Natural Language Engineering 1 (1): 000-000. Printed in the United Kingdom 1
© 1998 Cambridge University Press

Fvolving GATE to Meet New Challenges in
Language Engineeringy

KALINA BONTCHEVA, VALENTIN TABLAN,
DIANA MAYNARD,HAMISH CUNNINGHAM

Department of Computer Science
University of Sheffield
Sheffield, S1 4DP, UK
{kalina,valyt,diana,hamish}@dcs.shef.ac.uk

(Received 30 July 2003; revised 12 February 2004)

Abstract

In this paper we present recent work on GATE, a widely-used framework and graphical
development environment for creating and deploying Language Engineering components
and resources in a robust fashion. The GATE architecture has facilitated the develop-
ment of a number of successful applications for various language processing tasks (such
as Information Extraction, dialogue and summarisation), the building and annotation of
corpora and the quantitative evaluations of LE applications. The focus of this paper is
on recent developments in response to new challenges in Language Engineering: Semantic
Web, integration with Information Retrieval and data mining, and the need for machine
learning support.

1 Introduction

Natural Language Engineering (LE) is a rapidly changing field, driven by the push of
internal technological advances on the one hand, and by the pull of new application
contexts on the other. These drivers include:

e the project of the Semantic Web, adding a machine-tractable semantic layer
to the existing World Wide Web (Fensel et al. 02; Davies et al. 02);

e the growing need for easily portable multilingual LE applications in face of
increasing integration in an expanding Europe;!

t Work on GATE has been supported by the Engineering and Physical Sciences Re-
search Council (EPSRC) under grants GR/K25267 (Large-Scale Information Extrac-
tion), GR/M31699 (GATE 2), GR/N15764/01 (AKT), EMILLE, and by several smaller
grants. We would like to thank the numerous people who have contributed to this
work. Particularly Marin Dimitrov, Cristian Ursu, Oana Hamza, Borislav Popov, Atanas
Kiryakov, Robert Gaizauskas, and Yorick Wilks for their contributions to GATE v2;
and finally to Donia Scott and the three anonymous reviewers of this paper.

! And perhaps in view of decreasing integration and increasing strife internationally.

2 K. Bontcheva and others

e the continuing growth in methods combining information theory and machine
learning with symbolic and linguistic systems;

e the emergence of applications combining Information Extraction (IE) and
Information Retrieval (IR) methods in very large scale contexts.?

These changes all create new challenges to Language Engineering architectures and
infrastructures, a field which we may call Software Architecture for Language En-
gineering, or SALE. SALE systems aim to provide engineering support for research
and development of language processing software, in a way similar to the support
offered to programmers by software development environments like Visual C++-.

GATE (Cunningham et al. 97; Cunningham 02; Cunningham et al. 02), a General
Architecture for Text Engineering, was first released in 1996, then completely re-
designed, re-written, and re-released in early 2002. The system is now widely-used
(by thousands of people at hundreds of sites) and is a relatively comprehensive
infrastructure for language processing software development. Key features of GATE
are:

e Component-based development reduces the systems integration overhead in
collaborative research.

e Open source, documented and supported software enhances the repeatability
of experiments.

e Automatic performance measurement of the LE components promotes quan-
titative comparative evaluation.

e Distinction between low-level tasks such as data storage, data visualisation,
discovery and loading of components and the high-level language processing
tasks.

e Clean separation between between data structures and algorithms that pro-
cess human language.

e Consistent use of standard mechanisms for components to communicate data
about language, and use of open standards such as Unicode and XML.

e Insulation from indiosyncratic data formats — GATE performs automatic for-
mat conversion and enables uniform access to linguistic data.

e Provision of a baseline set of LE components that can be extended and/or
replaced by users as required.

The focus of this paper is on the recent novel aspects of the infrastructure, that
have been introduced in GATE version 2 (GATE v2) — the majority in response to
the recent challenges discussed above. Some of these new elements were added to
GATE because of problems identified with its first version (Cunningham 02):

e Non-extensibility of the tool model (extensibility was only available for pro-
cessing modules, not for viewers, or other tools).

e Problematic multilingual support.

e Need for a pattern-matching engine to allow rapid prototyping and to simplify
the development of LE components.

2 See for example IBM’s WebFountain product.

FEvolving GATE to Meet New Challenges in LE 3

e Need for better support for lexical resources, e.g., lexicons, thesauri, and their
use within the processing components.

e Need to extend towards new data formats, e.g., XML, DAML4OIL, that did
not exist at the time when GATE version 1 (GATE v1) was implemented.

e Inappropriate processing model for language generation systems.

e Insufficient portability with respect to operating systems.

The rest of the paper is structured as follows. Section 2 introduces the GATE
framework with a focus on important new elements of the architecture, such as
support for distributed resources, application execution strategies, and the JAPE
finite-state processing engine. Section 3 introduces the reusable LE components
in GATE v2, including machine learning and ontology-based modules. Section 4
discusses the new types of language resources: ontologies and lexicons, their repre-
sentation, editing, and use. Section 5 presents the new extendable model for reuse
and customisation of viewers, editors, and other interface tools. A number of recent
LE applications is then discussed in Section 6, followed by a review of related work
(Section 7). Finally, we conclude by revisiting some recent challenges for language
engineering and outline ongoing and future work on GATE in these directions.

2 GATE: A framework for robust tools and applications

GATE? is an architecture, a framework and a development environment for LE
(Language Engineering) applications. As an architecture, it defines the organisation
of an LE system and the assignment of responsibilities to different components. As
a framework, it provides reusable implementations for LE components and a set
of prefabricated software building blocks that language engineers can use, extend
and customise for their specific needs. As a development environment, it helps its
users minimise the time they spend building new LE systems or modifying ex-
isting ones, by aiding overall development and providing a debugging mechanism
for new modules. Because GATE has a component-based model, this allows for
easy coupling and decoupling of the processors, thereby facilitating comparison of
alternative configurations of the system or different implementations of the same
module (e.g., different parsers). The availability of tools for easy visualisation of
data at each point during the development process aids immediate interpretation
of the results.

Applications developed within GATE can be deployed outside its Graphical User
Interface (GUI), using programmatic access via the GATE Application Program-
ming Interface (API).* In addition, the reusable modules, the document and anno-
tation model, and the visualisation components can all be used independently of
the development environment.

GATE is engineered to a high standard and supports efficient and robust text

3 GATE v2 is freely available for download from http://gate.ac.uk. It is implemented
in Java and runs on a wide range of platforms.

4 See

http://www.gate.ac.uk/releases/gate-2.2-build1350--ALL/doc/javadoc/index.html

4 K. Bontcheva and others

() Gate 2.1-alphal build 875 i ~1al x|
File Options Tools Help
I; Gare Messages | (E]] GATE corpus 0003D| & ANNIE 000TE =] example docurment
i m Applicatans Text I Annotations | Annotation Sets Caoreference Print Q- |
¥ ANMIE_OOOTE
the business market, which is where local companies make a lot of their maney.” =N Default annotatior_=
Language Resources * P 4 _I' g O pEE =
GATE corpus_00030 The deal alsowill give three major cable television carpanies, which are =
fajority owners of TEIBPOR, a collective 10 percent stake in ATET ‘0 Firsiferse
: O [
i i Processing Resources By acquiring Telgport, ATET can offer business customers local and long-distance —
p 3] Location
ANMIE OrthoMatthier 000 telephone serdce, and data and Internet access, under its own brand name. Using -
"@ AR Telepor's local facilities, the company algo would be able to reduce the fees [Lookog
--@ AMNMIE ME Transducer_00| || it pays tolocal phone campanies for access to local telephone customers. =] m
~[E8 ANNIE POS Tagger 00032 "lt's gaing to permit us to be much more cost-effective as we o for that local i Drganizati
~[E3] AMMIE Sentence Splicer_0) | | business " Armatrong said at @ news briefing. "This has competition and growth] Percent
i written all over it" AT&T is paying for Teleport with its stock. Teleport . =
"QANNIE Gazetteer 00029 shareholders will receive 0,943 ATAT shares for each of their Teleport shares, -0 F?’
A ANMIE English Tokeniser_t || putting the deal at § 59 3 share hased on AT&T's cloging price yesterday of § 0 -
B2.62 142 a share, up § 2.62 1/2. Teleport closed down § 3.62 102 at § 54.121/2 f
<5 Document Reset PR.O00Z | o e cormpanies expect the deal, which must be approved by regulators and L BHREEmh
@ Data stores shareholders, to close by fall. Teleport, hased in Staten Iskand, MY, leads a + [Split
new hreed of local phone competitars that are invading urban markets to grab the i O B
most lucrative business custarners from the regional Bell companies, GTE Corp = i
i | mi
Type Ser Starta | End] EIRRER
Organization | Default 37 52 | {rule2=0rgFinal, orgType=company, ru\ﬂ =~ Qriginal markups
Organization | Default 115 130 | {rule2=0rgFinal, orgType=null, rule1=C a E‘ﬂﬁ
1 o[DOCHO
Organization | Default 138 146 | {NMRule=Unknown, kind=PH, rule=Unk
[DOCTYPE-
Organization | Default 148 181 | frule2=0rgFinal, orgType=null, rule1=C
4 | 3
Annotations Edimrl Features Ed\twl
ANMIE_OOO1E run in 4.247 seconds

