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ABSTRACT
Recent work on ontology-based Information Extraction (IE)
has tried to make use of knowledge from the target ontology
in order to improve semantic annotation results. However,
very few approaches exploit the ontology structure itself,
and those that do so, have some limitations. This paper in-
troduces a hierarchical learning approach for IE, which uses
the target ontology as an essential part of the extraction pro-
cess, by taking into account the relations between concepts.
The approach is evaluated on the largest available seman-
tically annotated corpus. The results demonstrate clearly
the benefits of using knowledge from the ontology as input
to the information extraction process. We also demonstrate
the advantages of our approach over other state-of-the-art
learning systems on a commonly used benchmark dataset.

Categories and Subject Descriptors: I.2.7 [Natural Lan-
guage Processing]: Text analysis; I.5.2 [Pattern Recogni-
tion]: Classifier design and evaluation.

General Terms: Algorithms; Performance.

Keywords: Ontology-based Information Extraction, seman-
tic annotation, hierarchical learning.

1. INTRODUCTION
At present there is a large gap between Knowledge Man-

agement (KM) systems and the natural language materi-
als that form something approaching 80% of corporate data
stores [22]. Similarly, Gartner reported in 20021 that for at
least the next decade more than 95% of human-to-computer
information input will involve textual language. They also
report that by 2012 taxonomic and hierarchical knowledge
mapping and indexing will be prevalent in almost all informa-
tion-rich applications. There is a tension here: between the
increasingly rich semantic models in KM systems on the
one hand, and the continuing prevalence of human language
materials on the other. The process of tying semantic mod-
els and natural language together is referred to as semantic
annotation. This process may be characterised as the dy-
namic creation of interrelationships between ontologies and
unstructured and semi-structured documents in a bidirec-
tional manner.

1http://www3.gartner.com/DisplayDocument?id=379859
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Information Extraction (IE), a form of natural language
analysis, is becoming a central technology for bridging the
gap between unstructured text and formal knowledge ex-
pressed in ontologies. Ontology-Based IE (OBIE) is IE which
is adapted specifically for the semantic annotation task. One
of the important differences between traditional IE and OBIE
is in the use of a formal ontology as one of the systems inputs
and as the target output.

The main contribution of this paper is in investigating the
application of hierarchical classification learning to semantic
annotation, as part of an ontology-based IE system. Hier-
archical classification takes into account the relations be-
tween concepts, thus benefiting directly from the ontology.
In particular, this paper studies the large margin hierarchi-
cal classification learning algorithm Hieron proposed in [8],
because it is very efficient during both training and classifi-
cation. Computational efficiency is of major importance for
OBIE, because depending on the size of the ontology, the
system may need to train hundreds of classifiers.

However, it should be noted that work presented in this
paper is not a simple application of the Hieron algorithm, as
proposed in [8]. In fact, OBIE specifics lead to two impor-
tant modifications: introduction of multi-loop learning and
a parameter which makes the algorithm applicable on any
IE corpus. Both of these resulted in a quantifiable improve-
ment in performance (see Table 6 in Section 5). In addition,
semantic annotation is very different from document classi-
fication, which is what Hieron was originally developed for.
Consequently, another contribution of this work is in show-
ing how OBIE can be decomposed into several hierarchical
classification tasks, which can then be approached with an
algorithm such as Hieron.

Another important contribution of this work is in the use
of the Sekt2 ontology-annotated news corpus for evaluation.
To the best of our knowledge, it is the only corpus suit-
able for evaluating OBIE, which has a non-trivial number of
classes (146 classes) from an independetly created ontology.

The problem with using only the Sekt corpus is that no
other systems have been evaluated on it, apart from the
SVM and Perceptron ones reported here. Unfortunately
other recent corpora for IE evaluation (e.g., Pascal chal-
lenge3, CONLL’034) are either not fully available or use a

2For further information on the Sekt project, see
http://www.sekt-project.com. The corpus itself is available
on request from the second author.
3http://nlp.shef.ac.uk/pascal/Corpus.html
4http://www.cnts.ua.ac.be/conll2003/ner/



small, flat set of labels (fewer than 20), thus making them
inappropriate for experimenting with semantic annotation
on a realistic scale.

The experimental results demonstrate that our hierar-
chical classification algorithm obtains clearly better results
than SVM and Perceptron both in terms of conventional pre-
cision and recall and also according to an ontology-induced
metric. Additionally, in order to provide some comparison
against state-of-the-art learning IE systems, we also evalu-
ate our Hieron-based system on the seminar corpus, where
it achieves the best overall performance.

The paper is structured as follows. Related work on onto-
logy-based IE is discussed in Section 2 and our work is placed
in that context. Section 3 introduces the large margin hi-
erarchical classification algorithm Hieron, our modifications
to it, the hierarchy-based cost measure, which Hieron re-
quires, and the way in which the OBIE task is formalised
as a classification problem. The Sekt ontology-annotated
gold-standard is described next (section 4), followed by a
comprehensive set of experimental results and their analysis
(section 5). The paper concludes with a discussion and plan
for future work.

2. RELATED OBIE SYSTEMS
Previous work can be regarded as being either ontology-

oriented or ontology-based. Ontology-oriented IE systems
do not incorporate the target ontology into the IE process,
but typically have a mapping between the IE outputs and
classes and instances from the ontology. Ontology-based IE
systems go one step further by also using the ontology as
one of the inputs to the IE algorithms. Next we review first
some ontology-oriented systems.

