
GateSchool 2011

LinkedData and Advanced Semantic Annotation

Vassil Momtchev and Konstantin Pentchev

Life Sciences at Ontotext AD

Sirma Group

So�a, Bulgaria

20.05.2011

CONTENTS

Contents

1 Working with RDF 2

1.1 Convert between di�erent RDF formats . 3
1.2 Compare RDF �les . 3

2 Querying LinkedData 7

2.1 Get semantic types from LinkedLifeData . 7

3 Custom Vocabulary Gazetteer 9

3.1 Gate Application with LKB Gazetteer . 9
3.2 GateDocuments and Corpora . 12
3.3 JAPE transformations . 14
3.4 Saving the pipeline . 14

4 Semantic Annotations and LinkedData 15

4.1 Annotate data from SPARQL endpoint . 15
4.2 Convert annotated documents to RDF . 16

5 Mimir 18

1

Working with RDF

Introduction

In this hands-on session we will be using two applications: GATE Developer and Talend Open
Studio. You will learn how to create Talend work�ows for reading and writing RDF data,
querying LinkedData, create annotation pipelines, incorporate the GATE pipelines

in your work�ows and index and search annotated data with MIMIR.
The GATE family of products is one of the most widely used tools for performing text

analysis by both research institutions and commercial users. It is freely available for download
from http://gate.ac.uk/download/ with versions for Linux, Windows and Mac. A detailed
manual on the capabilities of the di�erent products is available in the distribution.

Talend will be distributed to you via external HDs or similar. Copy the zip-�le to your
local hard-drive and extract its contents. Start Talend by running the appropriate executable
according to your system (e.g. 32-bit/64-bit; windows/linux). After coming through the regis-
tration page(skip), a dialog prompting for username and workspace project will appear. Create
a new user by pressing on the ellipsis button next to E-Mail. Enter a valid email and change

Figure 1

the path to your workspace accordingly. The default workspace is located in the Talend home
folder and contains the General project, which comes with some example jobs. If it doesn't
appear in the Open �eld automatically after you create the new user, import it manually. Then
press Open load the Talend IDE. At this point it is possible to experience some errors, which
prevent the IDE from loading. Restarting the application should solve the issues.

1 Working with RDF

RDF is a standard model for data interchange on the Web. RDF has features that facilitate
data merging even if the underlying schemas di�er, and it speci�cally supports the evolution of
schemas over time without requiring all the data consumers to be changed. RDF extends the
linking structure of the Web to use URIs to name the relationship between things as well as
the two ends of the link (this is usually referred to as a "triple"). Using this simple model, it
allows structured and semi-structured data to be mixed, exposed, and shared across di�erent
applications. This linking structure forms a directed, labeled graph, where the edges represent
the named link between two resources, represented by the graph nodes. This graph view

2

Convert between di�erent RDF formats

is the easiest possible mental model for RDF and is often used in easy-to-understand visual
explanations (for more theory on RDF see the presentation).

1.1 Convert between di�erent RDF formats

In the following task you will learn the di�erent RDF serialization formats, how to read and
write them. The task will be done entirely in Talend.

Once you have opened the IDE, you will see three panels - the job tree on the left, the
general menu in the bottom and the component's palette on the right. The latter will
be initially empty. Right-click on the Job Designs item in the job tree and select Create job
to start a new work�ow. Specify a name for the job and press Finish. The main panel in the
middle of the screen will now display the design area for the new work�ow and the component's
palette on the right will initialize.

Figure 2

The components for working with semantic data are located under the RDF tab. To read
from an RDF �le use the tRDFParser. Drag-and-drop the component to the design area, then
double click to view the component's properties. It has 5 parameters: Schema allows you to
specify the variables to be passed to the next components; Verify data determines whether to
check the data consistency or not; Autodetect format speci�es whether the component should
try to guess the format or rely on user input; RDF format allows the user to select the �le
format and RDF �le points to the location of the �le. The Schema de�nes a simple data model
as column names. For the RDF component it is the static columns "s", "p", "o" and "g" to
the Schema. For most other components you will have to de�ne it yourselves.

Set the RDF Format to "Turtle" and select the �le COPD.ttl (downloadable with the other
materials from).