Fig. 1. GATE’s document viewer/editor

processing. It is tested extensively, including regression testing, and frequent perfor-
mance optimization. GATE v2 has proved capable of processing gigabytes of text
and thousands of documents (most recently tested on the British National Cor-
pus (Burnard 95)). The system is supported by extensive documentation, online
tutorials and an established mailing list.

In the rest of this section, we provide an overview of the GATE architecture,
discuss the new annotation graph based data representation, and introduce impor-
tant new elements, such as multilingual support, distributed resources, execution
strategies, and the JAPE finite-state processing engine.

2.1 An Overview of the architecture

The GATE architecture distinguishes between data, algorithms, and their visualisation.®
Following the terminology established in version 1, GATE components are one of
three types:

® Analoguous to the model/controller/view architecture common in GUI toolkits.

FEvolving GATE to Meet New Challenges in LE 5

e Language Resources (LRs) represent entities such as lexicons (e.g. Word-
Net), corpora or ontologies;%

e Processing Resources (PRs) represent entities that are primarily algorith-
mic, such as parsers, generators or n-gram modellers;

e Visual Resources (VRs) — added in version 2 — represent visualisation and
editing components that participate in GUIs.

These resources can be local to the user’s machine or remote (available over the
(Inter)net), and all can be extended by users without modification to GATE itself.

One of the main advantages of separating the algorithms from the data they
require is that the two can be developed independently by language engineers with
different types of expertise, e.g. programming and linguistics. Similarly, separating
data from its visualisation allows users to develop alternative visual resources, while
still using a language resource provided by GATE.

Collectively, all resources are known as CREOLE (a Collection of REusable Ob-
jects for Language Engineering), and are described in XML configuration files,
which declare their name, implementing class, parameters, icons, etc. This compo-
nent metadata is used by the framework to discover and load available resources.

Unlike version 1, GATE v2 offers comprehensive multilingual support using Uni-
code as its default text encoding. It also provides a means of entering text in various
languages, using virtual keyboards where the language is not supported by the un-
derlying operating platform (McEnery et al. 00; Tablan et al. 02).

When an application is developed within GATE’s graphical environment, the
user chooses which processing resources go into it (e.g. tokeniser, POS tagger), in
what order they will be executed, and on which data (e.g. document or corpus).
The application results can be viewed in the document viewer/editor (see Figure 1).
Applications can be saved, reloaded, and embedded in other systems.

2.2 Data Representation and Handling

GATE supports a variety of formats including plain text, HTML, XML, RTF,
and SGML in order to enable the processing of a wide range of documents and
improve interoperability with other LE infratructures. In all cases, when a document
is opened in GATE, the format is analysed and converted into a single unified
model of annotation. The annotation format is a modified form of the TIPSTER
format (Grishman 97) (originally used in GATE v1), which has been made largely
compatible with the Atlas format (Bird et al. 00b), and is isomorphic with “stand-
off markup” as widely adopted by the SGML/XML community (Ide et al. 00).
The annotations associated with each document are a structure central to GATE,

5 Ontologies are often not considered as describing language and, therefore, their clas-
sification as LRs could be somewhat un-intuitive. Probably a more appropriate term
will be data resources, but we adhere to the original terminology adopted in GATE
v1. Fundamentally, GATE treats all declarative data resources like lexicons, ontologies,
and documents in the same fashion, i.e., they can be provided as inputs or parameters
to PRs and are visualised and edited in VRs.

6 K. Bontcheva and others

because they encode the data read and produced by all processing modules, as well
as the formatting information originally present in the documents.

Annotations are organised in annotation graphs, where the vertices are anchored
in the document content. Annotations are the arcs in the graph; they have a start
node and an end node, an identifier, a type and a set of features. Nodes have pointers
into the content, e.g. character offsets for text, milliseconds for audio-visual content.
There can be more than one annotation graph associated with each document.
The support for separate annotation graphs (called families in IBM’s TEXTRACT
architecture (Neff et al.)) is needed to allow separation of information into different
categories.

GATE has a single model for encoding information that describes documents,
collections of documents (corpora), and annotations on documents, based on at-
tribute name/attribute value pairs, called features. Attribute names are strings;
values can be any object. Figure 1 shows annotations of type Organization and
their features: orgType for the type of organisation, rule specifying which rule pro-
duced this annotation, etc. At present GATE uses features only as a representation
formalism and does not provide operations like unification.

In order to facilitate the interpretation and validation of features associated with
each annotation type, GATE v2 provides annotation schemas, which are encoded
in the XML Schema language supported by W3C, and define all attributes and the
type of their value (e.g., orgType for Organization annotations). If the value needs
to be one of a predefined set of values (e.g., a part-of-speech tagset), then this set of
values is also given in the annotation schema. GATE’s annotation schemas were in-
spired by TIPSTER’s annotation type declarations (Grishman 97), however GATE
also uses them to facilitate and validate users’ input during manual annotation (see
Section 5.1).

2.3 JAPE: Finite State Processing Over Annotations

GATE v2 has new facilities for finite state processing over annotations based on
regular expressions. JAPE — a Java Annotation Patterns Engine — is similar to the
finite state pattern matching transducer part of the TEXTRACT architecture (Neff
et al.). A JAPE grammar consists of a set of phases, each of which consists of a
set of pattern/action rules. The phases run sequentially and constitute a cascade of
finite state transducers over annotations. This cascade is similar to the finite state
cascade used for parsing (Abney 96) in that rules in the current phase can refer to
annotations created in earlier phases and there is no recursion.

The left-hand-side (LHS) of the rules consist of an annotation pattern (or a macro
describing such a pattern), that may contain Kleene regular expression operators
(e.g. *, 7, +). The right-hand-side (RHS) consists of annotation manipulation
statements (in JAPE or Java). Annotations matched on the LHS of a rule may be
referred to on the RHS by means of labels that are attached to pattern elements.

At the beginning of each grammar, several options can be set:

e Control — this defines the method of rule matching: brill, appelt, or first.

FEvolving GATE to Meet New Challenges in LE 7

The brill style means that when more than one rule matches the same region
of the document, they are all fired. With the appelt style, only one rule can
be fired for the same region of text (the choice depends on the length of the
matching region and rule priority). With the first style, a rule fires for the
first match that is found and no other matching attempts are made for that
region of the document.

e Input annotation types — restrict the input to the grammars in order to im-
prove execution speed and control the range for matching in the document.

The example below shows a JAPE rule with pattern and corresponding action.
(On the LHS, each such pattern is enclosed in a set of round brackets and has a
unique label; on the RHS, each label is associated with an action.) In this exam-
ple, the Lookup annotation is labelled “jobtitle” and is given the new annotation
JobTitle; the TempPerson annotation is labelled “person” and is given the new
annotation “Person”.

Rule: PersonJobTitle
Priority: 20
(
{Lookup.majorType == jobtitle}
) :jobtitle
(
{TempPerson}
) :person -->
:jobtitle.JobTitle = {rule = "PersonJobTitle"},
:person.Person = {kind = "personName", rule = "PersonJobTitle"},

A large proportion of the processing resources bundled with GATE use JAPE.

2.4 FEzxecution strategies

The execution strategies in GATE determine how the algorithms (i.e. processing
resources) are combined to form a complete application and how that application is
executed on the provided input (i.e., language resources such as corpora). These ex-
ecution strategies are implemented in GATE v2 as controllers and the user chooses
the one most suitable for their application.