AeroDAML [16] applies IE techniques to automatically
generate DAML annotations from web pages. AeroDAML
uses an ontology which is used to translate the extraction
results into a corresponding RDF model. Amilcare [6] is
an IE system which has been integrated in several different
semantic annotation tools (MnM [21] and S-CREAM [14]).
It uses supervised rule learning to adapt to new domains and
applications. It treats the semantic annotations as a flat set
of labels, thus ignoring knowledge from the ontology.

One of the problems with these annotation tools is that
they do not provide the user with a way to customise the
integrated language technology directly. While many users
would not need or want such customisation facilities, users
who already have ontologies with rich instance data will ben-
efit if they can make this data available to the IE compo-
nents. However, this is not possible when “traditional” IE
methods like Amilcare are used, because they are not aware
of the existence of the users ontology.

The more serious problem however, as discussed in the S-
CREAM system [14], is that there is often a gap between the
IE output annotations and the classes and properties in the
users ontology. The proposed solution is to write some kind
of rules, such as logical rules, to resolve this. For example,
an IE system would typically annotate London and UK as
locations, but extra rules are needed to specify that there
is a containment relationship between the two (for other
examples see [14]). However, rule writing of the proposed
kind is too difficult for most users and therefore ontology-
based IE is needed, as it annotates directly with the classes
and instances from the user’s ontology.

In response to these problems, a number of OBIE systems

have been developed. Magpie [10] is a suite of tools which
supports semantic annotation of web pages. It is fully au-
tomatic and works by matching the text against instances
in the ontology. The SemTag system [9] is similar in ap-
proach to MagPie as it annotates texts by performing lookup
against the TAP ontology. It also has a second, disambigua-
tion phase, where SemTag uses a vector-space model to as-
sign the correct ontological class. The problem with both
systems is that they are not able to discover new instances
and are thus restricted in terms of recall.

The C-PANKOW system [5] exploits surface patterns and
the redundancy on the Web to categorise automatically named
entities with respect to a given ontology. The advantage is
that it is an unsupervised method, which requires little or
no training data. However, this is also its main disadvan-
tage, because the accuracy of its semantic annotation is not
yet sufficiently close to that of systems such as KIM and
ours. However, it would be interesting to explore in future
the possibility of combining our approach with a web-based
system such as C-PANKOW OntoSyphon [20] is similar to
C-PANKOW and uses the ontology as the starting point
and carries out web mining to populate the ontology with
instances. It uses the ontology structure to determine the
relevance of the candidate instances. However, it does not
carry out semantic annotation of documents, which is the
problem addressed here. The KIM OBIE system [15] pro-
duces annotations linked both to the ontological class and
to the exact individual in the instance base. For new (previ-
ously unknown) entities, new instances are added to the se-
mantic repository. KIM has a rule-based, human-engineered
IE system, which uses the ontology structure during pattern
matching and instance disambiguation. The only shortcom-
ing of this approach is that it requires human intervention
in order to adapt it to new ontologies.

To summarise, the difference between our approach and
the ontology-oriented systems is that we use the ontology
as input to the IE process, not just as an output target. In
comparison to other ontology-based approaches, our system
addresses the limitations of earlier work by using machine
learning for easy retargeting, exploiting the ontology struc-
ture, and carrying out semantic annotation, in addition to
ontology population.

3. EXPLOITING THE ONTOLOGY
Conventional IE uses labels that have no specific relation

among each other, i.e., they are treated as independent the
learning algorithms (e.g., Person, Location). In contrast, as
concepts in an ontology are related to each other (at the very
least through the subsumption hierarchy), it is beneficial to
feed this knowledge into the OBIE algorithms.

This section exploits two aspects of using the ontology
structure for OBIE. First it discusses ontology-induced mea-
sures, which are then used by the learning algorithm, in
addition to calculating some distance-based metrics. Sec-
ondly, it introduces the Perceptron-based learning algorithm
Hieron which has a mechanism to handle effectively hierar-
chical classification and our adaptations of Hieron for the
OBIE requirements.

3.1 Ontology-Based Performance Metric
As concepts in ontologies are related to each other in a

subsumption hierarchy, the cost (or loss) for an instance of a
concept X being wrongly classified as belonging to another



concept Y is defined as dependent on the two particular
concepts (denoted as c(X, Y )). Given this cost measure,
one OBIE requirement is that if the system misclassifies a
mention in the text as belonging to class Y, instead of X, the
cost of that misclassification should be as small as possible,
(e.g., classify it as a super-class of the correct class).

IE systems traditionally use evaluation metrics, such as
precision, recall and F1, which are computed for each cate-
gory, independently of all other categories. An overall per-
formance measure is obtained by averaging the performances
for all categories (namely macro-averaged) or by putting to-
gether all the results of all classifications (micro-averaged).
However, this type of measures do not take into account
the hierarchical relations between classes in the ontology
and their associated misclassification costs. Consequently,
another OBIE requirement is to have performance metrics
which are sensitive to the structure of the target ontology.
Therefore, next we generalise the commonly used IE metrics,
precision, recall and F1 to ontology-based ones.

In order to evaluate an OBIE system on a corpus anno-
tated with a given ontology, we first compute the following
three numbers on the system-annotated corpus:

• n — number of mentions which are instances of con-
cepts in the ontology and have been found by the OBIE
system (regardless of whether or not OBIE assigned
them to the correct class).

• nmissing — number of entities in the corpus which are
instances of concepts in the ontology but are not found
by the system.

• nspurious — number of the entities recognised by the
system which actually are not an instances of any con-
cept in the ontology.