The next step is to add the tRDFWriter component to the work�ow, as this is the unit,
which will serialize the data. Connect the two components by right-clicking on the tRDFParser
component, select Row ->Main, then point to the tRDFParser.

The last thing you need to do is select a di�erent RDF format. Try out "RDF-XML" and
"NTriples". Save your job by pressing CTR+S and execute it from General menu -> Run ->
Run.

1.2 Compare RDF �les

In the following we will identify di�erences in the information about the drug Levitra present in
two datasources - DailyMed and DrugBank. Therefore, the available data has been extracted

3

Compare RDF �les

Figure 3

Figure 4

and stored in two RDF �les: dailymedLevitra.n3 and drugbankLevitra.n3. You will learn
how you can compare the contents of RDF �les(and other arbitrary datasources) using Talend.

First add two tRDFParsers to the work�ow and con�gure them to read the two �les. Then
from the Processing family of components add a tMap to the work�ow. This component is the
main and most powerful tool for transforming data and matching schemas. Connect �rst the
dailymed parser and then the drugbank parser as inputs to the tMap.

Figure 5

The next step is to add a tLogRow component from the Logs and Errors tab. This is the
unit, which will provide us with output: it will print the statements to the console. Connect
the tMap to the tLog, whereby you'll be prompted to enter a name for the link. Do not forget

4

Compare RDF �les

to add a schema as well and copy it to the link.

Figure 6

Finally, we need to con�gure how the data is matched. Double-click on the tMap to open
its menu. To the left you will see your input links, grouped with their corresponding columns
from the Schemes and to the right the output link. Note that in row2 there is an additional
column called Expr. key, which is not present in row1. That is so, because the data coming
from row2 will be used as the lookup, against which the data from row1 will be matched. How
this is done is speci�ed in the Expr. key column. For this particular task simply drag-and-drop
the "p" and "o" columns of row1 to the corresponding Expr. keys. Then press on the red
magni�er next to "row2". This will open the settings for the matching. Set the Join Model to
"Inner Join".

Figure 7

What remains to be done is link the input to the output. To do this again drag-and-drop
all columns of row1 to their corresponding counterparts in the output row. Finally, press on
the settings button of the output link and set Catch lookup inner join reject to "true". This
will force only the data from row1, which does not match to be passed to the output.

Press "OK" to close the tMap menu. Now you are ready start the job. The output should
return 28 out of 30 statements, meaning only 2 are shared between the datasources. You can
switch between outputting the shared/di�erent statements by changing the value for Catch
lookup inner join reject.

5

Compare RDF �les

Figure 8

6

Querying LinkedData

2 Querying LinkedData

2.1 Get semantic types from LinkedLifeData

A common question regarding LinkedLifeData is what semantic times are present in the repos-
itory. In the following you will see how to retrieve the UMLS semantic network types, do some
transformations on them and store them for further use, e.g. MIMIR indexing.

To query data from a remote semantic repository the tSPARQLEndpoint is used. Locate
the component , select it and use drag-and-drop to add it to your work�ow. Then double-
click on the icon in the design area to view and edit the component's properties in the general
menu. tSPARQLEndpoint has 5 parameters: URL to repository speci�es the address, where
the remote semantic repository is available; Username and Password can provide credentials if
the repository requires authentication; Schema allows you to specify the variables to be passed
to the next components. These should correspond to the variables selected in the SPARQL
query. Enter the following values in order to retrive the semantic types:

• URL to repository: http://linkedlifedata.com/sparql

• Username and Password: empty

• Schema: one column "tlabel"

• SPARQL query:

PREFIX skos : <http ://www.w3 . org /2004/02/ skos / core\#>

SELECT ? t l a b e l
WHERE {

? s t <http :// l i n k e d l i f e d a t a . com/ re sou r c e / ca lbc / inGroup> ?group .
? s t skos : p r e fLabe l ? t l a b e l

}

Next add a component of type tReplace from the Processing tab in the component's palette.
Connect the two components, by right-clicking on the tSPARQLEndpoint component, choose
Row -> Main and point to the tReplace component (see Fig.9).

