
HeidelTime Standalone Manual
Version 2.1

Julian Zell, Jannik Strötgen (Heidelberg University)
zell@informatik.uni-heidelberg.de, stroetgen@uni-hd.de

December 2015

Abstract

This document contains information on how to install and use the
standalone version of HeidelTime. HeidelTime is a multilingual, cross-
domain temporal tagger for the extraction and normalization of tem-
poral expressions from documents, developed at the Heidelberg Uni-
versity by Strötgen and Gertz [8, 9, 10].
The original version of HeidelTime is designed to run within a proper
UIMA-Pipeline [1]. With this standalone version the original version
is wrapped in such a way that it can be run with fewer prerequisites
and, in particular, without UIMA.
HeidelTime Standalone comes with resources for 13 languages: En-
glish, German, French, Spanish, Italian, Vietnamese, Arabic, Dutch,
Chinese, Russian, Croatian, Portuguese and Estonian. In addition,
resources called English-colloquial and English-scientific can be used
to process colloquial English text (e.g., SMS and tweets) and scientific
literature (e.g., clinical trials).
Dutch resources were developed and kindly provided by Matje van
de Camp (Tilburg University)[13]. French resources were provided
by VÃľronique Moriceau (LIMSI-CNRS)[5]. A preliminary version of
Russian resources was kindly provided by Elena Klyachko[3]. Luka
Skukan[7] kindly contributed resources for Croatian. Zunsik Lim[14]
has kindly contributed his resources for Portuguese.
In addition to manually crafted resources, as of version 2.0, we support
over 200 automatically-generated languages.
HeidelTime can process documents of different domains. In all lan-
guages, the news and the narratives domains are supported. For news
documents, the document creation time is crucial, for narratives (e.g.,
Wikipedia articles) it is not. For English, colloquial and scientific are
additionally supported.

1



Contents

1 Preface 3

2 Quick Start 3

3 Installation 3
3.1 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Usage 7
4.1 Command Line Usage . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Creating new resources . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Component in other Projects . . . . . . . . . . . . . . . . . . 10
4.4 Maven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 License 11

References 14

A Information for Windows Users 15

2



1 Preface

This document contains information about how to install and use the stan-
dalone version of HeidelTime. HeidelTime itself is a multilingual temporal
tagger for the extraction and normalization of temporal expressions from
documents, developed at the University of Heidelberg from Strötgen and
Gertz [8, 9, 10]
The original version of HeidelTime is designed to run within a proper UIMA-
Pipeline [1]. With this standalone version the original version is wrapped
such that it can be run with fewer prerequisites and especially without
UIMA.

2 Quick Start

This section will briefly outline what is necessary in order to get HeidelTime
Standalone going. See Section 3 for a more detailed description.

1. Install Java Runtime Environment [11] in order to execute Java pro-
grams.

2. Install TreeTagger [6] with the parameter files for English, German,
Dutch, Spanish, Italian, French, Chinese and Russian.

3. Ensure the path to your local TreeTagger installation is set correctly.
Therefore, check the variable treeTaggerHome in config.props. It has
to point to the root directory of your TreeTagger installation.

4. Change to the directory containing de.unihd.dbs.heideltime.standalone.jar.

5. Run HeidelTime Standalone using
"java -jar de.unihd.dbs.heideltime.standalone.jar <file>"
where <file> is the path to a text document.

To find out how to set additional parameters, e.g., how to specify the
language and domain, see Section 4.1.

3 Installation

This section explains the steps necessary to use HeidelTime Standalone.

3.1 Files

HeidelTime Standalone comes with three files and two folders:

• de.unihd.dbs.heideltime.standalone.jar
Executable java file; see Section 4 for more information about possible
command line arguments.

3



• config.props
Configuration file; it has to be located in the same directory as the ex-
ecutable. See Section 3.3 for more information about the configuration
of HeidelTime Standalone.

• src/
Folder containing the source files that were used to generate the exe-
cutable jar file de.unihd.dbs.heideltime.standalone.jar.

• doc/
Folder containing the Javadoc files.

• Manual.pdf
This file.