Then for each pair of concepts X and Y we define the cost
measure c(X, Y ) as a non-negative number, equal to 0 if
X = Y . If we assume that C is the largest cost for a
given ontology, then we can define a cost based error as
ecost(X, Y ) = c(X, Y )/C, satisfying that ecost(X, Y ) ∈ [0, 1]
and ecost(X, Y ) = 0 if X = Y .

Based on this cost-based error, an overall accuracy for the
n entities identified by the system is defined as follows:

acost =
n

X

i=1

(1 − ecost(Ai, Bi)) (1)

where Ai and Bi are two classes in the ontology and ecost(Ai, Bi)
is the cost of misclassifying the ith entity as an instance of
class Bi, instead of its correct class Ai (class Bi is the same
as Ai if the ith entity is classified correctly).

Using the overall accuracy acost we define ontology-based
precision and recall, respectively, as

Po = acost/(acost + nspurious), Ro = acost/(acost + nmissing)

Then, as with conventional f-measure, the ontology-based F1

is defined as the harmonic mean of ontology-based precision
and recall:

Fo1 = 2 ∗ Po ∗ Ro/(Po + Ro) (2)

In other words, ontology-based Fo1 is a generalisation of
the standard F1. In fact, if we define the cost c(X, Y ) as the
binary function

c(X, Y ) =



0 if X = Y
1 otherwise

(3)

then Fo1 would be reduced to the standard overall F -measure.
Recent studies of hierarchical classification (see e.g. [8,

2]) typically define c(X, Y ) as the distance γ(X, Y ) between
the two nodes X and Y in the classification hierarchy. In
our experiments we used the distance between two classes
in the ontology as their misclassification cost and henceforth
this is referred to as the distance-based metric.

It should be noted that there are some improvements on
the distance-based cost metric. For example, [23] propose a
measure based on information content and experimentally
showe that the new measure is better than the cost-based
one for measuring the similarity of nouns. [19] present the
BDM measure which, besides the shortest distance of the
two concepts, takes into account the depth of the most spe-
cific common concept of the two concepts and the size of
ontology. [25] present an overview of cost measures used in
hierarchical classificatioin research. An ongoing work of ours
is experimenting with such improved versions of cost-based
metrics with Hieron and OBIE.

3.2 Hierarchical Learning with Hieron
The Hieron large margin learning algorithm for hierarchi-

cal classification was defined by [8], based on the margin
Perceptron algorithm. Hierarchical classification refers to a
specific multi-class classification problem where the class la-
bels are organised in a hierarchical fashion. One example is
document categorisation where categories belong to a tax-
onomy. Here we briefly describe the learning algorithm and
discuss our modifications to the original algorithm and then
discuss how to apply it to OBIE.

As defined, the Hieron algorithm exploits the hierarchical
structure of the class labels. It learns one Perceptron model
for each class and meanwhile ensures that the difference be-
tween two models is in proportion to the distance of the two
classes in the tree. The philosophy of the learning algorithm
is that, if we have to misclassify one example as class X in-
stead of Y , then that class X should be close to the correct
class Y in the hierarchical structure.

Let us suppose a hierarchical classification problem which
has instance domain X ⊆ R

n and label set Y. The labels in
the set Y can be arranged as nodes in a rooted tree T . For
any pair of labels u, v ∈ Y, let γ(u, v) denote their distance
in the tree, namely the number of edges along the (unique)
path from u to v in T . For every label v in the tree, P(v) is
defined as the set of labels along the path from the root to
v, inclusive.

The training set S = {(xi, yi) : i = 1, . . . , m} contains
instance-label pairs, where each xi ∈ X and each yi ∈ Y.
The Hieron learning algorithm aims to learn a classification
function f : X → Y which has a small tree induction error.
The classifier f has the following form: each label v ∈ Y has
a matching prototype Wv ∈ R

n, and the classifier f makes
its predictions according to the following rule:

f(x) = argmaxv∈Y〈W
v ,x〉 (4)

where 〈·, ·〉 represents the inner product of two vectors. Hence,
the task of learning f is reduced to learning a set of proto-
types {Wv : v ∈ Y}.

However, Hieron does not deal directly with the set of pro-
totypes but rather with the difference between the prototype
of each node and the prototype of its parent. Formally, we
denote A(v) as the parent node of v in the tree and assume
that the parent node of a root node is the root itself. Then



the difference weight vector is defined as wv = Wv−WA(v).
Each prototype is now decomposed into the sum

Wv =
X

u∈P(v)

wu (5)

Since the learning algorithm requires that adjacent ver-
tices in the label tree have similar prototypes, by represent-
ing each prototype as a sum of vectors from {wv : v ∈ Y},

adjacent prototypes Wv and WA(v) can be kept close by
simply keeping the norm of the weight vector wv = Wv −
WA(v) small.

The Hieron algorithm assumes that there exists a set of
weight vectors {ωv : v ∈ Y} such that the following hold:

X

v∈P(yi)

〈ωv,xi〉 −
X

u∈P(r)

〈ωu,xi〉 ≥
p

γ(yi, r), (6)

∀(xi, yi) ∈ S and ∀r ∈ Y\{yi}

However, note that this assumption can be relaxed if we
introduce some regularization parameter into the learning
algorithm, as discussed below.

The Hieron learning algorithm is similar to the Perceptron
algorithm as it learns one classifier per class. But, unlike
Perceptron where each model is learnt independently of the
others, it learns the Perceptrons for all classes in a collec-
tive way. The algorithm initialises each of the Perceptron’s
weight vectors {wv : v ∈ Y} as a zero vector and updates
a weight vector only if a prototype related to it makes a
wrong prediction. By doing so the learning algorithm tries
to keep the norm of the weight vector small, which is one of
the requirements as discussed above.

