

 GATE JAPE Grammar Tutorial
Version 1.0

Dhaval Thakker, PA Photos, UK
Taha Osman, Nottingham Trent University, UK

Phil Lakin, PA Photos, UK

February 27, 2009

Table of Contents

Table of Contents...2

Introduction to General Architecture of Text Engineering (GATE)3

JAPE Rules ..6

Example 1. A simple example to decide the category of sports7

Example 2. Multiple patterns in JAPE grammar ..10

Example 3. Nested Patterns...11

Example 4. Using Part of Speech (POS) features to extract entities15

Example 5. Priority in JAPE rules ..18

Example 6. Handling repetitiveness in patterns using Macro.............................23

Example 7. Using negation operator in JAPE...24

Example 8. Using JAVA in RHS of JAPE Grammar ...25

Example 9. Using a common file as a holder of application specific JAPE

grammar files 26

Example 10. Using JAVA in RHS of JAPE: A complex example27

Example 11. Using Split to control the application of a rule to a single

sentence. 32

Example 12. Co referencing..33

Example 13. Creating Temporary annotations and then deleting at the end

when it is no longer useful. ..36

Example 14. Creating new entities to use in the JAPE grammar......................36

Bibliography ..38

Conventions used in this tutorial:

 Meaning of a term

Tips on how to do things

Worth Remembering or referring back

For improving the readability of the text, important terms are written in times new

roman, italic, and the examples are written in Courier New, italic font such as in

the following:

Phase: firstpass //1

Input: Lookup //2

The tutorial includes number of examples that are referred in the text here. The

examples are in the tutorial folder.

In order to follow this tutorial you must have GATE 5.0 or later version, which is

available from the GATE website.

Introduction to General Architecture of Text
Engineering (GATE)

The writer of this tutorial assumes basic understanding of the GATE system and the

Java programming language. To be more specific, readers shall be familiar with the

working of the GATE interface and ANNIE (A Nearly-New IE system) processing

resources of sentence splitter, tokeniser, POS Tagger, gazetteer and JAPE transducer.

A brief introduction is given below to these components with respect to their use in

this tutorial.

Figure 1 Typical GATE system components

The tokeniser splits the text into very simple tokens such as numbers, punctuation and

words of different types. For example, GATE distinguishes between words in

uppercase and lowercase, and between certain types of punctuation. The aim is to

limit the work of the tokeniser to maximise efficiency, and enable greater flexibility

by placing the burden on the grammar rules, which are more adaptable.

The sentence splitter is a cascade of finite-state transducers which segments the text

into sentences. This module is required for the POS tagger and other modules.

 ANNIE

English Sentence Splitter

English Tokenizer

POS Tagger

Gazetteer

JAPE Transducer

In general terms a transducer is a device that converts one

type of energy to another for various purposes including

measurement or information transfer.

In the context of GATE system here and NLP in general,

transducer is a finite state transducer with two tapes: an

input tape and an output tape. On this view, a transducer is

said to transduce (i.e., translate) the contents of its

input tape to its output tape, by accepting a string on its

input tape and generating another string on its output tape.

The tagger produces a part-of-speech tag as an annotation on each word or symbol.

The list of tags used is given in Appendix E of GATE user guide [1].

The gazetteer list is the lookup list of entities. They are stored in various files which

the GATE Gazetteer uses to detect in generally the initial phases of annotations. JAPE

rules utilize these annotations along with annotations from other processing resources

to further identify patterns/entities from the text.

The GATE framework provides the ability to cascade or chain individual JAPE

transducers together one after another. This chaining allows later JAPE transducers to

work upon the output of earlier JAPE transducers thereby building more and more

complex annotations and incorporating more of the context (semantics) of the

document into the new annotations [2].

Figure 2 GATE GUI and various options (Annotation List and Sets, Individual Annotation)

We will concentrate on JAPE grammar in this tutorial. Please refer to the GATE user

guide for further information on other resources. The terms we refer often in this

tutorial are annotation lists, annotation sets and individual annotations are

highlighted in the Figure 2.

Let us make JAPE a Jolly And Pleasant Exercise for you.

JAPE Rules

A JAPE grammar consists of a set of phases, each of which consists of a set of

pattern/action rules. The grammar always has two sides: Left and Right. The LHS of

the rule contains the identified annotation pattern that may contain regular expression

operators (e.g. *, ?, +). The RHS outlines the action to be taken on the detected

pattern and consists of annotation manipulation statements. Annotations matched on

the LHS of a rule are referred on the RHS by means of labels. For example,

LHS (regular expression for annotation pattern):

i.e., Lookup for annotation player and label it player

RHS (manipulation of the annotation patter from LHS):

Annotation is the act of tagging, commenting or marking media

with some metadata information to identify type or the content of

the media.

In the context of GATE annotation it means creating new or

identifying existing metadata information. For example,

identifying person name from the text.

Important: This tutorial uses two gazetteer lists for

running examples. To avoid the confusion, already

annotated text files are stored in a data store. Hence

to run an example JAPE grammar you shall skip the

tokeniser, splitter and tagger phases and just have to

run the JAPE transducer. You will have to load the data

store in the GUI before running transducer.

 i.e., Get the gender of the player, if gender=male re-label player as Male-

Player, else re-label as Female-Player.

To explain further, we will take a simple example:

Example 1. A simple example to decide the category of sports

Load Example 1.txt document in the GATE GUI from the data store. In the GUI

annotations list window, you will be able to see number of annotations. So far we

have not used any JAPE rule and all the annotations are managed through the lookup

lists from the Gazetteer.