3.2 Prerequisites

HeidelTime Standalone requires the following components to be installed:

1. The Java Runtime Environment [11]

2. A compatible pre-processing tool that is capable of identifying lan-
guage tokens, part of speech and sentence boundaries in all languages
supported by HeidelTime. We decided to use TreeTagger [6] for En-
glish, German, Dutch, Spanish, Italian, Russian, French, Chinese, Por-
tuguese and Estonian. You will need to download and install so called
"parameter files" for those languages as well (all that are available,
e.g., for German, download the Latin1 and the UTF-8 variants), to
provide TreeTagger with the necessary functionality (see the Tree-
Tagger website http://www.cis.uni-muenchen.de/~schmid/tools/
TreeTagger/ for more information or Section 3.3 of https://github.
com/HeidelTime/heideltime/blob/master/doc/readme.txt for wget
commands).

3. To process Chinese documents, please grab a copy of the Chinese
TreeTagger parameter file from Serge Sharoff’s page http://corpus.
leeds.ac.uk/tools/zh/ as well as a copy of the Chinese Tokenizer
https://drive.google.com/uc?id=0B1ZoOwaeRsbva2F3NThLd3ptRWM.
Extract the parameter files into the TreeTagger home directory so the
files from the lib and cmd folders land in the TreeTager folders. Ex-
tract the tokenizer into its own directory and remember the path for
the configuration later (Section 3.3).

4. To process Russian documents, please grab a copy of the Russian
parameter file by Serge Sharoff from http://corpus.leeds.ac.uk/
mocky/ and extract it into the TreeTagger’s lib folder.

4

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
https://github.com/HeidelTime/heideltime/blob/master/doc/readme.txt
https://github.com/HeidelTime/heideltime/blob/master/doc/readme.txt
http://corpus.leeds.ac.uk/tools/zh/
http://corpus.leeds.ac.uk/tools/zh/
https://drive.google.com/uc?id=0B1ZoOwaeRsbva2F3NThLd3ptRWM
http://corpus.leeds.ac.uk/mocky/
http://corpus.leeds.ac.uk/mocky/


5. For Arabic documents, you will need to download a full package of the
Stanford POS Tagger [12] from http://nlp.stanford.edu/software/
tagger.shtml

6. In order to process documents in Croatian, you will need to download
a copy of hunpos [4] from https://code.google.com/p/hunpos/ as
well as the Croatian tagger model file for it from http://nlp.ffzg.
hr/resources/models/tagging/.

Note: If you use HeidelTime Standalone on Windows, please see Ap-
pendix A.

3.3 Configuration

After the installation of the prerequisites mentioned in Section 3.2, there are
a few parameters to set up in the configuration file config.props:

For most languages

• treeTaggerHome
This variable has to point to the root directory of TreeTagger that you
will need to use for most languages. Example: /opt/treetagger/

For Chinese

• chineseTokenizerPath
This variable has to point to the directory where the Chinese Tokenizer
Script and files are. Example: /opt/treetagger/chinese-tokenizer/

For use with Vietnamese

• sent_model_path
This variable needs to point to the folder where JVnTextPro’s sentence
segmentation model is stored.
Example: /opt/jvntextpro/models/jvnsensegmenter

• word_model_path
This variable needs to point to the folder where JVnTextPro’s segmen-
tation model is stored.
Example: /opt/jvntextpro/models/jvnsegmenter

• pos_model_path
This variable needs to point to the folder where JVnTextPro’s part of
speech model is stored.
Example: /opt/jvntextpro/models/jvnpostag/maxent

5

http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/tagger.shtml
https://code.google.com/p/hunpos/
http://nlp.ffzg.hr/resources/models/tagging/
http://nlp.ffzg.hr/resources/models/tagging/


For use with Arabic

• model_path
This variable needs to point to the path where StanfordPOSTagger’s
tagger model file is stored.
Example: /opt/stanfordpostagger/models/arabic.tagger

• config_path
This variable can be set to point to the path where StanfordPOSTag-
ger’s config model file is stored. This setting is optional and can be
left empty.
Example: /opt/stanfordpostagger/tagger.config

For use with Croatian

• hunpos_path
This variable must point to the folder where the hunpos executable is
located.
Example: /opt/hunpos/

• hunpos_model_name
This variable needs to represent the name of the hunpos model file
used, residing in the hunpos_path set above.
Example: model.hunpos.mte5.defnpout

General options

• considerDate
Indicates whether HeidelTime should consider Timex3 expressions of
type DATE.

• considerDuration
Indicates whether HeidelTime should consider Timex3 expressions of
type DURATION.

• considerSet
Indicates whether HeidelTime should consider Timex3 expressions of
type SET.

• considerTime
Indicates whether HeidelTime should consider Timex3 expressions of
type TIME.

All other options are not meant to be changed and therefore skipped in this
section.