The learning algorithm also tries to satisfy the margins
requirement for the weight vectors and training set shown
in (6). Formally, for each instance-label pair (xi, yi) ∈ S ,
the learning algorithm checks if the current weight vectors
satisfy the margin requirement for each label y 6= yi by
computing the following loss function:

L({wv}, xi, yi, y) =
X

u∈P(y)

〈wu,xi〉 −
X

v∈P(yi)

〈wv, xi〉

+
p

γ(yi, y) (7)

The margin requirement for (xi, yi) and y is satisfied if and
only if the above function is less than or equal to 0. If
the margin requirement is satisfied for all training examples,
then the learning stops and returns the current learnt model.
Otherwise, from all training examples (xi, yi) for which the
margin requirement (6) is violated by the current model, it
chooses the label ŷi that violates the margin requirement
the most (namely it has the maximal value of the function
(7)), and updates the current weight vectors comprising the
two prototypes Wyi and Wŷi , respectively, as illustrated in
Figure 1.

As shown in Figure 1, when a training example x with
label y is predicted mistakenly as label y′, only the weight
vectors associated with the nodes in the shortest path link-
ing nodes y and y′ are updated, except for the node which is
the common ancestor of the two nodes considered. In other
words, only the nodes depicted using solid lines are updated,
in which the symbol ’+’ means increasing the corresponding
weight vector by the example x and the symbol ’-’ means
decreasing the weight vector by x.

As already discussed above, in order to ensure that adja-
cent vertices in the label tree have similar prototypes, the

Figure 1: Illustration of the Hieron’s update.

Hieron algorithm needs to keep the norms of the weight vec-
tor w as small as possible. This is achieved by initialising all
weight vectors to zero and only updating them if necessary.

3.3 Our Hieron Modifications
The learning algorithm described above is the original Hi-

eron batch learning algorithm presented in [8]. In order to
achieve better performance, some modifications were intro-
duced in our implementation, as follows:

1. Our learning algorithm learns from the training set un-
til no error is made on the training examples, which means
that more than one learning loop may be needed on the
training set. In contrast, the original Hieron batch learn-
ing allowed only one learning loop. It will be shown in our
experiments below that multi-loop learning has better gen-
eralisation performance than single loop learning.

2. The original Hieron learning algorithm requires that
the training set is compatible with the margin conditions
described in equation (6), so that the algorithm stops after
a finite number of loops. This is a problem because in OBIE
often it is not known in advance whether or not a training
set satisfies the margin condition. Therefore, we introduce
a regularization parameter into the algorithm such that the
learning would stop after some loops on any training set.
The value of the regularization parameter is a positive num-
ber5. The regularization parameter is similar to that used
for Perceptron (see e.g. [18]). In more detail, the role of the
regularization parameter is to add an extra dimension to the
feature vector of each training example and set the compo-
nent of the dimension as the regularization parameter. By
doing so, the set of training examples with extended fea-
ture vectors would become linearly separable regardless of
the linear separability of the original training set, meaning
that the Hieron algorithm would stop after a finite number
of loops on any training data.

In addition, the original algorithm [8] distinguishes two
types of learning models. One type is weight vectors ob-
tained at the end of learning, namely {wm

t : v ∈ Y}. An-
other is the mean of all weight vectors used during training.
Let us assume that we apply the weight vectors m times
to training examples during learning and the weight vectors
used were {wv

i : v ∈ Y, i = 1, · · · , m}, then for every v ∈ Y

5Although the optimal value of the regularization parameter
may be dependent on the data used, in the experiments here,
we simply set the regularization parameter to 1.



define the means of weight vectors as

wv =
1

m

m
X

i=1

wv
i (8)

It was shown in [8] that the averaged weight vectors had
better results than the last weight vectors in most cases. In
our OBIE experiments we also compare the two types of
weight vectors (see Section 5).

3.4 The Hieron-based OBIE System
As already discussed, the goal of OBIE is to identity and

classify information entities in text as instances of concepts
in an ontology. On the other hand, Hieron is essentially a
learning algorithm which classifies every example into cate-
gories organised in a tree structure. In order to apply Hieron
to OBIE, we need to adapt the OBIE task to make it similar
to hierarchical classification.

First, we convert the OBIE task into two hierarchical clas-
sification problems. Traditionally, when classifiers are used
for information extraction each token in the text is treated
as one example and classified as belonging to one of the
target IE labels or as having no label (see e.g., [12, 17]).
In particular, the annotation task can be viewed as two bi-
nary classification problems, one is for recognising the start
tokens of information entities and the other one is for the
end tokens. Similarly, we transform the OBIE task into two
hierarchical classification problems. For each class in the
ontology, two hierarchical classifiers are trained – one for
recognising the start token of the class instances and one for
the end.

Secondly, as there are tokens in the text which do not
belong to any class in the ontology, in order to apply Hieron
to OBIE, the ontology is extended notionally with a new
child node of the root node, that represents the concept
of non-relevant token. However, this added concept is not
considered in the evaluation metrics, as it is only required
for the proper functioning of the classification algorithm.

Thirdly, note that the Hieron algorithm requires that classes
are organised in a tree. However, for some ontologies, the
class subsumption hierarchy is not a tree, but a graph where
some concepts occur as subclasses of two or more classes. In
other words, some nodes in the ontology may have more
than one parent. The Proton ontology used in our experi-
ments (see below) is one example of this kind of ontology.
For example, the concept SportBuilding is a sub-concept of
Building and SportFacility.