The two main execution strategies commonly found in LE applications are pipeline
(i.e., sequential) and parallel. For example, GATE’s pipeline controller executes the
PRs in the specified order and with the given parameters (e.g., a document). A
variation of this controller is the corpus pipeline, which executes the PRs sequen-
tially over a given corpus, taking care of loading the documents from the disk (if
necessary), processing each of them, and saving the results.

At present GATE does not provide a controller which supports parallel execution
of PRs, although it is planned for future work. However, it does support execution
of applications on different machines over data shared on the server (see Section
2.5), which enables simultaneous processing of documents.

Other types of execution strategies are conditional (equivalent to an if statement

8 K. Bontcheva and others

- Loaded Processing resources — - Selected Processing resources
Namg Type 1] Name | Type
O & reset Document Reset PR
L] Q- muse gaz ANNIE Gazetteer
@/ rokeniser AMMIE Enalish Tokeniser
’T bnc spoken ast Annotation Set Transfer
4 bnc written ast Annotation Set Transfer
— news ast Annotation Set Transfer
sentence splitter ANNIE Sentence Splitter
complete tagger ANNIE POS Tagger
normal tagger AMNNIE POS Tagger
@& muse grammar ANNIE NE Transducer
@ = om AMNNIE OrthoMatcher
Run "complete tagger™?
’V.Yes 0 @Ne O If value of feature ® |[style | is [cegraded

Corpus: |<nune>
The corpus and document parameters are not available as they are automatically set by the controller!

Name | Type | Required value
{7y inputASName java.lang.String \Muse

{ Parameters for the "complete tagger” ANNIE POS Tagger
[

Fig. 2. GATE’s conditional controller

in programming languages) and iterative (equivalent to loop statements). The con-
ditional controller (see Figure 2) was introduced in GATE v2 in order to allow flex-
ible processing of heterogenous data (e.g., a corpus consisting of documents from
several domains, styles, and genres). The controller allows the user to specify for
each PR the conditions when it can be executed: always; never; or conditionally
— only if a particular feature with a given value is present on the document.

For example, a categorisation module that always fires can assign different genres
to each document as features (e.g., sport, political, business). Then the application
can contain PRs trained specifically for the given type of documents and at exe-
cution time, based on the document type, the controller will determine which PRs
are executed. For example, a text about sport would use a different named entity
recogniser from the one about politics (England is a team in the first case and a
location in the second) or a text in all uppercase would use a different POS tagger
(amongst other things) from a text in mixed case (see Figure 2). However, the ap-
plication will list all alternative PRs (e.g. two POS taggers and 3 entity recognisers)
but only those appropriate for the current document will be executed on it, whereas
a different set of PRs might be executed on the next one.

2.5 D:istributed Language Resources

With the availability of wider bandwidth and the increasingly distributed nature of
research comes a new need for distributed language resources (LRs) which are best
stored on server machines with large amounts of disk space, so they are installed
once and shared among many researchers. An important step towards the creation
of such distributed support is the provision of an efficient and user-friendly client-
server architecture. This problem can be decomposed into two major tasks: (i)

FEvolving GATE to Meet New Challenges in LE 9

providing support for distributed resources stored on a server; and (ii) providing
client tools that are easy to use.

GATE v2 was extended to offer support for server-based language resources by
storing them in relational databases (similar to the way in which ATLAS corpora
and annotations are stored and shared (Ma et al. 02)). The shared LRs are ac-
cessed by the GATE visual environment that acts as a client. Currently Oracle and
PostgreSQL are supported, of which the latter is freely available.

Uniform models for storing and accessing resources in files and databases is an
actively researched area in Information Retrieval (e.g., (Cutting et al. 91)) for stor-
ing indexes and document collections, and for more complex annotation models as
required by language processing applications, e.g., the TIPSTER architecture (Gr-
ishman 97). The difference with GATE’s and ATLAS-based uniform models comes
from the annotation graphs which are more generic and support the association
of more than one graph per document. However, this generality comes at the cost
of more complex database schemas, which leads to slower performance due to the
higher number of join and select operations required.

In order to avoid performance bottlenecks, GATE assumes that each resource is
stored entirely in one place, e.g., file or a given database. It is not possible for parts
of a resource (e.g., document attributes) to reside on different servers or storage
media. Dynamically evaluated attributes and alignment of corpora are also not
supported, which makes the GATE LR model a sub-set of more powerful models
like the CQP (Christ 94). However, unlike in CQP, recursive attribute structures
are supported (e.g., syntax trees).

GATE users are isolated from the ways in which LRs are stored. When choosing
to store an LR in a distributed database, users just have to choose which of the
available servers they want to use and provide their user name and password. Then
GATE transparently converts all LRs in the corresponding database objects and
stores them via JDBC. In this way, all GATE applications are separated from the
technicalities of using a database server for distributed LR storage — distributed
LRs are accessed in the same way as LRs stored on the local file system.

An important aspect of supporting distributed LRs is security and access control.
GATE has role-based access control and every language resource is associated with
security properties specifying the actions that certain users and groups may perform
with this resource. When users create distributed LRs, they specify access rights for
them, their user group and other users. For example, LRs created by one user/group
can be made read-only to others, so they can use the data, but not modify it. The
access rights available in GATE are similar to those of a Unix file system.

3 New GATE Processing Resources

Provided as part of the GATE infrastructure is a set of reusable processing resources
for common LE tasks. (None of them are definitive, and the user can replace and/or
extend them as necessary.) In version 2, these are packaged together to form ANNIE
(A Nearly-New IE system), which is similar to the Vanilla Information Extraction
(VIE) system in GATE v1. The PRs can also be used individually or coupled

10 K. Bontcheva and others

together with new modules in order to create new applications. For example, many
other NLP tasks might require a sentence splitter and POS tagger, but would
not necessarily require resources more specific to IE tasks such as a named entity
recogniser.

ANNIE consists of the following main processing resources: tokeniser, sentence
splitter, POS tagger, gazetteer, name entity tagger (based on JAPE), orthomatcher
and coreference resolver (Cunningham et al. 02). The resources communicate via
GATE’s annotation model discussed in Section 2.2. Since these PRs have analogues
in the VIE system, supplied with GATE vl (Cunningham 02), they will not be
discussed here due to space liminations.

The Information Retrieval (IR) module is a new optional PR that allows the
combination of IE and IR in a single application. First, the IR module can be
used to find relevant documents in a given corpus and then IE modules can be
run to extract relevant information, e.g., in a question-answering application. Also,
Lucene’, the underlying retrieval engine, allows the inclusion of arbitrary features
in the document index, facilitating experiments in NLP-based IR, for example.

The architectural implications of integrating IR were that it lead to the definition
of a generic IR API in GATE which shares commonalities with the TIPSTER IR
model (Grishman 97). It consists of three types of resources: the IR index itself
can be viewed as a GATE LR, the indexing and retrieval is a PR, and the user
interface showing the ranked IR results is a VR. These distinctions are similar to
those made in the object-oriented IR architecture discussed in (Cutting et al. 91).
The difference is mainly in GATE’s corpus abstraction model which is more generic
and ehnahced to meet the requirements of language processing modules, in addition
to IR. The integration of Lucene follows this three-partite GATE IR model and is
done via wrapper code which translates between the two APIs.

3.1 Integration of Machine Learning

In order to be able to use Machine Learning (ML) in GATE, a new model was
designed for interfacing to ML-based classifiers. The aim is by providing support
for a wide range of ML algorithms to facilitate comparative experiments on the
same dataset.

From an architectural perspective, the ML interfaces were designed to be generic
and to make it easier to integrate different classifiers from different toolkits. In
addition, the design provides linguistic information as input to the machine learning
algorithms directly from GATE’s model of annotations. In practice, this means
that a generic mechanism for collecting instances from GATE’s data model was
implemented. It is based on a declarative XML-based specification of mappings
between GATE’s annotation types and their attributes and the input features for
the classifier. Once collected, the data is exported in the format required by the ML
algorithm, which is often a table where each row is an instance and each column is
a feature.

" http://jakarta.apache.org/lucene/docs/index.html

FEvolving GATE to Meet New Challenges in LE 11

Lookup

majorType=currency unit; minorType=pre amount

Token Token Token
kind=symbol kind=word
orth=allCaps

?