6



4 Usage

This section explains how to use HeidelTime Standalone both as a command
line tool and as a component in other Java projects.

4.1 Command Line Usage

To use HeidelTime Standalone, open a command line terminal and switch to
the directory containing de.unihd.dbs.heideltime.standalone.jar. You
then are able to run it using the following command:
"java -jar de.unihd.dbs.heideltime.standalone.jar <file> [options]" where<file>
is the path to a text document on your hard disk and [options] are possible
options explained in Table 1.

Extra steps for Arabic tagging

To tag Arabic documents, you will need to utilize a different command line
scheme. First, you will have to set the HT_CP variable to include HeidelTime
Standalone’s class files as well as those of the languages’ respective taggers:

Under Unix/Linux/Mac OS X:
"export HT_CP="<$1>:<$2>:$CLASSPATH""

or under Windows:
"set HT_CP=<$1>;<$2>;%CLASSPATH%"

where
<$1> is the path to StanfordPOSTagger’s .jar file, e.g.
/opt/stanfordpostagger/stanford-postagger.jar and
<$2> is de.unihd.dbs.heideltime.standalone.jar

Once you have this variable set, you can use the following command line:
java -cp $HT_CP de.unihd.dbs.heideltime.standalone.HeidelTimeStandalone
<file> [options]
where <file> is the path to a text document on your hard disk and [options]
are possible options explained in Table 1.

7



Table 1: Command line arguments of HeidelTime Standalone.

Option Name Description

-dct Document Cre-
ation Time

Date of the format YYYY-MM-DD when
the document specified by <file> was
created. This information is used only if
"-t" is set to NEWS or COLLOQUIAL.
It is used to resolve relative temporal ex-
pression such as "today". The default
value is the current date on the local ma-
chine.

-l Language Language of the document. Possible val-
ues are: ENGLISH, GERMAN, DUTCH,
ENGLISHCOLL (for -t COLLOQUIAL),
ENGLISHSCI (for -t SCIENTIFIC),
SPANISH, ITALIAN, ARABIC, VIET-
NAMESE, FRENCH, CHINESE, RUS-
SIAN, CROATIAN, PORTUGUESE,
ESTONIAN. The default is ENGLISH.

-t Type Type of the document specified by
<file>. Possible values are: NARRA-
TIVES, NEWS, COLLOQUIAL and
SCIENTIFIC. The default value is NAR-
RATIVES. The major difference between
these types is the consideration of "-
dct" if type is set to NEWS or COLLO-
QUIAL.

-o Output Type Type of the result. Possible values are:
XMI and TIMEML. The default value is
TIMEML.

-e Encoding Encoding of the document that is to be
processed, e.g., UTF-8, ISO-8859-1, . . .
Default value is UTF-8.

-c Configuration file Relative or absolute path to the configu-
ration file. Default file is config.props

-v/-vv Verbosity Turns on verbose or very verbose logging.
-it IntervalTagger Enables the IntervalTagger and outputs

recognized intervals.
-locale Locale Lets you set a custom locale to run Hei-

delTime under. Format is: X_Y, where
X is from ISO 639 and Y is from ISO
3166, e.g.: "en_GB"

8



Option Name Description

-pos POS Tagger Lets you choose a specific part of speech
tagger; either STANFORDPOSTAG-
GER, TREETAGGER or NO. Note that
for Arabic or Vietnamese documents, we
allow only StanfordPOSTagger and JVn-
TextPro respectively. Please take note of
the prerequisites in Section 4.1. NO will
not do any language-sensitive preprocess-
ing and produce worse results.

-h Help Shows you a list of commands and usage
information

You may omit any of the options since they are optional. HeidelTime
Standalone will however force you to enter a valid document path. It will
output an XMI- or TimeML-document to the standard output stream con-
taining all annotations made by HeidelTime. You may save the output to a
file by using the following command:
"java -jar de.unihd.dbs.heideltime.standalone.jar <file> [options]
> <outputfile>"
where <outputfile> is the path to the document where the output will be
saved into.

Encoding settings: HeidelTime Standalone can process files of differ-
ent encodings. However, independent of the input encoding, the output is
always encoded as UTF-8. If the default encoding of your Java Virtual Ma-
chine is not UTF-8, you have to set the encoding to UTF-8 using the
-Dfile.encoding option:
"java -Dfile.encoding=UTF-8 -jar de.unihd.dbs.heideltime.standalone.jar
<file> [options]"
If the encoding of the document that is to be processed is not UTF-8, you
can specify the encoding with parameter “-e” as described in Table 1.