Consequently, the Hieron algorithm had to be adapted
to deal with graph-like hierarchies, such as the Proton on-
tology. The modification made to Hieron is simple. We
compute one prototype vector for each path from the root
node to the given class using formula (5). Then, given one
example during training or application, the inner products
between that example and each prototype vector are com-
pared with each other and the example is assigned the class
whose prototype is most relevant.

Finally, we replace the distance γ(X, Y ) in the Hieron
algorithm with the cost measure c(X, Y ) between two con-
cepts in the ontology. Therefore, we can learn classifiers
which are optimised according to a distance-based cost mea-
sure, which encodes structural knowledge from the ontology.

4. EXPERIMENTAL DATASET
The corpus used in our experiments consists of seman-

tically annotated news articles. The articles were divided
into three subsets according to the article’s theme, namely
business, international politics and UK politics, which has
91, 99 and 100 articles, respectively. The corpus was anno-
tated manually according to the Proton ontology6 and the
experiments below use its psys:Entity branch..

As already discussed above, some concepts in Proton have
more than one parent class. The hierarchical structure of
Proton has 10 levels, with maximum path length 14.

The news corpus was annotated with 146 concepts from
the Proton ontology. The concepts span from the 3rd to
the 10th level of the class hierarchichy . As the corpus was
created within the Sekt project, hereafter we will refer to
the corpus as the Sekt ontology-annotated news corpus.

Table 1: Distribution of concepts with different
numbers of instances in the Sekt ontology-annotated
corpus.
#instances 1 2 3 4 5 6 – 10 11 – 20 >20
#concepts 23 14 12 6 2 13 21 55

Table 1 presents the distribution of concepts with different
numbers of instances in the corpus. We can see that there
are 57 concepts each of which has 5 instances or less, thus
presenting a data sparseness problem.

In order to examine the effect of data sparseness on the
algorithm’s performance, we also created a version of the
corpus where all classes were generalised into 7 high-level
classes, which are broadly equivalent to labels used in tra-
ditional IE systems (e.g., Person, Location, etc). Table 2
presents the numbers of instance of each of the seven con-
cepts in each part of the corpus.

The corpus is pre-processed with the open-source AN-
NIE system, which is part of GATE [7]. This enabled us
to use a number of linguistic features, in addition to in-
formation already present in the document such as words
and capitalisation information. The linguistic features are
domain-independent and include token kind (word, number,
punctuation), lemma, part-of-speech (POS) tag, gazetteer
class, and named entity type according to ANNIE’s rule-
based name entity recogniser7. Table 3 shows an example of
text with its associated features. Note that a token may not
have values for all features, e.g. the token “Time” does not
have value for the Lookup feature because it does not occur
in ANNIE’s gazetteer lists. Our experimental results using
SVM (not presented here due to space limitations) showed
that the simple features alone such as token form, morpho-
logical feature and simple token types can achieve quite good
results and using more sophisticated features such as POS
tag and name entities from ANNIE or a gazetteer only ob-
tained small improvement (less than 2%).

Since in IE the context of the token is usually as impor-
tant as the token itself, the learning algorithm takes into
account features of the preceding and following tokens, in
addition to those of the current token. In our experiments
the same number of left and right tokens was taken as a con-
text window. The window size was set to 4, which means

6See http://proton.semanticweb.org.
7These entity labels are: Person, Organisation, Location,
Date, Money, and Address.



Table 2: Numbers of instances of the seven concepts in the three parts of the Sekt ontology-annotated corpus.

#Doc Person Loc Org Money Contact Temporal Time
Business 91 336 601 1385 490 2 119 743
International 99 948 1857 840 75 1 112 550
UK 100 845 847 845 100 0 106 670

Table 3: Example features for the text “Time: 3:30 PM”. The Unknown value for the word “Time” means
that ANNIE identified the word “Time” as a named entity but could not attribute a more specific entity
type.

Token Case Tokenkind Lemma Pos Lookup ANNIE Entity
Time upperInitial word time NNP Unknown

: punctuation : :
3 number 3 CD Time
: punctuation : : Time

30 number 3 CD Time
PM allCaps word pm NNP time Time

that the algorithm uses features derived from 9 tokens: the
4 preceding, the current, and the 4 following tokens. Due to
the use of a context window, the input vector is the combi-
nation of the feature vector of the current token and these
of its neighboring tokens.

5. EXPERIMENTAL RESULTS
The experiments reported here evaluate our modified im-

plementation of the Hieron learning algorithm on the Sekt
ontology-annotated news corpus. As there are no previously
reported results on this corpus, we compare Hieron against
two state-of-the-art “traditional” learning algorithms for IE:
SVM and Perceptron. Since Hieron exploits the relation-
ships among classes in the ontology, the expectation is that
it would perform better on OBIE than SVM and Perceptron
which were designed basically for flat classification. In other
words, these algorithms ignore the relationships between the
classes and treat them as independent of each other.

As already discussed in section 3.2, the Hieron algorithm
is very similar to the uneven margins Perceptron except that
Hieron takes into account the relationship among classes as
well as the misclassification cost measure c(X, Y ).

In these experiments, we used the uneven margins SVM
and Perceptron with uneven margins (PAUM), instead of
the standard algorithms, because the uneven margins algo-
rithms have better performance than the respective stan-
dard models for IE (see [17]). We used the SVM software
SV M light (see http://svmlight.joachims.org/), with linear
kernel and the parameter C was set to 1. The default set-
tings of the SV M light were adopted for all other SVM pa-
rameters.

Table 4: Comparison of the performance of Hieron,
SVM and Perceptron learning on OBIE: micro-
averaged F1 (%) and distance induced Fo1(%).