Notice that the type of default annotation is “Lookup”. Now let’s write our first JAPE

rule as we don’t like everything under Lookup and would like annotating entities

according to their right labels. For example, first entity being detected is Soccer {Type

= Lookup, start=0, End=6, id=295, majorType=Sports} and we want to label Soccer

as “Sports”. The rule to achieve this is below:

Phase:firstpass //1

Input: Lookup //2

Options: control = brill //3

Rule: SportsCategory //4

Priority: 20 //5

(//6

{Lookup.majorType == "Sports"} //7

): label //8

--> //9

:label.Sport = {rule= "SportsCategory" } //10

JAPE Grammar 1 SportsCategory.jape

There is no standard JAPE editor available; however from the

available editors Vim (an improved version of UNIX vi editor;

available for windows) does a decent job of highlighting things in

colour and maintaining the brackets. Download vim, install it. To

make JAPE files treated as Java files, go to the filetype.vim from

the installation directory and change the following line

from:

" Java

au BufNewFile,BufRead *.java,*.jav setf java

to:

" Java

au BufNewFile,BufRead *.java,*.jav,*.jape setf java

For associating Jape files to Java editor in Eclipse, you have to

associate ".jape" with the Java editor. In Eclipse on the

Microsoft Windows, you go to the menu at Window | Preferences |

General | Editors | File Associations and then you associate the

default Java editor with *.jape. (This is not verified by this

author)

Explanation of the rule:

Line 1: A JAPE grammar consists of a set of phases, each of which consists of a set

of pattern/action rules. These phases have to be uniquely labelled; here we label our

annotation phase as firstpass. Do note that the name of the phase can be different from

the name of the jape grammar file.

Line2: Input annotations must also be defined at the start of each grammar, these are

the annotations against which the rule will be matched. If no annotations are defined,

the default will be Token, SpaceToken and Lookup hence by default only these

annotations will be considered when attempting a match. Every annotation type that is

going to be matched in that grammar phase must be included in the Input set. Any

annotation type that is not defined will be ignored in the pattern matching.

Line3: At the beginning of each grammar, several options can be set. They could be:

Control - this defines the method of rule matching. Possible options are {Appelt,

Brill, All, Once}. More details on these methods are given in the Example 5.

Debug - when set to true, if the grammar is running in Appelt mode (control option)

and there is more than one possible match, the conflicts will be displayed in the

messages window.

Lin4: Name a rule, in this example the name of the rule is SportsCategory.

Line5: Explained later in the Example 5. For the time being assume that the priority

field (Priority: X) are used for setting priority of the rule over other rules in the same

grammar file.

Lines 6,7 and 8:

(

Always remember to include input annotations that you need to use in

JAPE grammar rule. By default the transducer will include Token,

SpaceToken and Lookup.

{Lookup.majorType == "Sports"}

): label

This is important part of the rule. What we are saying to transducer with this rule is

this: find out annotations with the pattern Lookup.majortype == “Sports” and

temporarily name it “label”. Syntax-wise == and {} are important. The patterns you

are looking for has to be surrounded with {} and under the same closing (). This will

become clearer with more examples.

Line 9 --> is the boundary of the LHS rule. What ever follows this will be RHS Of

the rule!

Line 10

:label.Sport = {rule= "SportsCategory"}

Here we are saying to the transducer that temporary label (from line 8) will be

renamed to “Sport” and the rule that achieves this is “SportsCategory”. Naming a

rule here is important for the debugging purpose as when the rule fires, it will be part

of the annotation properties that you can see in GATE GUI. In this example you will

see Soccer annotated as { rule=SportsCategory}.

The syntax of the line 10 is important to note,

temporary label. New label = {rule= “name of the rule”}

This is a simple example, hence we are not doing much with the RHS of the rule, but

as we go further you will see that we can detect complex patterns from LHS rule and

can do useful stuff on the RHS. Even we can use Java in the RHS….horrayyyyyy!!

Exercise 1: Write your first JAPE Grammar

Write a JAPE grammar for the text in the Example 1.txt file that will create an

annotation for “Footballer”.

Hint: You have to use the existing setup for the example 1 which already has a

Lookup annotation with Footballer as majorType.

Example 2. Multiple patterns in JAPE grammar

It is possible to have more than one pattern and corresponding action in a single JAPE

grammar rule, as shown in the TwoPatterns.jape rule below. On the LHS, each

pattern is enclosed in a set of round brackets and has a unique label; on the RHS, each

label is associated with an action. In this example, the Lookup annotation Title is

labelled “title” and is given the new annotation Title; the Person annotation is labelled

“person” and is given the new annotation Person.

Phase:firstpass

Input: Lookup Token

Options: control = brill

Rule: TwoPatterns

Priority: 20

(

{Lookup.majorType == "Title"}

): title

(

{Lookup.majorType == "Person"}

):person

-->

:title.Title ={rule= "TwoPatterns" },

:person.Person = {rule= "TwoPatterns" }

JAPE Grammar 2 TwoPatterns.jape

Load this grammar as a JAPE transducer and run on the example2.txt file from the

data store.

Notice in the annotation list that the Title (=Sir) has been selected twice. This happens

because the Person is annotated as “Alex” and “Alex Ferguson” (as it happens to be

in the Gazetteer lookup). Hence the rule goes through the loop twice and outputs both

without bothering about the longest match.

Let’s try a variation. First of all delete the annotations marked with “Person” and

“Title”. Now, change the control option to “appelt” and see how the transducer

behaves. The modified rule is already available in the example 2 folder and is called

“TwoPatternsWithAppelt.jape”.

As you have rightly guessed the results have something to do with what you specify

in the control field. Remember from example 1, the options for the control field are

“brill”,” appelt”, “all”, “first” and “once”.

Among these, apart from “brill” you will be using “appelt” the most often. We will

explain these options in eExample 5.

Example 3. Nested Patterns

Let’s first define the problem. Here is the text story (Example 3.txt),

AC Milan player David Beckham is going to comment on his future with

LA Galaxy, who are eager to keep him in USA.

We want to create a grammar rule to detect the name of the player based on the

pattern

If mention of the word “player” followed by a name of a person

Then the person = a player.

Following is the rule that achieves this:

Phase:nestedpatternphase

Input: Lookup Token

//note that we are using Lookup and Token both inside our rules.