Figure 9

Double-click on the tReplace component and from the component's menu deselect the Sim-
ple mode checkbox and and select Advanced mode. Add two rows, with patterns "\\s", "," and
replacements "_", "" respectively. The �rst will convert all whitespace characters to under-
scores and the second will remove all commas from the semantic type labels. Do not forget

7

Get semantic types from LinkedLifeData

to check and alter the components Schema to match the one of its predecessor!

Because we want to simultaniously print the semantic types to the console and write them in
a �le, the next step is to add a tReplicate component from the Orchestration tab. Connect
the tReplace component to the tReplicate component. Finally, add a tLogRow(from Logs and
Errors) and a tFileOutputDelimited(from File/Output). Add a connections from tReplicate to
both of these components. The one remaining thing to do is con�gure the tFileOutputDelim-
ited. Choose a path, where the �le will be saved, set the Row separator to "\n" and the Field
separator to "". Save your job by pressing CTR+S and execute it from General menu -> Run
-> Run.

Figure 10

8

Custom Vocabulary Gazetteer

3 Custom Vocabulary Gazetteer

In the following you will see, how you can populate a gazetteer with a custom set of types
and entities from a remote semantic repository, create a gate application, execute it and store
it for later use. For this you must have GATE Developer installed. Our goal is to annotate
documents from pubmed and extract di�erent diseases from the text.

3.1 Gate Application with LKB Gazetteer

Start the GATE Developer. A window with the IDE should appear on screen (see �g.11).

Figure 11

Create a new GATE application by selecting from the left hand-side menu Applications-
>New->Conditional Corpus Pipeline.

Figure 12

Choose an appropriate name for the application and press "OK". It should appear in the
left hand-side menu below Applications.

Next, you'll need to load the Large Knowledge Base(LKB) Gazetteer plugin. Gazetteers
are the units in GATE, which perform Named Entity Recognition(NRE). The LKB Gazetteer
is special, because it allows you to load your lookup dictionary dynamicaly from a remote
semantic repository using SPARQL. To load the plugin press on the questionmark-shaped icon

9

Gate Application with LKB Gazetteer

in the top-side menu labeled Manage CREOLE Plugins, �nd the Gazetteer_LKB in the list,
check the box for Load now and press "OK".

Figure 13

Now if you right-click on the Processing Resources tab in the left hand-side menu, choose
New and Gazetteer_LKB you will be able to add a new custom processing resource of the type.

Figure 14

You will be prompted to specify the path(directory) to the Gazetteer's resources. These
include a .ttl con�guration �le and a text �le containing the SPARQL query to populate the
dictionary. A sample con�guration �le will look like the following:

10

Gate Application with LKB Gazetteer

\# Gazetteer _LKB d i c t i ona ry c on f i g u r a t i on f i l e .
\#
\# %temp% w i l l be automat i ca l l y r ep laced with the TEMP f o l d e r f o r the cur rent user
\#
@pref ix r d f s : <http ://www.w3 . org /2000/01/ rdf−schema\#>.
@pref ix rep : <http ://www. openrdf . org / c on f i g / r e po s i t o r y \#>.
@pref ix hr : <http ://www. openrdf . org / c on f i g / r epo s i t o r y /http\#>.
@pref ix lkbg : <http ://www. ontotext . com/ lkb _gazetteer\#>.

\# The d i c t i ona ry w i l l be loaded from a remote Sesame HTTP r epo s i t o r y .
\# I t s c on f i g u r a t i on f o l l ow s . See the Sesame con f i gu r a t i on f o r d e t a l s .
\# http ://www. openrdf . org /doc/ sesame2/ us e r s /ch07 . html\#sec t i on−r epo s i t o ry−c on f i g
[] a rep : Repos i tory ;

rep : r epo s i t o ry Imp l [
rep : repos i toryType " openrdf : HTTPRepository" ;
hr : repositoryURL <http :// l i n k e d l i f e d a t a . com/ sparq l>

] ;
rep : r epos i t o ry ID "owlim" ;
r d f s : l a b e l "LinkedLifeData " .