Micro-averaged F1 Distance induced Fo1

PAUM SVM Hieron PAUM SVM Hieron
Bu. 74.1 75.3 82.7 78.8 79.3 91.2
Int 77.1 80.1 83.3 83.0 85.9 91.3
UK 82.0 82.9 82.5 83.6 84.4 90.1

Table 4 presents the results of the three learning algo-
rithms on the Sekt ontology-annotated news corpus, mea-
sured both by conventional micro-averaged F1 and the distance-
based Fo1 defined in formula (2). Recall that the micro-
averaged f-measure treats concepts in ontology as indepen-
dent, whereas the distance-based metric takes into account
the relationships in the ontology. In other words, if a men-
tion in the text is found, but assigned mistakenly the wrong
ontology class, then no credit is given with the conventional
micro-averaged F1, but some credit (which is inversely pro-
portional to the distance between the two concepts in ontol-
ogy) will be given by the distance-based measure.

For each algorithm, we run three experiments which use
one of the three subsets of the corpus for testing and the
other two for training.

Firstly, as shown in Table 4, Hieron outperforms the non-
ontology-based IE methods measured by conventional F1.
The 5 to 10% improvement in results demonstrates that the
IE algorithm does benefit from taking into account the re-
lationships between classes in the ontology and using this
information during the learning process to optimise perfor-
mance.

In addition, Hieron consistently achieves significantly higher
performance than SVM and Perceptron according to the
distance-based Fo1, which gives partial credit for ontolog-
ical “near misses”. This increased performance is due to
the optimisation mechanism built into Hieron, where the
distance between the classifiers for two concepts is propor-
tional to the distance of the two concepts in the ontology.
In contrast, SVM and other traditional IE learning methods
are trained to treat each concept independently from the
rest. Consequently, when Hieron misclassifies a mention,
it is much more likely than the flat algorithms to assign a
close concept if it cannot identify the correct one exactly
Consequently, this is the reason for the big difference in
performance between the two metrics.

Table 5 compares the computation times of training and
application of the three learning algorithms on the ontology
corpus. The business and international politics parts of the
corpus were used for training and the UK politics part for
testing. We ran those experiments on a Linux server with
one Pentium 4 CPU (3.0GHz) and 2G RAM. The results



show that Perceptron is very fast, whereas SVM takes much
longer than both Perceptron and Hieron. At the same time,
its performance in all experiment is only marginally better
than that of Perceptron.

Table 5: Training and test times (in second) of the
learning algorithms: Perceptron, SVM, and Hieron.

PAUM SVM Hieron
Training 552s 11450s 3815s
Test 33s 111s 109s

The Hieron algorithm takes longer than Perceptron, but
performs substantially better than both traditional IE algo-
rithms. As the test set consisted of 100 documents, Hieron
effectively took on average 1 second per document.

As already discussed in Section 3.2, we modified the Hi-
eron algorithm presented in [8] by introducing multiple learn-
ing cycles on the training set. We also introduced a regular-
ization parameter to each weight vector to guarantee that
the training would finish after a finite number of learning cy-
cles on any data. Table 6 compares the performance of the
original Hieron version against our modified algorithm, using
the business and international politics subsets for training
and the UK politics subset for testing. Results for the last
weight as well as the mean of all obtained weights during
learning are reported for all three Hieron variants.

Table 6: Comparisons of the three variants of the
Hieron: micro-averaged (MA) F1 (%) and distance
induced Fo1 (%). Training time is shown in second.

Single loop Multi-loop Regularization
Last Mean Last Mean Last Mean

MA 79.8 79.1 81.3 82.2 82.5 82.5
Dist. 89.0 88.3 89.3 89.8 90.1 90.0
Time 510s 989s 54173s 97460s 3815s 11416s

As shown in Table 6, multi-loop learning (300 loops used
in the experiment) on its own achieves better results than
single loop learning, in particular with respect to the conven-
tional micro-averaged F1, showing that multi-loop learning
can exploit better data regularity.

Secondly, when the regularization parameter is added to
the multi-loop learning the performance improves even fur-
ther, while the training time of the former is only about one
fourteenth of the time of the latter.

Finally, averaged weights perform slightly better than the
last weight in some cases and a bit worse in the other cases.
However, this also requires much higher computation time
than the last weights, so there is a trade-off between per-
formance and training time which means that for practical
systems using last weight would probably be more practical.

Last but not least, it should be noted that the difference
in computation times between these variants of the Hieron
algorithm affect only training, whereas application times re-
main the same.

5.1 Scoring Partially Correct Results
When IE systems are evaluated, the entities predicted

by the system are compared to the entities in the human-
annotated gold standard. In the above experiments we used

Hieron to recognise separately the start and end tokens of
the instances. Therefore, if both the start and end bound-
aries are recognised correctly, we say the entity is recognised
correctly or is an exact match to the gold standard. On the
other hand, if only the start or end token match those from
the gold standard, then it is referred to as a partial match
or a partially correct result.

Few IE systems (e.g. [6]) are evaluated by using exact
match only and partially correct results are discarded. How-
ever, traditional large-scale evaluations of IE systems, e.g.,
the Message Understanding Conferences (MUC) give also
credit to partial matches [4]. Consequently, in the experi-
ments reported above, we took into account both correct and
partially correct results and, again following traditional IE
scoring methods, partial results are assigned half the score
of an exact match.