Options: control = brill

Rule: playerid

(

 {Token.string == "player"}

)

:temp

(

{Lookup.majorType == Person}

|

(

 {Token.kind==word, Token.category==NNP, Token.orth==upperInitial}

 {Token.kind==word, Token.category==NNP, Token.orth==upperInitial}

)

)

:player

-->

 :player.Player= {rule = "playerid"}
JAPE Grammar 3 nestedpatten.jape

We separate the pattern into two, where the first one is:

(

 {Token.string == "player"}

): temp

The options for the control field are “brill”,” appelt”,

“all”, “first” and “once”.

{Token.string == "player"} captures the first part of the pattern. Note that if you want

to imply that word “player” can be mentioned as “Player”, you could replace it with

{Token.string =~ "[Pp]layer"}. Note the equality signs changes from == to =~.

There are 3 main ways in which the pattern can be specified: following.

• specify a string of text, e.g. {Token.string == "of"}

• specify the attributes (and values) of an annotation. Several operators are

supported (Equality operators (“==” and “!=”))

• Comparison operators (“<”, “<=”, “>=” and “>”) and Regular expression

operators (“=~”, “==~”, “!~” and “!=~”)

o {Token.kind == "number"}, {Token.length != 4} - equality and inequality.

o {Token.string > "aardvark"}, {Token.length < 10} - comparison operators.

>= and <= are also supported.

o {Token.string =~ "[Dd]ogs"}, {Token.string !~ "(?i)hello"} - regular

expression. ==~ and !=~ are also provided, for whole-string matching.

o {X contains Y} and {X within Y} for checking annotations within the

context of other annotations.

We will cover some of these regular expressions in our examples.

Coming back to the example:

The next pattern is:

(

{Lookup.majorType == Person}

|

(

 {Token.kind==word, Token.category==NNP, Token.orth==upperInitial}

 {Token.kind==word, Token.category==NNP, Token.orth==upperInitial}

)

)

Here we are trying to use the existing annotation (Person) through Lookup and as an

option where the Lookup type Person is not available we are trying to using the Part

of Speech (POS) annotation where kind=word, category=NNP and orth=upperInitial.

This when repeated will give us a good indication of the fact that the pattern could be

firstname and lastname of a person. The identification of the POS patterns you need

to use could be debugged in the GUI before creating a general rule. For example, you

know that firstname and lastname of a person will be a Noun, and you can check on

the annotation list to identify how the POS tagger tags such nouns. Here is a snapshot

of such annotations,

The list of tags used is given in Appendix E of GATE user guide [1].

Load the Example 3.txt and run the JAPE transducer over the text. Check the results.

Consider what will happen if there was another word between word “player” and

name of the person? To see the effect, try another example (Example 3a) from the

data store. It will not yield any results. This is because above pattern expects token

player immediately preceded by a person name, which is not the case with this

example. Following alternative rule (nestedpattern-alt.jape) will work.

Phase:nestedpatternphase

Input: Lookup Token

//note that we are using Lookup and Token both inside our rules.

Options: control = appelt

Rule: playerid

(

 {Token.string == "player"}

 {Token}

)

:temp

({Lookup.majorType == Person}

 |

 (

 {Token.kind==word, Token.category==NNP, Token.orth==upperInitial}

 {Token.kind==word, Token.category==NNP, Token.orth==upperInitial}

)

)

:player

-->

 :player.Player= {rule = "playerid"}
JAPE Grammar 4 nestedpattern-alt.jape

Hence when you are sure that there are going to be an unknown token you can keep it

abstract as shown in the above example. But what if you are not too sure?

You can use ({Token})? Which uses? operator to address this problem (see

nestedpattern-alt2.jape).

Phase:nestedpatternphase

Input: Lookup Token

//note that we are using Lookup and Token both inside our rules.

Options: control = appelt

Rule: playerid

(

 {Token.string == "player"}

 ({Token})?

)

:temp

({Lookup.majorType == Person}

|

 (

 {Token.kind==word, Token.category==NNP, Token.orth==upperInitial}

 {Token.kind==word, Token.category==NNP, Token.orth==upperInitial}

)

)

:player

-->

 :player.Player= {rule = "playerid"}
JAPE Grammar 5 nestedpattern-alt2.jape

The grammar nestedpattern-alt2.jape will work with both examples ex3 and ex3a.

Discuss why?

Next stage,

How about applying nestedpattern-alt2.jape for the following example text(Example

3b.txt):

“AC Milan player model mid fielder and englishman David Beckham is

going to comment on his future with LA Galaxy, who are eager to keep

him in USA.”

The option we can use to address the problem is “*” to (see nestedpattern-alt3.jape).

The problem in using such regular expression is the obvious performance penalty.

Hence it is important that we have a good guess of the language pattern in our text to

write these rules.

Exercise 3:

Let’s look at a scenario that only uses tokens to detect a pattern from the text. For

example, IP address is the combination of pattern (number.number.number.number)

and you can write a JAPE Grammar that uses POS Token to detect this pattern. As an

exercise write and run such grammar to detect IPAddress entity from the following

text (exercise3.txt from data store):

“The role internet has played in our lives is quite remarkable. Who

knew we will be known by some numbers such as 132.123.1.22 ?”

For answer see the exercise.jape file.

Example 4. Using Part of Speech (POS) features to extract entities

Let’s say that we want to identify a sports location through its context. For example,

identifying a stadium location where the word “Stadium” is used in various

combinations, i.e. “Emirates Stadium”, “Wembley Stadium”, and “Ben Hill Griffin

Stadium”. We will have to consider these generalities to write a generic rule that is

applicable in all these contexts. Let’s target an example text story (fictional) for

writing this rule (Example 4.txt):

“The sound of the Millennium Stadium when a crowd is watching a football or rugby

match is amazing. If you sit right at the back of a full stadium, you can experience a

tidal wave of cheering approach you from the other side. Invisible, but just as

infectious.

Testing other examples of Sardar Patel Stadium , Emirates Stadium and Wembley

Stadium and Ben Hill Griffin Stadium . However this shall not be picked up Stadium.”