\# The gaze t t e e r−s p e c i f i c opt ions f o l l ow .
lkbg : D i c t i onaryCon f i gura t i on

\# Whether the ga z e e t t e e r w i l l be s e n s i t i v e to case .
\# Pos s i b l e va lue s : c a s e i n s e n s i t i v e , c a s e s e n s i t i v e
lkbg : c a s e S e n s i t i v i t y " c a s e i n s e n s i t i v e " ;

\# Whether the ga z e t t e e r w i l l cache the d i c t i ona ry a f t e r l oad ing i t from the data source .
\# Put " enabled " to enable the cache , any other va lue s w i l l d i s ab l e i t .
lkbg : caching " enabled " .

\# The cache w i l l be automat i ca l l y re loaded on i n i t i a l i z a t i o n i f the c on f i g u r a t i on have been
\# modi f i ed s i n c e the l a s t i n i t i a l i z a t i o n . However , changes in the under ly ing data s to r e
\# can ' t be detec ted and the cache w i l l not be automat i ca l l y re loaded in that case .
\# Thus , i f you expect changes in your datastore , d i s a b l e the cache , or make use
\# of the mod i f i c a t i on s API .

It is important that you set up the repository connection properly. Change the hr:repositoryURL
appropriately to the SPARQL endpoint you wish to query. Other parameters you might need
to alter are rep:repositoryID and rdfs:label. The next thing you will need to do is specify the
SPARQL query in a �le called query.txt. It must return 3 variables, specifying the label of
the concept(literal), its identi�er(URI) and semantic type(URI). These will be included in the
annotations later on. For this usecase, we will require a list of diseases for our dictionary.
The following SPARQL query will return all concepts of type "Disease or Syndrome" from
LinkedLifeData:

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns\#>
PREFIX skos : <http ://www.w3 . org /2004/02/ skos / core\#>

SELECT d i s t i n c t ? l i t e r a l ? concept ? type
WHERE {
{
\# r e t r i e v e a l l UMLS concepts ' p r e f e r r e d l ab e l s , c l a s s i f i e d as "Lung d i s e a s e s "

graph ?g1 {? concept rd f : type ? type} .
graph ?g2 {? type rd f : type <http :// l i n k e d l i f e d a t a . com/ re sou r c e /umls/SemanticNetworkConcept>} .
? concept skos : broader ? root .
? root skos : p re fLabe l 'Lung d i s e a s e s ' .
? concept skos : p re fLabe l ? l i t e r a l }

UNION
{
\# r e t r i e v e a l l UMLS concepts ' a l t e r n a t i v e l ab e l s , c l a s s i f i e d as "Lung d i s e a s e s "

graph ?g1 {? concept rd f : type ? type} .
graph ?g2 {? type rd f : type <http :// l i n k e d l i f e d a t a . com/ re sou r c e /umls/SemanticNetworkConcept>} .
? concept skos : broader ? root .
? root skos : p re fLabe l 'Lung d i s e a s e s ' .
? concept skos : a l tLabe l ? l i t e r a l }

}

11

GateDocuments and Corpora

Once you've created your LKB Gazetteer and added it to the Processing resources you have
to also add it to your application. Double-click on the latter to open it in the main frame.
Then select your LKB Gazetteer and add it by pressing the right-arrow in the middle of the
screen.

Figure 15

3.2 GateDocuments and Corpora

Your application is now capable of performing NER and annotating the text accordingly. To run
the application you'll need to add a Language resource, i.e. a document to be annotated. Do
this by right-clicking on Language resources, then select New -> GATE_Document and then
select a text resource of your liking (e.g. http://linkedlifedata.com/resource/pubmed/id/
18971902).

Figure 16

The document title should appear in the left hand-side menu under Language resources.
Right-click on it and select New Corpus with this Document. This will create a corpus con-
taining the document, which can now be processed by the application.

12

GateDocuments and Corpora

Figure 17

Now from the main application frame select the newly created corpus and annotate the
document(s) in it by pressing Run this Application.

Figure 18

Now double-click on the document title in the left hand-side menu to open it. Then select
the tab Annotation sets, which will open on the right hand-side a panel containing the di�erent
annotation sets(classes). To view the results of your job select the one available option - lookups.