A(0)=true

Lookup (0) =true
Lookup.majorType (0) =currency unit
Lookup.minorType (0) =pre_amount
Token (0)=true

Token.kind (0)=word
Token.orth(0)=allCaps

A(-1)=false

Lookup (-1)=true

Lookup.majorType (-1)=currencyUnit
Lookup.minorType (-1)=pre_amount
Token (-1)=true
Token.kind(-1)=symbol
Token.orth(-1)=null

Fig. 3. Example of attributes and their values

When collecting training data, all the annotations of the type specified as in-
stances are found in the given corpus (using GATE’s annotation API), and for each
of them the set of attribute values is determined. All attribute values, provided as
features to the learning algorithm, refer either to the current annotation or to one
situated at a specified relative position (e.g., +1 is the next annotation).

Boolean attributes refer to the presence (or absence) of a particular type of anno-
tation overlapping at least partially with the given instances annotation. Nominal
and numeric attributes refer to features on a particular type of annotation that
(partially) overlaps the given annotation. One of the boolean or nominal attributes
is marked as the class attribute, and the values which that attribute can take are
the labels for the classes to be learned by the algorithm.

Since linguistic information is often used as attributes for ML in LE applica-
tions, GATE provides support for supplying a wide range of linguistic information
— part-of-speech, sentence boundaries, gazetteer lists, and named entity class — as
attributes for the machine learning algorithms. This information, together with to-
kenisation information (kind, orthography, and token length) is obtained by using
the ANNIE PRs supplied with GATE (Cunningham et al. 02). The user chooses
which of this information should be provided as features to the learning algorithm.

For example, Figure 3 shows that the attributes supplied to the learning algo-
rithms are derived from the gazetter annotation overlapping the current instance
(0), the token annotation overlapping the current instance (0), the token annotation
of the previous instance (-1), etc. In this case, instances for learning algorithm are

12 K. Bontcheva and others

defined to be every occurrence of the Token annotation and what is being learned
is the presence or absence of the boolean attribute A.

An ML implementation has two modes of functioning: training — when the model
is being built, and application — when the built model is used to classify new
instances. Our implementation consists of a GATE processing resource that handles
both the training and application phases. It is responsible for detecting all the
instances in a corpus and collecting the attribute values for them. The output writer
is format specific, so new ones will need to be implemented if new ML libraries are
integrated, which use format different from Weka’s.

Depending on the type of the attribute, different actions will be performed when
classification occurs. For boolean attributes, a new annotation of the type specified
in the attribute definition will be created (e.g., annotation of type A). Nominal
attributes trigger the addition of the feature on the annotation of the required type
(Token in the example above), situated at the position of the classified instance. If
no such annotation is present, it will be created.

Currently GATE supports the ML algorithms implemented in the open-source
WEKA library (Witten & Frank 99)%; other implementations are being added in
the SEKT project (see below). WEKA was chosen because it also provides tools
for performance evaluation, testing, and attribute selection. In addition, most of
the ML algorithms in WEKA can provide a probability distribution rather than a
simple classification. This can be used by GATE applications for setting a confidence
threshold, thus enabling a choice of balance between precision and recall.

3.2 Ontology-Based PRs

The addition of support for ontologies in GATE (Section 4.2) enabled the creation
of ontology-based PRs, i.e., PRs that use the ontology as one of their data resources.
One such new component is the ontology-based gazetteer, which treats phrases as
instances of concepts from a given ontology. Based on this information, subsequent
PRs can access the same ontology and perform reasoning with the information
produced by the ontology-based gazetteer, e.g., to obtain the semantic distance
between two concepts. The new gazetteer is not tied to any specific ontology format,
because it uses GATE’s generic ontology model (see Section 4.2).

One of the reasons behind connecting ontologies to the gazetteer lists is to make
the process of editing gazetteer entries part of ontology maintenance. Another ad-
vantage is that it enables GATE PRs to annotate automatically in the texts the
instances already available in the user’s ontology.

The ontology-based gazetteer PR comes with a corresponding VR that supports
editing of the gazetteer lists. The user can also specify how they are connected to
ontology classes. Figure 4 shows the ontology with all instance names displayed on
the right as a gazetteer list. There can be more than one list of instance names
per concept, as shown in this example. In this way, lists provided with the GATE

8 WEKA homepage: http://www.cs.waikato.ac.nz/ml/weka/

FEvolving GATE to Meet New Challenges in LE 13

Cintalogy Cazettesr List
Load Mpar Load Save Save 44 Save 48
4 Owvoobogy a0 ifrigues al |
=4 Logation Aftuanty
= E-Dl.ﬂ'.!"f Ak ania
&j colsntry_cap it Fiderney
5] coisntry_ abbrey, b FASTTY
E] country_acd] 11 Ligdne
1 Regoen
Allerr
il p =R agion o
§ | Water Aerrice
il j Mountain Arndrigue
= paimisrn L Fre e
Mapping Definiian Amencan Semoa
Mew Load Save|Save s, fandorra
sefrecourcesfontology/ news daml Region Andommg
Arglate
ek png &8 antal s rews, dam] Wager g
Argla-Murmands ¢
rigeresour e omalagyy raeer damd: Mounmain
Brgala
Brgpails
il &) radouron i entelogy e daml Provines Antigua ard Barbuda

Fig. 4. Connecting the user’s ontology to the GATE gazetteers

system can be used simultaneously with lists derived from instances in the user’s
ontology. In cases where text is annotated as matching a gazetteer list entry coming
from the ontology, the annotation provides information about its ontological class
and the identifier of the ontology itself. Using this information, subsequent PRs can
find and query the ontology for reasoning purposes.

The JAPE transducer was also extended to provide access to ontologies on the
right-hand side of JAPE rules. This allows JAPE rules to add new information to
ontologies (e.g., instances) or to consult them (e.g., to obtain semantic distance
between concepts). We are also planning to extend the JAPE transducer to take
into account subsumption relations in the ontology when matching on the left-
hand side. So for example, a rule might look for an organization followed by a
location, in order to create the locatedAt relationship between them. If JAPE
takes into account subsumption, then the rule will automatically match all sub-
classes of Organisation in the ontology, e.g., Company, GovernmentOrg.

4 New Types of Language Resources

The two most frequently used language resources in GATE are documents and cor-
pora (collections of documents). Documents have content, features (e.g., encoding,
language), and sets of annotations organised in annotation graphs (see Section 2).

However, experience from GATE v1 showed the need for other types of LRs, such
as lexicons, ontologies, and thesauri, because they are used frequently in many LE
applications and common APIs would greatly facilitate their reuse.

As already discussed, existing GATE PRs like gazetteer lookup and JAPE trans-
ducer were extended to use the new ontology LR. Similarly, other existing PRs
would need to be extended (e.g., by adding a new parameter) if they need to ac-

14 K. Bontcheva and others

@ Gate 2.0betal build 759 1 0 =1oj x|
File Options Tools Help
B, Care Miessages ' Wordiee |
Applications
ok Search Word [oo Search
- (F Language Resources
- Searches forgo: | Noun Verb Adjective fudvers
& Processing Resources — -
(%) Dava stores ok e
The noun go has 3 senses; e Alsa
Hypemym
1. go, spell, tour, rn - 2 ppcanum r which you will be relieved by someone else); ‘its my go’; "a
spell of wark”
Entailment
2. erack, fling, @0, pass, whir orief attempt; *he took a crack atit) 'l gave it a whirl®
3. g5, go game -~ (apanese] YETB GIOUR e players who place counters on a grid; the object s to

surround andl so capture the opponent's counters
The werb go has 30 senses

1. travel, go, move, lacomote -~ change location; move, travel, or procesd; "How fast does your new car go?"
"Wie travelled from Rome to Naples by bus’; “The palicemen went from coor to door laoking for the
suspect’, The soldiers moved towards the city in an attempt to take it before night fel”

2. 9o, procesd, move -— follow & procedure or take a course; "We should @o farther in this mater’; “She wert
through a lot of trouble’; "Go abeut the werld in & certain manner’; "Messages must ge shrough diplomatic
channels”

3. 90, go away, depart -- move away from a place into another direction; “Go away before | start to cry’; The
train departs at noon”

4. become, go, get -~ enter or assume a certain state o condition; *He became annoyed when he heard the
bacl news ‘It must be getting more serious”; "her face went red with anger’; ‘She went into ecstasy’; "Get
aoing!”

5. o -~ be awarded; be allontad; "The first prize goes to Mary’; "Her money went on clothes”

6. run, go - have a particular form; "the story or arqument runs....", "as the saying goes..."