True positives we are after:

Avoid the use of “*” based regular expressions to

improve the performance of the transducer.

Millennium Stadium

Sardar Patel Stadium

Emirates Stadium

Wembley Stadium

Ben Hill Griffin Stadium

False positive we want to ignore are:

Stadium

We can use POS features to achieve the desired results. We know that word

“Stadium” can be used in conjunction with one or two words (Emirates or Ben Hill

Griffin) that must be in upper initial letters, is represented as Token word

(Token.kind== “word”) and is a Noun hence Token.category=NNP (Noun singular)

or NNPS (Noun Plural).

Looking at the POS output in the GUI annotation list and selecting Token from the

list of annotations, will give you lots of information about this. You can study number

of examples in this manner and can generalize them. The jape grammar that achieves

required objectives is locationcontext1.jape from the Example 4 folder and the text

story used for testing is the Example 4.txt from the data store.

(//1

(//2

 (3

 {Token.kind == word, Token.category == NNP, Token.orth == upperInitial}

 |

 {Token.kind == word, Token.category == NNPS, Token.orth == upperInitial}

)//3

 (//4

 {Token.kind == word, Token.category == NNP, Token.orth == upperInitial}

 |

 {Token.kind == word, Token.category == NNPS, Token.orth == upperInitial}

)?

) //2

(5

 {Token.kind == word, Token.category == NNP, Token.orth == upperInitial}

 |

 {Token.kind == word, Token.category == NNPS, Token.orth == upperInitial}

)? //5

)//1

JAPE Grammar 6 locationcontext1.jape

Let’s understand how this is achieved. To simplify how looping works, the grammar

is coloured coded in above. Loop 1 is the whole pattern we are trying to match and

consist of pattern 2 and pattern 5.

Loop2 consists of two patterns: patterns 3 and 4. Let’s see what it tries to find. Loop3

is looking for {any word, with NNP and upperinital or anyword, with NNPS and

upperinital} this will match {Millennium, Sardar, Emirates, Wembley, Ben} from our

example.

Now lets move on to pattern 4, which is repetition of pattern in 3. However notice the

presence of “?” at the end meaning optional. Basically, we want to capture the

possibility of having two words before the word “Stadium”. Using loop 3 and 4 in

loop 2 will match further { Sardar Patel, Ben Hill} from our examples however {

Millennium , Emirates, Wembley} will use ? and escape any matching.

After Loop 2 is run, loop 5 runs, which basically further exploits possibility of another

word. Again there is ? to indicate the optional nature of this loop. Hence this time it

will match as follows for our running example:

{Ben Hill Griffin}, while for others it will be optional.

Hence when the outer loop runs it detects following:

 {Millennium, Sardar Patel, Emirates, Wembley, Ben Hill Griffin}

Now the rest of the program is straightforward, we are trying to make sure that there

is a {Stadium, Circuit, Golf Club} word suffix at the end of this. Pay attention to how

the “Golf Club” is implemented, as they are two words unlike other cases.

(

{Token.string =~ "[Ss]tadium"}

|

{Token.string =~ "[Cc]ircuit"}

|

{Token.string =~ "[Aa]rena"}

|

(

 {Token.string =~ "[Gg]olf"}

 {Token.string =~ "[Cc]lub"}

)

)

Refer to this example when you are trying to write a generic grammar which has

number of patterns within and you need to make some of the patterns optional.

Exercise 4:

1. Write an example that detects location by using context “at”

For example, at London, UK

 at Leeds, Yorkshire

 at the Emirates Stadium

For answers see locationcontext2.jape from Example 4 folder.

Example 5. Priority in JAPE rules

For demonstrating the use of priority in JAPE grammar, we will create few competing

rules that can identify same entities. For example, we want to identify name of a team

based on a few possible contexts. In the first context we use the fact that, in some

sports related articles, player names are mentioned closer to name of their teams in the

same sentence. For instance, in the following text (Example 5.txt) team name is

followed by mention of a player names:

“Manchester United players Park Ji Sung and Jonny Evans are expected to commit

their long-term futures in the coming weeks as the English, European and world

champions continue to plan for life after Sir Alex Ferguson.”

If we have name of the team identified (Manchester United) possibly using gazetteer

or using POS tags, then we can build a rule surrounding. Following is one way of

building such rule:

Rule: teamcontext2

Priority:40

(

 (

 {Token.kind==word,Token.category==NNP,Token.orth==upperInitial}

 {Token.kind==word, Token.category==NNP, Token.orth==upperInitial}

)

 |

 {Token.kind==word, Token.category==NNP, Token.orth==upperInitial}

):team

(

 {Token.string=="players"}

 {Player}

 {Token.string=="and" }

 {Player}

)

-->

:team.Team = {rule= "teamcontext-teamcontext2" }

JAPE Grammar 7 teamcontext.jape (rule teamcontext2)

Following lines from the rule, establishes the fact that the pattern starts with one or

two Noun (NNP) words (i.e. Manchester United, Liverpool)

(

 (

 {Token.kind==word,Token.category==NNP,Token.orth==upperInitial}

 {Token.kind==word, Token.category==NNP, Token.orth==upperInitial}

)

 |

 {Token.kind==word, Token.category==NNP, Token.orth==upperInitial}

):team

And immediately followed by player names with strings “player” and “and” in the

mix.

(

 {Token.string=="players"}

 {Player}

 {Token.string=="and”}

 {Player}

)

Another way of looking at this problem is to not explicitly tell what these strings

could be (“players”, “and”) and handle it with just {Token} as done in the following

rule:

Rule: teamcontext3

Priority:30

(

 (

 {Token.kind==word, Token.category==NNP, Token.orth==upperInitial}

 {Token.kind==word, Token.category==NNP, Token.orth==upperInitial}

)

 |

 {Token.kind==word, Token.category==NNP, Token.orth==upperInitial}

):team

(

 {Token}

 {Player}

 {Token}

 {Player}

)

-->

:team.Team = {rule= "teamcontext-teamcontext3" }
JAPE Grammar 8 teamcontext.jape (rule teamcontext3)

There is one more variety of the context we can use to detect team name here. If we

have name of the city identified then we can say that “City + United”, “City + F.C” or

“City + FC” will be name of the team. See rule below.