Figure 19

13

JAPE transformations

3.3 JAPE transformations

However, this annotaiton set is not particularly informative and will actually impair further pro-
cessing of the documents, which we would like to perform. In order to enchance the annotation
sets, add an additional Processing resource of type Jape transducer:

Figure 20

Select the jape called umls_transform_priority.jape from GATE.Home/plugins/gazetteer-
0.1/models/gaze/jape. Then add it to the application processing resources similar to how you
did with the LKB Gazetteer and annotate the document anew. Now an additional annotation
set called Disease_or_Syndrome should be available, containing all of our annotations. What
the Jape did is copy the annotations with the annotation type set to the instance type label.

Figure 21

3.4 Saving the pipeline

To reuse the application at a later stage it has to be saved on the hard drive. However, for
the sake of the following exercises, please add an additional processing resource to it �rst - the
ANNIE English Tokenizer. Then right-click on the application name in the right hand-side
menu, select Save Application State and specify an appropriate location for the "*.xgapp" �le.

14

Semantic Annotations and LinkedData

4 Semantic Annotations and LinkedData

LinkedData is a virtually endless source for text data, which can be annotated to extract
meaning. Components for working with the GATE annotation platform in Talend are provided
by Ontotext. This allows fo their seamless integration with semantic data solutions.

4.1 Annotate data from SPARQL endpoint

In the following task you need to query all pubmed articles from LinkedLifeData published in
2008, which concern the therapy of lung diseases. Annotate these articles using the GATE
application from section 3 and view the results.

Start by adding a tSPARQLEndpoint to the new work�ow. Con�gure it using the parame-
ters from section 2.1 and use the following query:

PREFIX pubmed : <http :// l i n k e d l i f e d a t a . com/ re sou r c e /pubmed/>
PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema\#>

SELECT ? id ? content
WHERE {

? id pubmed : year ' 2008 ' .
? id pubmed : abstractText ? content .
? id pubmed : meshHeading ?mesh .
?mesh pubmed : q u a l i f i e r ? q u a l i f i e r .
? q u a l i f i e r r d f s : l a b e l ' therapy ' .
?mesh pubmed : mesh ?meshTerm .
?meshTerm rd f s : l a b e l 'Lung Diseases ' .

}

Adjust the component schema accordingly. This will be our datasource.
The next step would be to add and con�gure the annotation components. This will require

some initialization prior to the annotation process itself. This can be achieved by adding a
tPreJob component to the work�ow from the Orchestration tab. Now add a tGateInstantiator
and connect the tPreJob component to it using a On Component Ok link. Double-click on the
the component to edit its properties: it requires a path to the installation folder of GATE and
the path to the desired GATE application �le (GAPP). If you have already set the environment
variable GATE_HOME to point to the appropriate directory no further action is required,
otherwise uncheck the Use env variable for GATE_HOME button and select it manually.
Finally, select the GAPP you created in section 3.4. Leave the Number of GAPPs to create
in pool set to "1". This parameter is important when parallel executions of the pipeline are
required and should equal the number of threads used.

Figure 22

15

Convert annotated documents to RDF

Now the actual annotation component has to be added � the tGateAnnotator. It has some
speci�cs though: it accepts only iterate links(because of parellelization features) and retrieves
the required document data from an enternal Map object. Therefore, add a tFlowToIterate
component, which will transform the �ow link into an iterate link. Connect tSPARQLEndpoint
to it, add tGateAnnotator and connect it as well. Check the Use preinstantiated Gate box.
Next, to set the Document id and Document content start typing "tFlowToIterate", press
CTRL+SPACE and select tFlowToIterate_1.id and tFlowToIterate_1.content respectively.

Figure 23

Finally, add a tGateDocumentToXML to persist the resulting documents in an XML �le.
Select a �le and check the Append box.

Figure 24

4.2 Convert annotated documents to RDF

The next task is to convert the annotated documents to RDF. This can be done easily imme-
diatly after annotation. Simply replace the tGateDocumentToXML component with a tGate-
DocumentToRDF. When connecting the components, choose not to acquire the schema of the
target component. This component will transform all annotations from a speci�ed annotation
set to rdf triples of the form: <documentId> <predicate> <annotationinstance>. Use the
component with the default parameter settings.

