system capable of evaluating SPARQL queries is
determining the way that the system executes joins between triple patterns. Our system is
designed to execute both distributed and centralized joins. Distributed joins are executed using
MapReduce while centralized joins are executed in a single cluster node. In this section, we
describe the different strategies used to execute distributed and centralized joins.

SPARQL queries with multiple joins are executed by feeding the results of one join to the
next. Therefore, we choose to have the same I/O specifications for joins. We store all bindings in
the value part of key-value pairs without using the key part. The value part has the following
pattern:

jpat var1$bindings var2$bindings…varN$bindings,

where: var1 ... N: are the different join variables,

bindings: contains one or more values of the corresponding variable and
jpat: is a unique id for each query pattern or join result which helps us recognize the origin
of each key-value pair.

This format gives some grouping properties that allow the representation of multiple combinations
of bindings in one key-value pair. We are now ready to describe the different strategies used to
execute joins.

Map phase join: The input data of the Map Phase Join comes from all joined triple queries formed
in key/value pairs of the above format. Mappers read values contained in each pair and break them
up to find the join variable. For each join variable binding, they produce a key-value pair with the
binding as the key and the bindings for all other variables contained in the input pair as the value.
The pattern id is also added in the value. Key-value pairs produced by mappers are sorted and
grouped together based on their key. Reducers take as input for each join variable's binding, a list
of values that correspond to it. The join is performed by checking which of the keys were contained
in all input queries and by counting the different pattern ids. Reducers create the output by simply
merging the key and the corresponding list of values.

Reduce phase join: This algorithm is based on the idea that one of the patterns receives a very
small number of input data compared to the rest. Using only this pattern as input, we manage to
reduce the amount of data processed and achieve better performance for selective joins. The map
function is exactly the same as in the map phase join. The difference is in the reduce phase: we
only get the bindings that come from the input query. For every mapped binding, we search our
indices to see if it matches with the other queries. This approach, however, is not always the best
choice. In joins where all input queries have large input it becomes ineffective because it needs
many index accesses.

Partial input join: This algorithm combines the advantages of both Map and Reduce phase joins.
It allows the choice of a variable number of input triple patterns and utilizes both preceding join
algorithms: Input triple patterns are joined using Map Phase Join while the rest are joined using
Reduce Phase Join. This algorithm allows us to have the best performance in all types of di_erent
joins. Naturally, the performance of the algorithm largely depends on whether we make the correct

D5.2 Intelligent and adaptive content acquisition V1 Page 31 of 31

2012 © Copyright lies with the respective authors and their institutions.

choice for the input pattern(s). Using the statistics gathered during bulk import, we are able to know
the exact size of input for every triple query and select the correct input ones.

Centralized join: A MapReduce job needs a large amount of time for initialization. When the input
data is small this initialization time becomes comparable or significantly larger than the required
data processing time. In a cluster of 10 nodes, it takes almost 30 seconds for an M/R job to finish
when there is no input data. To achieve optimal performance in all cases of different input size
joins, we allow the join to be executed in a single node without launching a MapReduce job. To
cooperate with MapReduce joins, the centralized joins use the same input/output format and
implement the same partial input algorithm. The choice between distributed or centralized
execution is done greedily using an offset parameter that represents the size of data that can be
centrally processed during the MapReduce's initialization overhead. This is then compared to the
cost of a MapReduce join.