7. run. oo, nass. lead, extend —— strexch out sver distance. seace. time. or scome: pun or extend berveen 7|

Wordier 1.6 [Features Ecer]

Closes the selected resaurces
[e i TS T Il s el e M DG

Fig. 5. The GATE WordNet browser

cess the new LRs, e.g., Wordnet. One way around this problem is to pre-compile
certain information from lexicon LRs as gazetteer lists, which are used instead at
run-time by the original gazetteer PR. For example, lists of jobtitles were compiled
semi-automatically from WordNet and then used for named entity recognition and
anaphora resolution. Naturally, this approach is feasible only when a small, already
known number of queries need to be made to the lexicon.

4.1 Lexicons

Lexicons are a required resource in many language analysis modules. More specif-
ically, in the context of applying NLP technology for the Semantic Web, semantic
resources like thesauri and semantic lexicons like WordNet play an important role
(Buitelaar & Declerck 03). Consequently, GATE’s LR model was extended to cover
certain new types of lexical resources.

A difficulty in lexicon reuse is that each resource has its own representation syn-
tax and covers a particular subset of linguistic phenomena. GATE models lexicons
in an object-oriented way, yielding an initial set of lexicon-specific classes. The com-
monalities between resources are exploited by subsequent, incremental integration
of these classes into one common object model. The representation of objects within
this model is geared towards generally accepted linguistic concepts.

This approach has several advantages: the linguistic knowledge is modelled in a
conceptual and maximally uniform way; the linguistic resources are represented by
maximally uniform data structures; overlaps and differences between resources can
be identified by means of the common object model; the model provides a level
playing field for the evaluation of lexical resources. However, in describing the more

FEvolving GATE to Meet New Challenges in LE 15

specific parts of the model GATE sticks closely to the terminology and structures
of the existing resources.

In other words, the lexicon model starts at a very abstract level defining a lexi-
con as a collection of lemmas which have part-of-speech and several other features,
which tend to be shared among most lexicons (e.g., definitions). If a concrete lex-
icon integrated with this model does not provide some of the information (e.g.,
definitions) then the lexicon wrapper will return an empty value. At lower level of
the lexicon class hierarchy are more specific models of lexicons, e.g., the WordNet
model which also contains synonym sets and support for its semantic relations like
hyponymy, hypernymy, and meronymy.

Fach lexicon is integrated with GATE via a wrapper which is a class towards
the bottom of GATE’s lexicon class hierarchy. Typically the wrapper follows the
structure of the given lexicon and thus defines the lexicon-specific model. However,
due to the existence of the lexicon class hierarchy, a PR which only needs to perform
lexical lookup in order to obtain part of speech information can use the more general
lexicon model, and access the newly integrated lexicon via that more general model,
without need for any adaptation.

This idea is similar to the way GATE supports different document formats, but
the common data model of annotations insulates the PRs from having to handle
each of the formats. At the same time, however, the formatting information is
preserved, so the PR can use or analyse it if required.

The most extensive support is currently provided for WordNet, because it is
the most widely used lexical database, is freely available, and also has semantic
relations, which make it suitable for Semantic Web applications. The GATE object-
oriented model of WordNet follows closely that of the original resource and is based
on synonym sets and the semantic relations defined between them (Miller 95). This
makes it accessible programmatically by any GATE PR via this WordNet APT or
the more generic lexicon API. In addition, a WordNet VR (see Figure 5) is provided
to enable people to browse the resource using a graphical interface similar to that of
the original WordNet browser. The advantages of implementing a new Java-based
browser as part of GATE are:

e reusability: it is easy to reuse and integrate with other Java applications. It
is also easily extendable, because it has a well-defined, public API and open
source code.

e generality: it uses the GATE lexicon object-oriented model, which means
that it can be used to display other lexicons with a similar structure, not just
WordNet.

Recently the lexicon class hierarchy in GATE was extended to support ed-
itable lexicons, as required by language generation applications, which often contain
domain-specific terms not contained in existing NLP lexicons. A corresponding lex-
icon editor was also implemented. This is ongoing work carried out as part of the
MIAKT project (Bontcheva 04).

16 K. Bontcheva and others

4.2 Ontologies

Recent Semantic Web (Fensel et al. 02) developments have increased the need for
LE applications that use ontologies (Fensel 01) and knowledge bases in order to
obtain a formal representation of and possibly reason about their domain (e.g.,
(Saggion et al. 03b; Handschuh et al. 02)). In addition, LE methods can be used to
populate an ontology with new instances discovered in texts or even to construct
an ontology automatically.

Consequently, GATE was extended to provide support for importing, accessing
and visualising ontologies as a new type of Language Resource. Strictly speaking,
ontologies (and knowledge bases) should not be called LRs, because they are lan-
guage independent. However, for backwards compatibility, we decided to keep the
original GATE terminology of LRs. Under this definition Language Resources cover
all types of declarative resources used for language processing, e.g., grammars, lex-
icons, ontologies, as well as corpora and documents.

Some of the ontology functionality is provided through the integration of the
Protégé editor (Noy et al. 01). We also developed GATE-specific ontology visual-
isation, because it facilitates the process of developing and testing PRs that use
ontologies (e.g., gazetteers and JAPE-based modules). This viewer was also incor-
porated recently in a new GATE editor for connecting NLG lexicons to ontologies
(Bontcheva 04).

The proliferation of ontology formats for the Semantic Web, e.g., DAML+OIL
(Horrocks & vanHarmelen 01), OWL (Bechhofer et al. 03), RDF(S) (Lassila &
Swick 99), means that LE applications need to deal with these different formats. In
order to avoid the cost of having to parse and represent ontologies in each of these
formats in each LE application, a common object-oriented model of ontologies with
a unified API (Application Programming Interface) was created.

This approach has well-proven benefits, because it enables each PR to use this
format-independent ontology model, thus making the PRs immune to changes in the
underlining formats. If a new format needs to be supported, the PRs will automat-
ically start using ontologies in this format, due to the seamless format conversion
provided by GATE. From a language engineer’s perspective the advantage is that
they only need to learn one API and model, rather than having to learn many
different and rather idiosyncratic ontology formats.

Since OWL, DAML+OIL and RDF(S) have different expressive powers, GATE’s
ontology model consists of a class hierarchy with a growing level of expressivity. At
the top is a taxonomy class which is capable of representing taxonomies of concepts,
instances, and inheritance between them. Multiple inheritance is not supported.

At the next level is an ontology class which can represent also properties, i.e.,
relate concepts to other concepts or instances. Properties can have cardinality re-
strictions and be symmetric and/or transitive. There are also methods providing
access to their sub- and super-properties and inverse properties. The property model
distinguishes between object (relating two concepts) and datatype properties (re-
lating a concept and a datatype such as string or number).

The expressivity of this ontology model is aimed at being broadly equivalent

FEvolving GATE to Meet New Challenges in LE 17

to OWL Lite. In the case of a DAML+OIL ontology, GATE uses a sub-set of
Jena’s API to read in the model and instantiate the GATE ontology classes. Any
information outside the GATE model is ignored. When reading RDFS, which is
less expressive than OWL Lite, GATE only instantiates the information provided
by that model. If the API is used to access one of these unsupported features, it
returns empty values.

The ontology support is currently being used in several projects that develop
Information Extraction (IE) to populate ontologies with instances derived from
texts (Multiflora (Wood et al. 03), hTechSight (see Section 6)) and also in the
MIAKT project (Bontcheva 04) for language generation from ontologies. The IE
systems produce annotations referring to the concepts and instances in the ontology,
based on their URIs (Uniform Resource Identifiers).

In order to enable quantitative evaluation of such ontology-based TE systems,
as part of the EU-funded SEKT project?, GATE will be extended with document
annotation facilities that support semi-automatic annotation given an ontology,
so appropriately annotated corpora can be created. This editor will be based on
GATE’s annotation schemas which will be extended with optional ontology, class,
and instance features with string values.