4.2 Creating new resources

A brief step-by-step introduction into developing resources for HeidelTime
can be found on our project’s wiki here:
https://github.com/HeidelTime/heideltime/wiki/Developing-Resources

It is noteworthy that as of HeidelTime 1.9, it is also possible to create
resources using only the Standalone edition as opposed to the full UIMA kit.

To create resources, you should copy one of the existing resource folders
(e.g., german) from inside the program’s archive into the folder where this file
resides. To obtain this folder, you can either copy it out of the resources/
folder of the HeidelTime UIMA kit, or extract it from the HeidelTime Stan-
dalone .jar file using a program like WinZip or 7zip.

9

https://github.com/HeidelTime/heideltime/wiki/Developing-Resources


Once you have copied out the folder, you should rename it to something
that is unique, e.g. german-improved. By default, HeidelTime Standalone
will prefer external versions of the resources over the ones built into the .jar
file, and to evade possibly confusing situations, unique names should be used.

To check whether the folder you have changed is recognized as a resource
folder, you should run HeidelTime Standalone with the -vv switch; this will
list all recognized language resource folders, including your new one.

In order to run HeidelTime Standalone with the new language resources
you have created, you will need to supply the language’s name like so:

java -jar de....jar -l german-improved file.txt
Please note that unless a specific preprocessing engine is specified, this

name is passed on to the TreeTaggerWrapper which then expects a parameter
file under that name to exist. If you extend an existing language, you can
just copy the existing parameter files:

• german-utf8.par ⇒ german-improved.par

• german-abbreviations-utf8 ⇒ german-improved-abbreviations

in the TreeTagger’s lib/ folder.

4.3 Component in other Projects

To use HeidelTime Standalone as a component in other projects, you have to
prepare the executable jar file de.unihd.dbs.heideltime.standalone.jar:
Add the configuration file config.props to the main directory of the exe-
cutable using a proper archive tool. Once this is done you can copy the
executable wherever you want and use it like a library.
To run HeidelTime Standalone, instantiate an object of HeidelTimeStandalone.
To do so, you simply have to provide the desired language and type that is
to be processed (see Table 1 for further information). To actually run Hei-
delTime, you have to call process on the recently instantiated object of type
HeidelTimeStandalone with the text to be processed. If this text is of type
NEWS (remember your decision when instantiating a HeidelTimeStandalone
object), you have to provide the document creation time as well. As a result
you will get a string containing the TimeML document with all annotations
made by HeidelTime for further treatment.

4.4 Maven

To use HeidelTime Standalone in your project as a Maven dependency, most
of the configuration that is described in this document is still necessary. In
order to use HeidelTime Standalone, simply input these dependencies in your
pom.xml:

10



<dependency>
<groupId>org . apache . uima</groupId>
<a r t i f a c t I d>uimaj−core</ a r t i f a c t I d>
<version>2 . 8 . 1</version>

</dependency>
<dependency>

<groupId>com . github . he id e l t ime</groupId>
<a r t i f a c t I d>he ide l t ime</ a r t i f a c t I d>
<version>2.1</version>

</dependency>

This will enable you to use HeidelTime Standalone’s basic functionality.
If you want to make use of the Stanford POS Tagger Wrapper included in
HeidelTime Standalone, you will also need to add this dependency:

<dependency>
<groupId>edu . s t an fo rd . nlp</groupId>
<a r t i f a c t I d>stanford−co ren lp</ a r t i f a c t I d>
<version>3 . 3 . 1</version>

</dependency>

To use the JVnTextPro preprocessor (e.g., for Vietnamese documents),
you need to add these dependencies:

<dependency>
<groupId>a rg s 4 j</groupId>
<a r t i f a c t I d>a rg s 4 j</ a r t i f a c t I d>
<version>2.32</version>

</dependency>
<dependency>

<groupId>com . dbt sa i . l b f g s</groupId>
<a r t i f a c t I d>l b f g s</ a r t i f a c t I d>
<version>0.1</version>

</dependency>

5 License

Copyright © 2015, Database Research Group, Institute of Computer Sci-
ence, University of Heidelberg. All rights reserved. This program and the
accompanying materials are made available under the terms of the GNU
General Public License.

The initial version of HeidelTime Standalone was created by Andreas
Fay.

11



If you use HeidelTime, please cite one of the papers describing Heidel-
Time: [8, 10]. Thank you.

For details, see http://dbs.ifi.uni-heidelberg.de/heideltime/ or
https://github.com/HeidelTime/heideltime.