Rule: teamcontext1

Priority:50

(

 {City}

 (

 {Token.string=="United" }

 |

 {Token.string=="F.C" }

 |

 {Token.string=="FC" }

)

):team

-->

:team.Team = {rule= "teamcontext-teamcontext1" }
JAPE Grammar 9 teamcontext.jape (rule teamcontext1)

All these competing rules are stored in teamcontext.jape. In the teamcontext.jape file,

by default the control option is set to brill. Let’s look at brill style and what it can do

in theory.

The Brill style means that when more than one rule matches the same region of the

document, they are all fired. The result of this is that a segment of text could be

allocated more than one entity type, and that no priority ordering is necessary. Brill

will execute all matching rules starting from a given position and will advance and

continue matching from the position in the document where the longest match

finishes.

Let’s see what Brill style does with our current example. Load the Example 5.txt file

from the data store. Run the jape grammar with the transducer in the GATE GUI.

You will see that the transducer detects name of the team exactly once through all the

three contexts (Figure 3). This is because, all these three rules match the same region

of the document, hence transducer fires all three rules. As you might have guessed,

we can do without priority ordering here as it had had no effect on the result.

Figure 3 Results using Brill style

You can try the same grammar with All by changing the control to “All”.

The “all” style is similar to Brill, in that it will also execute all matching rules, but the

matching will continue from the next offset to the current one.

For example, where [] are annotations of type Ann

[aaa[bbb]] [ccc [ddd]]

Then a rule matching {Ann} and creating {Ann-2} for the same spans will generate:

BRILL: [aaabbb] [cccddd]

ALL: [aaa[bbb]] [ccc[ddd]]

To explain this in our example, let’s decode following result.

Figure 4 Results with All type

The first three results are same as the ones from the Brill style (Figure 3). The All

style also gathers two more annotations (Start=11, End=17, Rule=teamcontext2,

String= “United”) and (Start=11, End=17, Rule=teamcontext3, String= “United”).

Both the rules (teamcontext2 and teamcontext3) have following common pattern that

result in those two annotations:

(

 (

 {Token.kind==word, Token.category==NNP, Token.orth==upperInitial}

 {Token.kind==word, Token.category==NNP, Token.orth==upperInitial}

) //loop 1

 |

{Token.kind==word, Token.category==NNP, Token.orth==upperInitial} //loop2

):team

In the brill style,

[Manchester United] matches loop 1 from the above while [United] for the loop 2

from the above, hence only selected [Manchester United] the longest match. As Brill

will execute all matching rules starting from a given position and will advance and

continue matching from the position in the document where the longest match

finishes.

In the all style,

[Manchester United] matches loop 1 from the above while [United] for the loop 2

from the above, hence first selects [Manchester United] through loop 1 but goes back

to loop 2 straight after that and also detects [United]. This is because the matching

continues from the next offset to the current one.

With the appelt style, only one rule can be fired for the same region of text, according

to a set of priority rules. Priority operates in the following way.

1. From all the rules that match a region of the document starting at some point

X, the one which matches the longest region is fired.

2. If more than one rule matches the same region, the one with the highest

priority is fired

3. If there is more than one rule with the same priority, the one defined earlier in

the grammar is fired.

Figure 5 Results with Applet option

The longest match is identified here. Infect they are two longest matches that match

the same region of the text. Rules teamcontext2 and teamcontext3 will select

“Manchester United”. However, the priority of the rule teamcontext2 is higher (40)

than the teamcontext3 rule (30) hence only teamcontext2 gets fired. Try swapping the

priority and you will see that teamcontext3 will get selected this time. Marking both

the rules with same priority will fire the rule which is first in the grammar file.

Exercise 3:

1. From the data store, load the exercise5.txt file in the GUI. Also load the

playercontext.jape file from Example 5 folder. Before you run this Jape grammar,

look at the text in exercise5.txt and write down what you would expect the result of

running the program using “Brill”, “Appelt” and “All”. Run the program and see the

results to check against your assumptions and try to understand any differences.

2. The “appelt” control style is the most appropriate for named entity recognition as

under “appelt” only one rule can fire for the same pattern. Do you agree?

Example 6. Handling repetitiveness in patterns using Macro

We can use macros with JAPE grammar with the same effect as in the programming

languages. In the Example 2 of this tutorial, the reusable pattern Lookup.majorType

== Person can be converted in a macro. Look for PersonMacro.jape file from the

folder Example 5 and load it into GUI. Run the jape transducer on Example 6.txt file

to inspect the results. You will achieve same results as with the nestedpattern.jape.

Phase: PersonMacro

Input: Lookup Token

//note that we are using Lookup and Token both inside our rules.

Options: control = appelt

Macro: PERSON

(

{Lookup.majorType == Person}

)

//trying to detect entities with word “player” mentioned before a

person’s name

Rule: playerid

(

 {Token.string == "player"}

)

:temp

(

PERSON

|

 (

 {Token.kind==word, Token.category==NNP, Token.orth==upperInitial}

 {Token.kind==word, Token.category==NNP, Token.orth==upperInitial}

)

)

:player

-->

 :player.Player= {rule = "playerid"}

JAPE Grammar 10 PersonMacro.jape

Example 7. Using negation operator in JAPE

Following shows you how to use a negation operator in JAPE grammar. Let’s take

one example to demonstrate the requirement of the negation operator in entity

extraction. For example, we are looking for titles in the text but particularly not

interested in title “Sir”. The correct rule shall not detect title (“Sir”) from the

following story text (Example 7.txt) but detect “Mr”:

Park Ji Sung and Jonny Evans are expected to commit their long-term

futures to Manchester United in the coming weeks as the English,

European and world champions continue to plan for life after Sir Alex

Ferguson.