5 An Extendable Model of Visual Resources

Visual resources are providing a graphical user interface for viewing and editing
of LRs (e.g., documents) and PRs (e.g., gazetteer lists). The component model of
GATE was extended in version 2 to include VRs, in order to enable extensibility
of GATE’s development environment and reuse of VRs in other applications, thus
overcoming an important limitation of the earlier GATE release. In other words,
the need for reusable and flexible GUI components resulted in one of the biggest

changes in the GATE architecture from version 1.
VRs are discovered by GATE using the CREOLE XML meta-data configuration,
used for PRs and LRs as well. The meta-data for VRs is as follows:

<RESOURCE>
<NAME>Annotations Editor</NAME>
<CLASS>gate.gui.DocumentEditor</CLASS>
<!-- type values can be "large" or "small"-->
<GUI TYPE="large">
<MAIN_VIEWER/>
<RESOURCE_DISPLAYED>gate.Document</RESOURCE_DISPLAYED>
</GUI>
</RESOURCE>

The name and class attributes are the same as for any GATE resource. The GUI

% http: / /sekt.semanticweb.org. The SEKT partners are: British Telecommunications Plc.;
Empolis GmbH; University of Sheffield; University of Karlsruhe; Jozef Stefan Institute;
Institut fur Informatik der Universitat Innsbruck; Intelligent Software Components S.
A.; Kea-pro GmbH; Ontoprise GmbH; Sirma AI Ltd; Vrije Universiteit Amsterdam,;
Autonomous University of Barcelona.

18 K. Bontcheva and others

information specifies the size of the window in which it is to be displayed, whether it
is the main viewer for this resource (resources can have more than one VR associated
with them), and which resource type is displayed/editied by this VR.

The main GATE GUI uses this information to configure itself automatically.
This means that if a new type of resource is introduced (e.g., ontology), a corre-
sponding VR can be implemented and added to the CREOLE repository (e.g., an
ontology editor) and without further programming this VR will become available
in GATE’s visual development environment, associated with the resources it can
handle. Inheritance is used when determining which VRs can show which resources,
e.g., a VR associated with documents will show the three subclasses of database,
file-based, and transient documents. If a new (more specialised) type of LR/PR is
introduced, existing less specialised VRs can be used until a new VR, supporting
the full functionality of the new resource, is developed.

Currently GATE has 11 VRs in its default configuration and 6 optional ones.
Example of available VRs are:

e Document VRs: display document content and the associated annotations
(see Figure 1), including coreference chains.

e Annotation VRs: display/editing of annotations (see Section 5.1), including
specialised editors for tree structures (e.g., sentence trees).

e Corpus VR: allows the creation and editing of corpora.

e Other VRs associated with LRs — ontology VRs, e.g., the onto-gazetteer VR
(Figure 4); lexicon VRs: handle lexicons, such as WordNet (see Figure 5); In-
formation Retrieval VR: displays the IR results as a ranked list of documents.

e VRs associated with applications: allow creation and editing of NLP applica-
tions (see Figure 2).

e VRs associated with PRs: enable editing of the resources used by PRs, such
as the gazetteer lists used by the gazetteer lookup PR; also show the values
of the PR parameters that were specified at creation time.

5.1 Corpus Annotation Facilities

Since many NLP algorithms require annotated corpora for training, GATE’s de-
velopment environment now provides easy-to-use and extendable facilities for text
annotation. These facilities were tested extensively by building corpora of name
entity annotated texts for the MUSE, ACE, and MUMIS applications (Maynard et
al. 01; Saggion et al. 03b). The annotation tools follow the new VR model and are
easy to embed and reuse in other applications.

The annotation can be done manually by the user or semi-automatically by run-
ning some processing resources over the corpus and then correcting/adding new
annotations manually (similar to the pre-tagging functionality in the Alembic work-
bench(Day et al. 97)). Depending on the information that needs to be annotated,
some ANNIE modules can be used or adapted to bootstrap the corpus annotation
task. For example, users from the humanities created a gazetteer list with 18th
century place names in London which, when supplied to the ANNIE gazetteer, en-

FEvolving GATE to Meet New Challenges in LE 19

abled the automatic annotation of location information in a large collection of 18th
century court reports from the Old Bailey in London (Bontcheva et al. 02).

Since manual annotation is a difficult and error-prone task, GATE v2 tries to
make it simple to use and yet keep it flexible. To add a new annotation, one selects
the text with the mouse (e.g., “Mr. Clever”) and then clicks on the desired annota-
tion type (e.g., Person) in the list of types on the right-hand-side of the document
viewer (see Figure 1). If however the desired annotation type does not appear there
or the user wants to provide more detailed information (not just the type), then
an annotation editing dialogue can be used. The XML-based annotation schemas
(see Section 2.2) are used to facilitate and validate the user input. This approach
is similar to NITE’s use of XML schemas for data validation and XML stylesheets
for dynamic creation of annotation interfaces (Carletta et al. 03).

6 Applications

In this section we describe briefly some of the LE applications we have developed
using the new features introduced in GATE v2. The MUSE system (Maynard et
al. 01) is a multi-purpose Named Entity recognition system which is capable of
processing texts from widely different domains and genres, thereby aiming to re-
duce the need for costly and time-consuming adaptation of existing resources to
new applications and domains. MUSE used extensively many of the new features
like the regression testing tools (Cunningham et al. 02) and the conditional execu-
tion strategy (Section 2.4). The MUSE system also exploited the machine learning
facilities in GATE in order to perform NE recognition in Arabic and Chinese.

The hTechSight project'® performs ontology-based IE for semantic tagging of
job adverts, news and reports in the chemical engineering domain. The system
is built using the ontology support in GATE v2. More specifically, the domain
ontology (in DAML+OIL) is accessed via GATE’s ontology model, which makes
the IE components independent from the concrete ontology format, i.e., the same
IE system could be run with an OWL ontology without any change to the PRs.
The terminological gazetteer lists were linked to classes in the ontology model, so
gazetteer lookup provided ontological information. In addition, the GATE ontology
model was used on the right-hand side of the h'TechSight JAPE grammars, so newly
discovered instances (e.g., new job position) were added to the ontology. The GATE
ontology visualisation tools were used during development and debugging.

Another project that benefitted from the new ontology and lexicon support in
GATE v2 is MIAKT (Bontcheva 04). It is developing a set of GATE-compatible
tools for editing, storage, and maintenance of NLG lexicons. The model of NLG
lexicons is an extension of the GATE lexicon model with methods for adding new
lexical entries. The ontology model was used as a basis for a mapping tool which
connects lexical entries to concepts and instances in the ontology. This was required
by the MIAKT application in order to generate reports from ontologies in diverse
formats, e.g., OWL, DAML+OIL.

10 http://http://prise-serv.cpe.surrey.ac.uk/techsight/

20 K. Bontcheva and others

GATE v2 has also been used for corpus annotation (e.g., in the American Na-
tional Corpus project (Macleod et al. 02)), multimedia indexing (Saggion et al.
03b), automatic summarisation (Saggion et al. 03a), e-science (Wood et al. 03),
and digital libraries (Bontcheva et al. 02) (e.g., the Perseus digital library (Crane
02)). Further details about some of the projects using GATE are available at
http://gate.ac.uk/projects.html.

7 Related Work

GATE draws from a large pool of previous work on infrastructures, architectures
and development environments for representing and processing language resources,
corpora, and annotations. Due to space limitations here we will discuss only a
small subset. For a detailed review and its use for deriving the desiderata for this
architecture see (Cunningham 00).

The system most similar in terms of functionality and spirit to GATE is IBM’s
TEXTRACT architecture (Neff et al.). Similar to GATE, TEXTRACT has a
graphical development environment, a number of reusable components (called plu-
gins), a finite state transducer that allows rapid application prototyping, and sup-
port for processing of large corpora. The main differences from GATE are in the
data representation model, the implementation language (C++ vs Java), and the
restriction to language analyser applications. TEXTRACT has led to a new system
called UIMA (Ferrucci & Lally).

Work on standard ways to deal with XML data is also relevant here, such as the
LT XML work at Edinburgh (Thompson & McKelvie 97), WHAT (Schéfer 03),
and NITE (Carletta et al. 03), as is work on managing collections of documents and
their formats, e.g. (Brugman et al. 98; Grishman 97; Zajac 98). We have also drawn
from work on representing information about text and speech, e.g. (Brugman et al.
98; Mikheev & Finch 97; Zajac 98; Young et al. 99), as well as recent annotation
standards, such as the ATLAS project (an architecture for linguistic annotation)
at LDC (Bird et al. 00b). Our approach is also related to work on user interfaces
to architectural facilities such as development environments, e.g. (Brugman et al.
98; Carletta et al. 03) and to work on comparing different versions of information,
e.g. (Paggio 98).