If you want to persist the RDF statements in a �le just add a tRDFWriter component.
What is more interesting is to insert these statements into a semantic repository. In order to do
this, it will su�ce to use the tSesameOutput component. However, it is recommended to use

16

Convert annotated documents to RDF

Figure 25

it together with the tSesameConnection and tSesameConnectionClose components for optimal
performance. Add the former to the preJob process by linking tGateInstantiatior to it using
On Component Ok. Select a storage folder for it and a con�g �le (download from wiki). Next,
set the tSesameOutput to use an existing connection. In addition, because the tSesameOutput
component uses a quadruple schema and the tGateDocumentToRDF a triple schema you need
to use a tMap to map the two. What remains to be done is close the connection when the
processing is �nished. In order to do this add a tPostjob component to the work�ow and link
it to a tSesameConnectionClose similarly to tPrejob.

Figure 26

17

Mimir

5 Mimir

"Mimir is a multi-paradigm information management index and repository which can be used
to index and search over text, annotations, semantic schemas (ontologies), and semantic meta-
data (instance data). It allows queries that arbitrarily mix full-text, structural, linguistic
and semantic queries and that can scale to gigabytes of text. A typical semantic annotation
project deals with large quantities of data of di�erent kinds. Mimir provides a framework for
implementing indexing and search functionality across all these data type."

Mimir makes use of several plugins for storing(ordi, h2, sesame) and accessing data(sparql).
Ontotext provides Talend components for indexing data with Mimir using the sesame plugin.

In the following you will perform indexing with Mimir of annotated documetns. Then
you will import the existing index into your Mimir web application and search it. The web
application is available for download from the course materials page.

The components required for indexing with Mimir are tMimirInitializer, tMimir and tMimir-
Close. We will modify the annotation pipeline from section 5 : replace tSesameConnection
and tSesameConnectionClose with tMimirInitializer and tMimirClose respectively. Remove
tSesameOutput and tGateDocumentToRDF, add tMimir to the work�ow and connect tGateAn-
notator to it. Next, edit the properties of the tMimirInitializer component:

• choose an index dir; the folder must not exist

• check the load annotation types from �le box; select the *.txt �le created in section 2.1

• select the repository con�g �le owlim.ttl (download with other materials)

The annotation types �le speci�es a list of annotation classes, which will be handled by Mimir.
All other will be ignored. Also make sure you have chosen the appropriate annotation set
(empty string for this tutorial).

Figure 27

Next, select the tMimir component, open its properties tab and check the use initialized
index box. You are now ready to index annotated documents.

18

Mimir

Figure 28

If the job was set up properly, 38 documents will be annotated and indexed.
To search the index, you need to deploy the mimir web application (download from gate...;

you are also required to have tomcat installed). Copy the .war �le to the webapps folder of
tomcat and start the server by running startup.bat/startup.sh from the bin folder. If you
were successful, the mimir web application will be accessible at http://localhost:8080/

mimir-demo-3.2.0-snapshot/admin. Import the index by selecting "import an existing index

Figure 29

for searching". Choose a name for your index and enter the path to its folder. Check the
Document URIs are external links box and click on "Import".

Figure 30

Then select "Search this index using the web interface" and a search from should appear.
The query {Disease_or_Syndrome} will return all documents(multiple snippets) containing
disease annotations: The result set should have 29 items. Among the found diseases will be
pneumonia, emphysema, respiratory failure, pulmonary hypertension and others.

19

Mimir

Figure 31

However, such a search is not very speci�c. Ideally, one should be able to provide additional
parameters to constrain the query and receive more speci�c results. A valid case with regard
to our data, is �ltering the diseases by symptoms experienced. To do this, we will send a sparql
query to LinkedLifeData, which will select a set of diseases related to a symptom. Mimir will
then return only matching disease annotations, which are included in the sparql query result
set.

An appropriate symptom from UMLS is Larynx pain, whose URI is http://linkedlifedata.
com/resource/umls/id/C0549373. The Mimir query will look like the following:

{Disease_or_Syndrome spa rq l = "SELECT ? i n s t WHERE {
? i n s t
<http :// l i n k e d l i f e d a t a . com/ re sou r c e / r e l a t i o non t o l o gy /hasSymptom>
<http :// l i n k e d l i f e d a t a . com/ re sou r c e /umls/ id /C0549373>
}"
}

This query will yield only 17 results. You will note that some diseases have been �ltered
out from the results, e.g. respiratory failure.

20