Table 7 compares the results for exact match against those
for correct and partial match combined. Again we use the
business and international politics subsets for training and
the UK politics subset for testing. For exact match Hieron
performs worse than SVM with respect to conventional f-
measure. However, if partially correct results are taken into
account, Hieron’s results are higher, showing that the hier-
archical classifier has better capability than the “flat” SVM
in recognising the presence of instances in the text, even
when it is not able to recognise their boundaries exactly.

Table 7: Comparison of the exact match and partial
match for the SVM and Hieron: conventional micro-
averaged F1 (%) and the distance based Fo1 (%).

F1 Distance Fo1

SVM Hieron SVM Hieron
Exact 79.3 76.7 80.5 82.0
Exact and partial 82.9 82.5 84.4 90.1

5.2 Heterogeneous and Homogenous Data
As already discussed above, the Sekt ontology annotated

corpus contains documents from three different news types,
with around 90 documents of each type. In the experiments
discussed above, we used two of these parts for training and
the third one for testing, resulting in heterogeneous training
and test data. In addition, we ran an experiment where
two third of the documents from each three parts were put
together as training data and the remaining documents were
used for testing. Consequently the training and testing data
in this case are homogenous.

Using 3-fold cross-validation, the mean results were:
conventional F1 = 0.850; distance based F1 = 0.932; Com-
pared to the results of heterogeneous training and testing
data listed in Table 4, the homogenous training and testing
data helped us achieve better results, but not as much as ex-
pected. We attribute this to the fact that the documents in
the corpus are annotated with classes from a general ontol-
ogy (Proton), which does not contain domain specific con-
cepts which only occur in one or two of the subsets.

5.3 Learning curves
In order to establish the effect of data sparseness on the

system’s performance, we carried out experiments to com-
pare the learning curves for the top 7 classes (listed in Ta-
ble 2) with those for all classes in the Sekt ontology an-



notated corpus. The top 7 classes are high level concepts
in the Proton ontology and have sub-concepts. For exam-
ple, Organisation subsumes CommercialOrganisation, Edu-
cationOrganisation and PoliticalEntity, etc. Figure 2 shows
the learning curves, using standard IE micro-averaged F1 on,
respectively, the top 7 classes and all classes. Each experi-
ment constituted of ten runs and in each run N documents
were selected at random from the Sekt ontology annotated
corpus8 as training data and all other documents for testing.
The results for each experiment are the means over the ten
runs, with the confidence intervals at the 95% level.

The results show, unsurprisingly, that the more training
documents are used, the better the results are. Secondly, on
small training sets (10 or 20 documents), the results for the
7 classes are much better than for all classes. This is due
to data sparseness, as each document contains many more
examples when the class labels are generalised to the top 7.
The training time for 7 classes is also much less than that
for all classes, due to the need for training fewer classifiers.
Hence, if detailed information is not required, then learning
fewer high level concepts is better, as it needs less training
data and is also much faster.

Figure 2: Hieron performance on different amounts
of training data for the top 7 classes and all classes
respectively

In addition, it is also interesting to compare the different
performance measures as well as the different learning algo-
rithms on small training sets, because in many applications
there is often only a small amount of annotated training
data. Figure 3 presents the results of Hieron, SVM and
PAUM for all classes on the Sekt ontology annotated cor-
pus, measured both with conventional and distance-based
F1.

Firstly, for Hieron the difference between the conventional
measure and the ontology-induced measure is much larger
on small training data. On the other hand, for SVM (and
PAUM) the differences between the different measures changes
slowly as the dataset grows. This reflects the different learn-
ing mechanisms adopted by Hieron and SVM, respectively.
While the only aim of SVM is to classify every instance
correctly, the Hieron classifier at first tries to classify an
instance as correctly as it possibly can, and if it cannot clas-
sify the instance correctly, it then tries to classify it at the
lowest possible cost, relative to the correct concept. There-
fore, given a sufficiently large training set, Hieron can learn

8Each run we selected the same number of documents from
each of the three parts of the corpus for training. In other
words, the training and test data was homogenous.

a good classifier for each class and when the learnt model is
applied, it would classify many instance correctly and min-
imise the cost on a small number of incorrectly classified
ones. This leads to a small difference between the conven-
tional measure which considers classes separately and the
ontology-based measure which takes into account the rela-
tions between classes.

In contrast, if using a small training set, Hieron might
not be able to learn a good classifier for some individual
classes due to data sparsity. So when this model is applied,
it would classify some examples correctly and minimise the
cost on many of the misclassified instances. Consequently
the ontology-based measure is much higher than the con-
ventional one for small training sets.

Secondly, Hieron has significantly better results than SVM
on almost every training set. The ontology-based measures
for Hieron are much higher than those for SVM, which in
turn outperforms PAUM. On the other hand, PAUM is much
faster for training and testing than both SVM and Hieron.
SVM takes much longer than Hieron, in particular for test-
ing. Hence, overall we can conclude that Hieron is a good
learning algorithm for OBIE, because it balances perfor-
mance and computational complexity.

Figure 3: Comparison of Hieron, SVM and PAUM
performance on small training sets

6. EVALUATION AGAINST OTHER METH-
ODS

Since there are no existing publically available corpora9,
annotated with more than 10 classes, we evaluated our Hieron-
based system on the recently created Sekt corpus. Unfor-
tunately, this makes it difficult to compare our approach

9The most recent Pascal evaluation challenge for IE systems
has not yet released its human-annorated test data, so can-
not be used to compare against other systems.