Another relevant area is work on indexing complex structures in annotations.
The Corpus Query System (Christ 94) is a frequently cited source in this area,
providing indexing and search of corpora and later of WordNet. Similar ideas have
been implemented in CUE (Mason 98) for indexing and search of annotated corpora.
Some work on indexing in the LT XML system is reported in (McKelvie & Mikheev
98). (Bird et al. 00a) propose a query language for the LDC annotation graph model,
called AGQL. (Cassidy 02) discusses the use of XQuery as an annotation query
language and concludes that it is good for dealing with hierarchical data models
like XML, but needs extending with better support for network data models like
annotation graphs. In comparison, GATE v2 indexes and retrieves annotations by
storing them in a relational database, indexed by type, attributes and their values,
allowing more than one annotation graph per document. In this way, it is possible

FEvolving GATE to Meet New Challenges in LE 21

to retrieve all documents that contain a given attribute and/or value or retrieve all
annotations of a given type in a corpus, without having to traverse each document
separately. The query language used is SQL.

Flexible and extendable visualisation of the complex linguistic structures fre-
quently encoded in corpora was the focus of the NITE project (Carletta et al.
03). The goal is to provide XML-based tools to help users with building their own
specialised graphical interfaces to manipulate complex data in heavily-annotated
multimodal corpora. Some of the ideas are similar to GATE’s VR model and both
GATE and NITE allow the use of XML schemas to validate user input.

What makes this work particularly novel is that it addresses a very wide range
of issues in LE application development in a flexible and extensible infrastructure.
In addition, it promotes robustness, re-usability, experimental repeatability and
scalability as important principles that help with the construction of practical LE
systems. This paper showed how the original architecture was extended in response
to new challenges by implementing models of lexical and ontological resources,
machine learning, IR, and reusable VRs. Where possible, existing and widely used
implementations of such components were integrated with GATE.

8 Discussion

The GATE architecture has been created with generality in mind. The rationale be-
hind that design decision is to make GATE maximally extendable and independent
of any particular NLP application (e.g., IE, IR). However, generality often entails
more complex data structures and non-optimised implementations. For example,
the new annotation graph data model is more generic than the TIPSTER one and
can accomodate NLG components. On the other hand, we found it to be less effi-
cient when storing LRs in databases, due to the larger number of database tables
and existence of more than one annotation graph per document. In other words,
there is a trade-off between generality and performance and while GATE’s emphasis
is generality, industrially-motivated LE architectures such as TEXTRACT (Neff et
al.) make performance their main priority.

The new types of LRs: lexicons and ontologies — did not require any changes to
the architecture. Instead, the LR hierarchy was enhanced with new classes. The
enhancement of the LR model to include ontologies created a slight terminological
problem because ontologies are not typically considered as modelling language.
However, the essential distinction between data resources (LRs) and algorithms
that use them (PRs) remains valid and maybe, in future releases of GATE, LRs
need to renamed to DRs (data resources) to reflect their wider range and function.

The main change to the architecture, as already discussed in Section 5, came

from the addition of Visual Resources (VRs) which enabled reuse and extensibility
of the GATE GUI components.

22 K. Bontcheva and others

9 Conclusion and Future Work

In this paper we have described recent extensions to a widely-used open-source
infrastructure for language engineering software — GATE — which aims to assist the
development of robust applications and resources for NLP through a generic set
of tools and models. We believe that some of the main reasons for its success are
its extensible and highly customisable nature, which allows the system to evolve
easily in response to new challenges, and its open-source distribution and extensive
documentation and online user support. The system now has thousands of users at
hundreds of sites, and we hope to build on this user base to continue to meet the
challenges posed by the rapid evolution of the LE field.

One future direction is extending the system to handle language generation mod-
ules, in order to enable the construction of applications which require language
production in addition to analysis, e.g. intelligent report generation from IE data.
In order to facilitate reuse and interoperability we plan on building on the RAGS
architecture for language generation (Mellish et al.). We are currently developing
generation tools for the Semantic Web in the context of the MIAKT project. These
requirements for NLG support come from the need for automatic documentation
of ontologies and also for intelligent knowledge publishing (Bontcheva et al. 01).

Another future direction is towards providing better facilities for writing and
debugging GATE’s finite-state grammars, similar to those provided by the TEX-
TRACT architecture (Neff et al.). The main concern is to enable non-expert users
to modify existing and write their own language processing tools, based on GATE’s
JAPE pattern-action language. The requirements arose in the context of our digital
library projects (Bontcheva et al. 02).

The biggest challenge comes from grid-based e-science, the Semantic Web, and
Web services, where LE applications can and should play a vital role. A number
of existing projects, e.g., MIAKT, hTechSight, use Web services to provide inter-
operability between the system’s components, which frequently run on different
hardware and software platforms. Therefore, the existing GATE facilities need to
be extended further in order to enable:

e casy deployment of grid-based LE applications, capable of utilising the vast
computing facilities of the Grid to perform high-speed language processing on
big corpora;

e providing a better synergy between Semantic Web and LE technology by
extending the support for ontologies and knowledge bases and integration
of reasoning and ontology support infrastructures such as Sesame!! or KIM
(Popov et al.).

e use of Web Services for building distributed LE applications.

A closer synergy between Semantic Web and LE infrastructures and standards is
starting to emerge from the perspective of improving resource reusability and inter-
operability through development of standards for encoding annotation data. Recent

" http://sesame.aidministrator.nl/

FEvolving GATE to Meet New Challenges in LE 23

efforts are aimed at the creation of a framework for linguistic annotations based
on XML, RDF, and DAML+OIL/OWL standards for defining the semantics of the
annotations (Ide & Romary). GATE will benefit directly from such standardisa-
tion efforts, because they will improve the compatibility between NLP components
by specifying common definitions of language resources such as lexicons.

Among these, Grid-based computing and Web services support are most likely
to have architectural implications for GATE, amounting to more than integration
of existing tools or implementation of format converters. This work will be carried
out as part of the SEKT project.

References

S. Abney. Partial parsing via finite state cascades. Natural Language Engineering,
2(4):337-344, 1996.

S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness,
P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Language Ref-
erence. Technical report, W3C Proposed Recommendation 15 December 2003,
http://www.w3.org/TR /2003 /PR~owl-ref-20031215/, 2003.

S. Bird, P. Buneman, and W. Tan. Towards a query language for annotation graphs. In
Proceedings of the Second International Conference on Language Resources and Evalu-
ation, Athens, 2000.

S. Bird, D. Day, J. Garofolo, J. Henderson, C. Laprun, and M. Liberman. ATLAS: A flex-
ible and extensible architecture for linguistic annotation. In Proceedings of the Second
International Conference on Language Resources and Evaluation, Athens, 2000.

K. Bontcheva. Open-source Tools for Creation, Maintenance, and Storage of Lexical
Resources for Language Generation from Ontologies. In Proceedings of 4th Language
Resources and Evaluation Conference (LREC’04), 2004.

K. Bontcheva, C. Brewster, F. Ciravegna, H. Cunningham, L. Guthrie, R. Gaizauskas,
and Y. Wilks. Using HLT for Acquiring, Retrieving and Publishing Knowledge in
AKT: Position Paper. In Workshop on Human Language Technology and Knowledge
Management, Toulouse, France, 2001. http://www.elsnet.org/acl2001-hlt+km.html.

K. Bontcheva, D. Maynard, H. Cunningham, and H. Saggion. Using Human Language
Technology for Automatic Annotation and Indexing of Digital Library Content. In
Proceedings of the 6th FEuropean Conference on Research and Advanced Technology for
Digital Libraries (ECDL’2002), Rome, Italy, 2002.

H. Brugman, H. Russel, and P. Wittenburg. An infrastructure for collaboratively building
and using multimedia corpora in the humaniora. In Proceedings of the ED-MEDIA /ED-
TELECOM Conference, Freiburg, 1998.

P. Buitelaar and T. Declerck. Linguistic annotation for the semantic web. In S. Handschuh
and S. Staab, editors, Annotation for the Semantic Web. 10S Press, 2003.

L. Burnard. Users Reference Guide for the British National Corpus.
http://info.ox.ac.uk/bnc/, May 1995.

J. Carletta, S. Evert, U. Heid, J. Kilgour, J. Robertson, and H. Voormann. The NITE XML
Toolkit: flexible annotation for multi-modal language data. Behavior Research Methods,
Instruments, and Computers, 35(3), 2003. Special issue on Measuring Behavior.