However Mr Alex Ferguson was unavailable to comment.

Rule for doing so is in the folder Example 7, NegationOperator.jape.

Rule: negationop

(

 {Lookup.majorType == "Title", !Token.string =~ "[Ss]"}

)

:TitleNotStartingWithS

(

{Lookup.majorType == "Person"}

):person

-->

:TitleNotStartingWithS.Title = {rule= "negationop" },

:person.Person = {rule= "negationop" }

JAPE Grammar 11 NegationOperator.jape

The line:

{Lookup.majorType == "Title",!Token.string =~ "[Ss]"}

Will take care of ignoring the title “Sir” and making sure that person will be

annotated only once as the rule as a whole will be applied.

Example 8. Using JAVA in RHS of JAPE Grammar

The RHS of a JAPE rule can consist of any Java code. This is useful for removing

temporary annotations and for percolating and manipulating features from previous

annotations identified by the LHS. The example text story (Example 8.txt) we are

using for this example is:

Soccer - Rooney Gerrard - File.

Composite file picture of Liverpool 's Steven Gerrard (left ,

dated 27 September 2006) and Manchester United 's Wayne

Rooney (dated 20 August 2006) . On the occasion of his

21st Birthday , Tuesday 24 October 2006 , Wayne Rooney has

hailed England team -mate Steven Gerrard as one of the world

's best midfielders and wishes the Liverpool star could play

at Manchester United .

We would ideally like to annotate name of the Team with label “Team” and also

annotate the team name with the property “teamOfSport” which is already available

through the Lookup.

The JAPE grammar to achieve this is the usingJAVAinRHS.jape.

Phase:usingJAVAinRHS

Input: Lookup

Options: control = all

Rule: javainRHS1

(

 {Lookup.majorType == Team}

)

:team

-->

{

gate.AnnotationSet team = (gate.AnnotationSet)bindings.get("team");

gate.Annotation teamAnn = (gate.Annotation)team.iterator().next();

gate.FeatureMap features = Factory.newFeatureMap();

features.put("teamOfSport",

teamAnn.getFeatures().get("minorType"));

features.put("rule","javainRHS1");

outputAS.add(team.firstNode(), team.lastNode(), "Team",features);

}
JAPE Grammar 12 usingJAVAinRHS.jape

The rule matches a team’s name, e.g. “Manchester United”, and adds a teamOfSport

feature depending on the value of the minorType from the gazetteer list in which the

name was found. We first get the bindings associated with the team label (i.e. the

Lookup annotation). We then create a new annotation called “teamAnn” which

contains this annotation, and create a new FeatureMap to enable us to add features.

Then we get the minorType features (and its value) from the teamAnn annotation (in

this case, the feature will be “teamOfSport” and the value will be “Football_Club”),

and add this value to a new feature called “teamOfSport”. We create another feature

“rule” with value “javainRHS1”. Finally, we add all the features to a new annotation

“Team” which attaches to the same nodes as the original “team” binding.

Note that inputAS and outputAS represent the input and output annotation set.

Normally, these would be the same (by default when using ANNIE, these will be the

“Default” annotation set) however the user is at liberty to change the input and output

annotation sets in the parameters of the JAPE transducer at runtime, it cannot be

guaranteed that the input and output annotation sets will be the same, and therefore

we must specify the annotation set we are referring to.

Example 9. Using a common file as a holder of application specific
JAPE grammar files

So far, we have individual JAPE grammars doing their trick in isolation, however

easily we can contemplate real-world scenarios where you want these grammar to

work together to achieve a complex task. For achieving this, the list of phases can be

specified (in the order in which they are to be run) in a file, conventionally named

main.jape. When loading the grammar into GATE, it is only necessary to load this

main file – the phases will then be loaded automatically. It is, however, possible to

omit this main file, and just load the phases individually, but this is much more time-

consuming. The grammar phases do not need to be located in the same directory as

the main file, but if they are not, the relative path should be specified for each phase.

One of the main reasons for using a sequence of phases is that a pattern can only be

used once in each phase, but it can be reused in a later phase. Combined with the fact

that priority can only operate within a single grammar, this can be exploited to help

deal with ambiguity issues. The solution currently adopted is to write a grammar

phase for each annotation type, or for each combination of similar annotation types,

and to create temporary annotations. These temporary annotations are accessed by

later grammar phases, and can be manipulated as necessary to resolve ambiguity or to

merge consecutive annotations. The temporary annotations can either be removed

later, or left and simply ignored. Generally, annotations about which we are more

certain are created earlier on. Annotations which are more dubious may be created

temporarily, and then manipulated by later phases as more information becomes

available.

See the difference in the syntax of main.jape compared to other jape files that

contains single phase.

MultiPhase: TestTheGrammars

Phases:

firstname

Fullname
JAPE Grammar 13 main.jape

Example 10. Using JAVA in RHS of JAPE: A complex example

Following is a complex example using Java in RHS. To explain what we are after we

will use following text story (Example 10.txt).

“Jane Rooney and Wayne Rooney and Jan Rooney”.

The lookup gazetteer annotates the text as following:

Jane is annotated as majorType = person_first, minorType = female

Wayne is annotated as majorType = person_first, minorType = male

Jan is annotated as majorType = person_first, minorType = ambig

The aim here is to generate full name from this information (Lookup annotation) and

at the same time specify gender component of each such person as a property. We are

after something like:

Fullname = Jane Rooney , gender = female

The rule will be divided into two phases:

The first phase (FirstName) will create an annotation of type FirstPerson that

basically

looks for “Lookup.majorType=person_first” and

creates a gender property by copying minorType values

only if the value is not ambiguous.