12

http://dbs.ifi.uni-heidelberg.de/heideltime/
https://github.com/HeidelTime/heideltime


References

[1] Apache Software Foundation. Apache UIMA, June 2011. URL http:
//uima.apache.org/.

[2] Thu-Trang Nguyen Cam-Tu Nguyen, Xuan-Hieu Phan. JVnTextPro,
April 2013. URL http://sourceforge.net/projects/jvntextpro/.

[3] Elena Klyachko. Russian resources, 2014.

[4] Péter Halácsy, András Kornai, and Csaba Oravecz. HunPos: An Open
Source Trigram Tagger. In Proceedings of the 45th Annual Meeting of
the Association for Computational Linguistics (ACL ’07), pages 209–
212. ACL, 2007.

[5] Véronique Moriceau and Xavier Tannier. French Resources for Extrac-
tion and Normalization of Temporal Expressions with HeidelTime. In
Proceedings of the 9th International Conference on Language Resources
and Evaluation (LREC ’14), pages 3239–3243. ELRA, 2014.

[6] Helmut Schmid. Probabilistic Part-of-Speech Tagging Using Decision
Trees. In Proceedings of the International Conference on New Methods
in Language Processing, pages 44–49, 1994.

[7] Luka Skuka, Goran Glavaš, and Jan Šnajder. HeidelTime.HR: Extract-
ing and Normalizing Temporal Expressions in Croatian. In Proceedings
of the 9th Language Technologies Conference, pages 99–103, 2014.

[8] Jannik Strötgen and Michael Gertz. HeidelTime: High Quality Rule-
Based Extraction and Normalization of Temporal Expressions. In Pro-
ceedings of the 5th International Workshop on Semantic Evaluation (Se-
mEval ’10), pages 321–324. ACL, 2010.

[9] Jannik Strötgen and Michael Gertz. HeidelTime, May 2012. URL http:
//dbs.ifi.uni-heidelberg.de/heideltime/.

[10] Jannik Strötgen and Michael Gertz. Multilingual and Cross-domain
Temporal Tagging. Language Resources and Evaluation, 47(2):269–298,
2013.

[11] Sun Microsystems. Java, March 2011. URL http://www.java.com.

[12] Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram
Singer. Feature-rich Part-of-speech Tagging with a Cyclic Dependency
Network. In Proceedings of the Human Language Technology Conference
of the North American Chapter of the Association for Computational
Linguistics (HLT-NAACL ’03), pages 173–180. ACL, 2003.

13

http://uima.apache.org/
http://uima.apache.org/
http://sourceforge.net/projects/jvntextpro/
http://dbs.ifi.uni-heidelberg.de/heideltime/
http://dbs.ifi.uni-heidelberg.de/heideltime/
http://www.java.com


[13] Matje van de Camp and Henning Christiansen. Resolving Relative Time
Expressions in Dutch Text with Constraint Handling Rules. In Pro-
ceedings of the 7th International Workshop on Constraint Solving and
Language Processing (CSLP ’12), pages 74–85. Springer, 2012.

[14] Zunsik Lim. Portuguese resources, 2015.

14



A Information for Windows Users

If you are using HeidelTime standalone on Windows, you have to download
and install a Perl interpreter, e.g. ActivePerl from http://www.activestate.
com/activeperl, as well as the Windows version of the TreeTagger [6], in-
cluding parameter files for the languages you want to process. A set of initial
files to download and extract to the same folder are the following (newer ver-
sions may be available):

• The Windows Version of the TreeTagger:
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/
tree-tagger-windows-3.2.zip

• The tagging scripts:
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/
tagger-scripts.tar.gz

As for the parameter files for the respective languages, you will need to
put any .par files in the lib/ folder, any language -abbreviations in lib/
and any tree-tagger-language script file in cmd/.

Once this is set up, you will need to specify the treeTaggerHome-Variable
in config.props as described in Section 3.3. After that, you should be able
to run HeidelTime Standalone as described in Section 4.1.

15

http://www.activestate.com/activeperl
http://www.activestate.com/activeperl
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/tree-tagger-windows-3.2.zip
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/tree-tagger-windows-3.2.zip
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/tagger-scripts.tar.gz
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/tagger-scripts.tar.gz

	Preface
	Quick Start
	Installation
	Files
	Prerequisites
	Configuration

	Usage
	Command Line Usage
	Creating new resources
	Component in other Projects
	Maven

	License
	References
	Information for Windows Users