S. Cassidy. Xquery as an annotation query language: a use case analysis. In Proceedings
of 3rd Language Resources and Evaluation Conference (LREC’2002), Gran Canaria,
Spain, 2002.

O. Christ. A Modular and Flexible Architecture for an Integrated Corpus Query System.
In Proceedings of the 3rd Conference on Computational Lexicography and Text Research
(COMPLEX ’94), Budapest, 1994. http://xxx.lanl.gov/abs/cs.CL/9408005.

24 K. Bontcheva and others

G. Crane. Cultural Heritage Digital Libraries: Needs and Components. In Proceedings of
the 6th European Conference on Digital Libraries, pages 626—637, Rome, Italy, Septem-
ber 2002. Springer-Verlag Berlin Heidelberg 2002.

H. Cunningham. Software Architecture for Language Engineering. Unpublished PhD
thesis, University of Sheffield, 2000. http://gate.ac.uk/sale/thesis/.

H. Cunningham. GATE, a General Architecture for Text Engineering. Computers and
the Humanities, 36:223-254, 2002.

H. Cunningham, K. Humphreys, R. Gaizauskas, and Y. Wilks. Software Infrastruc-
ture for Natural Language Processing. In Proceedings of the 5th Conference on Ap-
plied Natural Language Processing (ANLP-97), March 1997. http://xxx.lanl.gov/-
abs/cs.CL/9702005.

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A Framework and
Graphical Development Environment for Robust NLP Tools and Applications. In Pro-
ceedings of the 40th Anniversary Meeting of the Association for Computational Linguis-
tics (ACL’02), 2002.

D. Cutting, J. Pedersen, and P.-K. Halvorsen. An Object-Oriented Architecture for Text
Retrieval. In Proceedings of RIAO 91, pages 285-298, Barcelona, 1991.

J. Davies, D. Fensel, and F. van Harmelen, editors. Towards the Semantic Web: Ontology-
driven Knowledge Management. Wiley, 2002.

D. Day, J. Aberdeen, L. Hirschman, R. Kozierok, P. Robinson, and M. Vilain. Mixed-
Initiative Development of Language Processing Systems. In Proceedings of the 5th
Conference on Applied Natural Language Processing (ANLP-97), 1997.

D. Fensel. Ontologies: Silver Bullet for Knowledge Management and Electronic Commerce.
Springer-Verlag, 2001.

D. Fensel, W. Wahlster, and H. Lieberman, editors. Spinning the Semantic Web: Bringing
the World Wide Web to Its Full Potential. MIT Press, 2002.

D. Ferrucci and A. Lally. UIMA: An Architectural Approach to Unstructured Information
Processing in the Corporate Research Environment. Natural Language Engineering.
This issue.

R. Grishman. TIPSTER Architecture Design Document Version 2.3. Technical re-
port, DARPA, 1997. http://wuw.itl.nist.gov/div894/894.02/related projects/-
tipster/.

S. Handschuh, S. Staab, and F. Ciravegna. S-CREAM — Semi-automatic CREAtion of
Metadata. In 13th International Conference on Knowledge Engineering and Knowledge
Management (EKAW02), pages 358-372, Siguenza, Spain, 2002.

I Horrocks and F. van Harmelen. Reference Description of
the DAML+OIL (March 2001) Ontology Markup Language. Technical report, 2001.
http://www.daml.org/2001/03/reference.html.

N. Ide and L. Romary. Standards for language resources. Natural Language Engineering.
This issue.

N. Ide, P. Bonhomme, and L. Romary. XCES: An XML-based Standard for Linguistic
Corpora. In Proceedings of the Second International Language Resources and Evaluation
Conference (LREC), pages 825-830, Athens, Greece, 2000.

O. Lassila and R. Swick. Resource Description Framework (RDF) Model and Syntax
Specification. Technical Report 19990222, W3C Consortium, http://www.w3.org/-
TR/REC-rdf-syntax/, 1999.

X. Ma, H. Lee, S. Bird, and K. Maeda. Models and tools for collaborative annotation. In
Proceedings of 3rd Language Resources and Evaluation Conference (LREC’2002), Gran
Canaria, Spain, 2002.

C. Macleod, N. Ide, and R. Grishman. The American National Corpus: Standardized Re-
sources for American English. In Proceedings of 2nd Language Resources and Evaluation
Conference (LREC), pages 831-836, Athens, Greece, 2002.

FEvolving GATE to Meet New Challenges in LE 25

O. Mason. The CUE Corpus Access Tool. In Workshop on Distributing and Accessing Lin-
guistic Resources, pages 20-27, Granada, Spain, 1998. http://www.dcs.shef.ac.uk/-
“hamish/dalr/.

D. Maynard, V. Tablan, C. Ursu, H. Cunningham, and Y. Wilks. Named Entity Recog-
nition from Diverse Text Types. In Recent Advances in Natural Language Processing
2001 Conference, pages 257-274, Tzigov Chark, Bulgaria, 2001.

A. McEnery, P. Baker, R. Gaizauskas, and H. Cunningham. EMILLE: Building a Corpus
of South Asian Languages. Vivek, A Quarterly in Artificial Intelligence, 13(3):23-32,
2000.

D. McKelvie and A. Mikheev. Indexing SGML files using LT NSL. LT Index documenta-
tion, from http://www.ltg.ed.ac.uk/, 1998.

C. Mellish, D. Scott, L. Cahill, R. Evans, D. Paiva, and M. Reape. A Reference Architec-
ture for Generation Systems. Natural Language Engineering. This issue.

A. Mikheev and S. Finch. A Workbench for Finding Structure in Text. In Fifth Conference
on Applied NLP (ANLP-97), Washington, DC, 1997.

G. Miller. WordNet: a Lexical Database for English. Communications of the ACM, Volume
38(Number 11), November 1995.

M. S. Neff, R. J. Byrd, and B. K. Boguraev. The Talent System: TEXTRACT Architecture
and Data Model. Natural Language Engineering. This issue.

N. Noy, M. Sintek, S. Decker, M. Crubzy, R. Fergerson, and M. Musen. Creating Semantic
Web Contents with Protégé-2000. IEEE Intelligent Systems, 16(2):60-71, 2001.

P. Paggio. Validating the TEMAA LE evalutation methodology: a case study on Danish
spelling checkers. Journal of Natural Language Engineering, 4(3):211-228, 1998.

B. Popov, A. Kiryakov, A. Kirilov, D. Manov, D. Ognyanoff, and M. Goranov. KIM -
Semantic Annotation Platform. Natural Language Engineering. This issue.

H. Saggion, K. Bontcheva, and H. Cunningham. Robust Generic and Query-based Sum-
marisation. In Proceedings of the FEuropean Chapter of Computational Linguistics
(EACL), Research Notes and Demos, 2003.

H. Saggion, H. Cunningham, K. Bontcheva, D. Maynard, O. Hamza, and Y. Wilks. Mul-
timedia Indexing through Multisource and Multilingual Information Extraction; the
MUMIS project. Data and Knowledge Engineering, 2003. To appear.

U. Schafer. WHAT: An XSLT-based Infrastructure for the Integration of Natural Language
Processing Components. In HLT-NAACL 2003 Workshop: Software Engineering and
Architecture of Language Technology Systems (SEALTS), pages 9-16, 2003.

V. Tablan, C. Ursu, K. Bontcheva, H. Cunningham, D. Maynard, O. Hamza, T. McEnery,
P. Baker, and M. Leisher. A Unicode-based Environment for Creation and Use of
Language Resources. In 3rd Language Resources and Evaluation Conference, 2002.

H. Thompson and D. McKelvie. Hyperlink semantics for standoff markup of read-only
documents. In Proceedings of SGML Europe’97, Barcelona, 1997.

I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann, 1999.

M. M. Wood, S. J. Lydon, V. Tablan, D. Maynard, and H. Cunningham. Using parallel
texts to improve recall in IE. In Recent Advances in Natural Language Processing,
Bulgaria, 2003.

S. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev, and P. Woodland. The HTK Book
(Version 2.2). Entropic Ltd., Cambridge, 1999. ftp://ftp.entropic.com/pub/htk/.
R. Zajac. Reuse and Integration of NLP Components in the Calypso Architecture. In
Workshop on Distributing and Accessing Linguistic Resources, pages 34-40, Granada,

Spain, 1998. http://www.dcs.shef.ac.uk/ hamish/dalr/.