Next phase (FullName) will take the FirstPerson annotation and will

Check it the first person is immediately followed by a token which is

orthogonally upperInitial if it is then combine them as Fullname and create a

gender property (by copying from) FirstPerson annotation only where it is

present

Rule: FirstName

// Fred

(

 {Lookup.majorType == person_first}

):person

-->

{

gate.AnnotationSet person =

(gate.AnnotationSet)bindings.get("person");

gate.Annotation personAnn =

(gate.Annotation)person.iterator().next();

gate.FeatureMap features = Factory.newFeatureMap();

//find out if the gender is unambiguous

String gender = (String)personAnn.getFeatures().get("minorType");

boolean ambig = false;

gate.FeatureMap constraints = Factory.newFeatureMap();

constraints.put("majorType", "person_first");

Iterator lookupsIter =

inputAS.get(personAnn.getStartNode().getOffset()).get("Lookup",

constraints).iterator();

while(!ambig && lookupsIter.hasNext()){

 gate.Annotation anAnnot = (gate.Annotation)lookupsIter.next();

 //we're only interested in annots of the same length

if(anAnnot.getEndNode().getOffset().equals(personAnn.getEndNode().get

Offset())){

 ambig = !gender.equals(anAnnot.getFeatures().get("minorType"));

 }

}

if(!ambig) features.put("gender", gender);

features.put("rule", "FirstName");

annotations.add(person.firstNode(), person.lastNode(), "FirstPerson",

features);

}
JAPE Grammar 14 firstname.jape

The example above is more complex, because both the title and the first name (if

present) may have a gender feature. There is a possibility of conflict since some first

names are ambiguous, or women are given male names (e.g. Charlie). Some titles are

also ambiguous, such as “Dr”, in which case they are not marked with a gender

feature. We therefore take the gender of the title in preference to the gender of the

first name, if it is present. So, on the RHS, we first look for the gender of the title by

getting all Title annotations which have a gender feature attached. If a gender feature

is present, we add the value of this feature to a new gender feature on the Person

annotation we are going to create. If no gender feature is present, we look for the

gender of the first name by getting all FirstPerson annotations which have a gender

feature attached, and adding the value of this feature to a new gender feature on the

Person annotation we are going to create. If there is no FirstPerson annotation and the

title has no gender information, then we simply create the Person annotation with no

gender feature.

Phase: Name

Input: FirstPerson Token Lookup

Options: control = appelt debug = true

///

Rule: Fullname

(

 (

 {FirstPerson}

)

 (

 {Token.orth == upperInitial}

 |

 {Token.orth == mixedCaps}

)

)

:person

-->

{

 gate.FeatureMap features = Factory.newFeatureMap();

 gate.AnnotationSet personSet =

(gate.AnnotationSet)bindings.get("person");

HashSet fNames = new HashSet();

fNames.add("gender");

gate.AnnotationSet firstPerson = personSet.get("FirstPerson",fNames);

if(firstPerson != null && firstPerson.size()>0)

{

 gate.Annotation personAnn = (gate.Annotation)

 firstPerson.iterator().next();

 features.put("gender", personAnn.getFeatures().get("gender"));

}

 features.put("kind", "Fullname");

 features.put("rule", "Fullname");

 annotations.add(personSet.firstNode(), personSet.lastNode(),

"Fullname",features);

}
JAPE Grammar 15 Fullname.jape

This is how everything makes sense:

For the text:

Jane Rooney and Wayne Rooney and Jan Rooney

Let’s debug the code

In the first scan LHS will pickup
(

 (

 {FirstPerson}

)

 (

 {Token.orth == upperInitial}

 |

 {Token.orth == mixedCaps}

)

):person

Jane {FirstPerson}

Rooney {Token.orth == upperInitial}

Now on the right hand side,

gate.FeatureMap features = Factory.newFeatureMap();

gate.AnnotationSet personSet =

(gate.AnnotationSet)bindings.get("person");

The above two lines will retrieve personSet annotations from the LHS side (here it

will be Jane Rooney)

HashSet fNames = new HashSet();

fNames.add("gender");

gate.AnnotationSet firstPerson = personSet.get("FirstPerson",fNames);

Above three lines will find retrieve FirstPerson with gender feature for this iteration.

For example it is Jane (gender=female)

Now,

if(firstPerson != null && firstPerson.size()>0)

 {

gate.Annotation personAnn = (gate.Annotation)

firstPerson.iterator().next();

features.put("gender", personAnn.getFeatures().get("gender"));

 }

First line checks if firstPerson is available, if it is then attempts to retrieve gender of

the First Person and adds into new feature list. However if there is no gender

available, then we still want to create a firstname.

features.put("kind", "Fullname");

features.put("rule", "Fullname");

annotations.add(personSet.firstNode(), personSet.lastNode(),

"Fullname",features);

The example folder also includes a slightly different version of this program and is for

the debugging purpose (Fullname_Debugmode.jape).

Example 11. Using Split to control the application of a rule to a single
sentence.

We would like to write a grammar rule where the player is identified by its context.

Following is an example text (Example 11.txt):

Wayne Rooney is a player of Manchester United. He is not of Arsenal.

We want to concentrate on the fact that this context is identified by pattern such as

“unknown………….of…………..Team”, hence concluding that unknown = player,

team= Team. However we want to avoid asserting in this particular case that Wayne

Rooney’s team is Arsenal, as we can overlook this in the grammar and it might pick,

Wayne Rooney ….of …Arsenal instead of Wayne Rooney ….of…Manchester

United.

Inspect the grammar rule playercontext.jape from the example folder. The LHS of the

rule is explained here:

Rule: playercontext

Priority:50

(//1

 (//2

 {Token.kind == word, Token.category == NNP, Token.orth == upperInitial}

 {Token.kind == punctuation, Token.category == POS}

 {Token.kind == word, Token.category == NNP, Token.orth == upperInitial}

)

 |

 (//3

 {Token.kind == word, Token.category == NNP, Token.orth == upperInitial}

 {Token.kind == punctuation, Token.subkind == dashpunct}

 {Token.kind == word, Token.category == NNP, Token.orth == upperInitial}

)

 |

 (//4

 {Token.kind == word, Token.category == NNP, Token.orth == upperInitial}

 {Token.kind == word, Token.category == NNP, Token.orth == upperInitial}

)

): person1

({Token,!Split})*//6

({Token.string =~ "[Oo]f"})//7

(TEAM):team1//8

-->

Loop 1 is the outer loop and will contain the result of pattern matching in the inner

loops of 2, 3 and 4. These inner loops establish person names by looking for two

consecutive Nouns (with the possibility of having a hyphen - in between them). Hence

it will find

“Wayne Rooney”

Loop 6, will go on till it finds a split or “Of/of” (which is through loop 7).