Table 8: Comparison of our Hieron-based system
to other learning algorithms on the seminar corpus:
F1 (%) on each slot and macro-averaged F1. The
95% confidence interval for MA F1 is presented for
Hieron. The best results for each slot and for overall
performance appear in bold.

speaker location stime etime MA F1

Hieron 75.5 83.1 95.4 93.7 87.0±1.1

SVM 69.0 81.3 94.8 92.7 84.5
(LP )2 77.6 75.0 99.0 95.5 86.8
SNoW 73.8 75.2 99.6 96.3 86.2
MaxEnt 65.3 82.3 99.6 94.5 85.4
BWI 67.7 76.7 99.6 93.9 84.6
HMM 71.1 83.9 99.1 59.5 78.4
Rapier 53.1 73.4 95.9 94.6 79.1

to previous systems, as this corpus is new and no previous
evaluations have been reported on it, except those reported
here.

On the other hand, there exist several benchmarking cor-
pora on which many IE systems have been evaluated. In
order to make a comparison of our Hieron-based learning al-
gorithm to other state-of-the-art learning systems for IE, we
applied our algorithm to the CMU Seminars corpus, which
is a standard benchmark for conventional IE. Since the Sem-
inar corpus has only four types of entity labels with no re-
lations between them, we were unsure whether the Hieron
algorithm could outperform SVM, because Hieron depends
heavily on the hierarchical relations between the labels.

The Seminars corpus has been used for evaluating many
IE systems. This includes rule learning based system such
as Rapier [1], BWI [13], SNoW [24] and (LP )2 [6], as well as
statistical learning systems such as HMM [11] and maximum
entropy (MaxEnt) [3].

The Seminars corpus contains 485 Seminar announcement
posts and is annotated with four types of information enti-
ties, namely start time (stime), end time (etime), speaker
and location of one seminar.

In order to make a fair comparison with other state-of-
the-art learning algorithms for IE, our experiment settings
followed the methodology of Rapier and (LP )2. First, the
results are the average over 10 runs and in each run 243
documents are randomly selected from the corpus as training
data and the remaining 242 are used for testing.

Secondly, as far as possible, we used the same features as
all other systems to enable a more informative comparison.
In particular, the results discussed here, including these of
our system, do not use any gazetteer information or named
entity recogniser input. The only features used in this com-
parison are words, capitalisation information, token types,
lemmas, and POS tags. Finally, we use the exact match
for evaluating the results and do not consider partially cor-
rect annotations (see Section 5.1), because the results of the
other systems were reported in this way.

Since Hieron needs relations among the entity types, in
order to apply it to this corpus, we constructed a trivial
ontology which consists of one concept Thing as a root node,
Entity as the only child of Thing, and the four entity types
Stime, Etime, Speaker and Location as the child concepts of
Entity.

Table 8 presents the results of our Hieron-based algorithm

compared to other IE systems on the Seminars corpus. The
SVM results are from an earlier experiment with an uneven
margins SVM [17]. The results of all other systems were
obtained from the papers cited at the start of this section.

The results show that on each of the four slots our sys-
tem’s performance is not far from the best per-slot measures
which are achieved by different systems. As a result, our
Hieron-based system obtained the best overall performance,
although its performance is not significantly better than the
next two systems: (LP )2 and SNoW. From this, we can con-
clude that our algorithm is also a very good, state-of-the-art
learning algorithm for information extraction.

In our view, the excellent perfomance of our Hieron-based
system is due to its exploiting the trivial seminar ontology
which we created to meet the algorithm’s requirements. In
this ontology, the four classes of interest have the same dis-
tance to each other, whereas the distance is larger between
each of them and the non-entity concept, which we added
to the ontology as a child concept of the top concept Thing.
Consequently, due to Hieron’s learning mechanism, the clas-
sifier for the non-entity class is more different than the clas-
sifiers for these 4 target classes. This may lead to Hieron
making fewer misclassifications than the other learning al-
gorithms (e.g., SVM), which do not explore the asymmetric
similarities between the classes and non-entities in the Semi-
nar corpus. However, the good performance of Hieron on the
Seminar corpus with flat entity labels is worth some further
investigation.

7. CONCLUSION
This paper investigated the adaptation and evaluation on

ontology-based information extraction of a large margin hi-
erarchical classification, Perceptron-like algorithm Hieron.
The algorithm takes into account the relations among con-
cepts, thus benefiting directly from the ontology structure.
We made several modifications to the original Hieron algo-
rithm presented in [8], which, as proven by our evaluation,
led to an improved performance.

The algorithm’s performance is evaluated on the biggest
available semantically annotated corpus, covering 146 con-
cepts from the Proton ontology. Our system is compared to
SVM and Perceptron, which are two state-of-the-art learn-
ing algorithms for IE. The results showed that our hierar-
chical classification algorithm obtained clearly better results
than Perceptron and SVM.

The approach was evaluated on the Sekt ontology-annotated
news corpus, as it is the only corpus for the OBIE which is
annotated with classes from a non-trivial ontology. How-
ever, the problem is that no other systems have been evalu-
ated on it, apart from the SVM and Perceptron comparisons
reported here.

Unfortunately other recent corpora for IE evaluation use a
flat set of labels, thus making them inappropriate for OBIE.
Nevertheless, in order to enable some comparison of our ap-
proach to other work, we also ran Hieron on the Seminar
corpus, despite it having a flat set of labels. The experi-
mental results showed that our system outperformed again
other state-of-the-art learning algorithms, proving that Hi-
eron is well suited for information extraction tasks.

Our implementation of Hieron for OBIE is based on distance-
based cost. We are currently working on using some im-
proved cost measures instead (see the discussions in Section
3.1). Another area of ongoing work is on integrating ac-



tive learning with the Hieron algorithm and also on further
evaluation on related tasks, e.g., opinion mining.
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