This will work just fine for removing false positives. We are not going beyond a full

stop (hence a statement) for matching the pattern. This is very useful feature to have

and will be required to be used in many cases.

Loop 8 will find a team’s name if present immediately after “Of/of”.

RHS of this rule will add “team name” feature with Player.

Example 12. Co referencing

We will use the text (Example 12.txt) .

Wayne Rooney is a player of Manchester United. He is not of Arsenal.

We want to establish that mention of “He” is for “Wayne Rooney” from the first

sentence. For this, do the following:

Right click on the Processing Resources Tree and choose Pronominal Coreferencer.

In linguistics, coreference occurs when multiple

expressions in a sentence or document have the same

referent.

For example, in the sentence "You said you would help

me", the two instances of the word you are most likely

referring to the same person or group, in which case

they are coreferent. Similarly, in "I saw Scott

yesterday. He was fishing by the lake," Scott and he

are most likely coreferent.

(Source: Glossary of linguistic terms, Book by Eugene E. Loos , Susan Anderson , Dwight H., Day, Jr. ,

Paul C. Jordan , and J. Douglas Wingate)

Click Ok

Add it to the end of the pipeline, Ignore the Orthomatcher.

Click Run

At 48, 50 - he has been annotated as a Person now pointing back to Wayne Rooney

at 0,12

You need to access the annotations of type Person and the feature maps associated

with it to manipulate and use this information. Following JAPE grammar retrieves

this information and passes the features of annotation across referents.

Phase: coref

Input: Lookup Token Split Person

Options: control = brill debug = false

Rule: coref

Priority:50

(

 {Person.ENTITY_MENTION_TYPE == PRONOUN}

):pron

-->

{

gate.AnnotationSet match = (gate.AnnotationSet)bindings.get("pron");

gate.Annotation pronoun = (gate.Annotation)match.iterator().next();

java.lang.Long antOffset =

(java.lang.Long)pronoun.getFeatures().get("antecedent_offset");

gate.AnnotationSet antSet =

(gate.AnnotationSet)annotations.get(antOffset);

gate.Annotation antecedent =

(gate.Annotation)antSet.iterator().next();

int start_offset=0;

int end_offset=0;

String referedEntity = "";

if(antSet != null)

 {

 start_offset =

antecedent.getStartNode().getOffset().intValue();

 end_offset =

antecedent.getEndNode().getOffset().intValue();

 referedEntity =

doc.getContent().toString().substring(start_offset, end_offset);

 }

String antString = (String)antecedent.getFeatures().toString();

String antType = antecedent.getType();

pronoun.getFeatures().put("refers_to_entity", referedEntity);

pronoun.getFeatures().put("feature of antecedent", antString);

}

JAPE Grammar 16 coref.jape

Example 13. Creating Temporary annotations and then deleting at the
end when it is no longer useful.

While creating a complex application using GATE, you shall always build on top of

temporary annotations which you would like to be deleted at the end of the process.

For example, in the Example 10, we built an annotation TempPerson (gender) and

then used it to form a full name annotation FirstName (gender, kind, rule). Now, you

can write a JAPE grammar which has a RHS allowing you to delete this temporary

annotation. This is sort of garbage collection for the system.

Phase: Clean

Input: FirstPerson

Options: control = appelt

Rule:CleanTempAnnotations

(

 {FirstPerson}

):temp

-->

{

 gate.AnnotationSet temp = (gate.AnnotationSet)bindings.get("temp");

 annotations.removeAll(temp);

}
JAPE Grammar 17 clean.jape

Load the Example 13.txt file from the data store and use the main.jape to run this

grammar file from the Example 13 folder.

Example 14. Creating new entities to use in the JAPE grammar

Let’s explain with an example the objective of this exercise. We want to identify a

player based on a common natural language pattern such as:

“name of the team” “sports_role” “unknown entity”

 i.e. “England captain John Terry” or “Liverpool coach Raphael Benitez”. The entities

to be identified are in italic font. However, rather than writing JAPE rules for each

and every sports_role, we can create a gazetteer list and use it for writing JAPE rule.

The gazetteer included with this manual contains such a list, hence the readily

annotated text file Example 14.txt, contains annotation for sports roles. Look for

main.jape in the Example 14 folder and study it to see how the grammar works. This

is also an example of how a thread of rules can be sequentially executed to achieve

semantically rich entities.

Exercise:

Following text (Example 14.txt from the data store) has a pattern

“Team1…………..against………Team2” where Team1 and Team2 are part of an

Event, playing against each other.

“Liverpool captain Steven Gerrard is confirmed to play against their Real Madrid.”

Write a JAPE grammar that has “Team1” and “Team2” available, and it establishes an

event relation by making sure that “against” is used to imply an event. For this

particular text, the grammar has “Liverpool” and “Real Madrid” as team entities

available and the grammar shall establish

Event:

{

 Team1= Liverpool

Team2 = Real Madrid

 }

Bibliography

[1] GATE user guide, http://www.gate.ac.uk/sale/tao/split.html

[2] Geoffrey R. Bransford-Koons, Dynamic semantic annotation of California case

law, MSc Thesis. http://www-rohan.sdsu.edu/~bransfor/thesis/thesis/index.html,

last accessed 10 March, 2009.

[3] Wikepedia

[4] VI editor for windows, http://www.vim.org/download.php

[5] Glossary of linguistic terms, (Book) Eugene E. Loos , Susan Anderson , Dwight

H., Day, Jr. , Paul C. Jordan , and J. Douglas Wingate

