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What is Machine 
Learning and why do 

we want to do it?
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What is ML?

 Automating the process of inferring new 
data from existing data

 In GATE, that means creating annotations 
by learning how they relate to other 
annotations
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Learning a pattern

 For example, we have “Token” annotations with 
“kind” and “value” features

 ML could learn that a “£” followed by a number is 
an amount of currency

£ 1000

kind = symbol
value = “£”

kind = number
value = “1000”
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How is that better than 
making rules (e.g. JAPE)?

• It is different to the rule-based approach

• Some things humans are better at writing rules for, and 
some things ML algorithms are better at finding

• With ML you don't have to create all the rules

• However, you have to manually annotate a training 
corpus (or get someone else to do it!)

• Rule-based approaches (e.g. JAPE) and ML work well 
together; JAPE is often used extensively to prepare 
data for ML
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Terminology: Instances, 
attributes, classes
California Governor Arnold Schwarzenegger proposes deep cuts.

Token Token Token Token Tok Tok

Entity.type=Person

Attributes: Any annotation feature relative to instances
Token.String
Token.category (POS)
Sentence.length

Instances: Any annotation
Tokens are often convenient

Class: The thing we want to learn
A feature on an annotation

Sentence

Token

Entity.type
=Location
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Instances

• Instances are cases that may be learned
• Every instance is a decision for the ML 

algorithm to make
• To which class does this instance 

belong?
– “California”→Location
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Attributes

• Attributes are pieces of information 
about instances

• They are sometimes called “features” in 
machine learning literature

• Examples
– Token.string == “Arnold”
– Token.orth == upperInitial
– Token(-1).string == “Governor”
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Classes

• The class is what we want to learn

• Suppose we want to find persons' names: for every 
instance, the question is “is this a person name?” 
and the classes are “yes” and “no”

• Sometimes there are many classes, for example we 
may want to learn entity types
– For every instance, the question is “which type from 

the list does this instance belong to?”

– One answer is “none of them”
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ML Tasks

GATE supports 3 types of ML tasks:
– chunk recognition (named entity 

recognition, NP chunking)
– text classification (sentiment classification, 

POS tagging)
– relation annotation
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Training

• Training involves presenting data to the ML 
algorithm from which it creates a model

• The training data (instances) have been annotated 
with class annotations as well as attributes

• Models are representations of decision-making 
processes that allow the machine learner to decide 
what class the instance has based on the attributes 
of the instance
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Application

• When the machine learner is applied, it 
creates new class annotations on data 
using the model

• The corpus it is applied to must contain 
the required attribute annotations

• The machine learner will work best if the 
application data is similar to the training 
data
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Evaluation

• We want to know how good our machine learner is before we 
use it for a real task

• Therefore we apply it to some data for which we already have 
class annotations

– The “right answers”, sometimes called “gold standard”

• If the machine learner creates the same annotations as the gold 
standard, then we know it is performing well

• The test corpus must not be the same corpus as you trained on

– This would give the machine learner an advantage, and 
would give a false idea of how good it is

• GATE's ML PR has a built-in evaluation mode that splits the 
corpus into training and test sets and cross-validates them
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Setting up a Corpus
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Load the corpus
● Create a corpus (any name is fine)
● Populate it from module-11-hands-

on/corpus/*.xml in your hands-on 
materials

● Use UTF-8 encoding
● Open a document and examine its 

annotations
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Examining the corpus

• The corpus contains an annotation set 
called “Key”, which has been manually 
prepared

• Within this annotation set are 
annotations of types “Date”, “Location”, 
“Money”, “Organization” and so forth

• There are also some annotations in the 
“Original markups” set
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What are we going to
use this corpus for?
• We are going to train a machine learner to annotate 

corpora with these entity types

• We need a training corpus and a test corpus

• The training corpus will be used by the machine learner to 
deduce relationships between attributes and entity types 
(classes)

• The test corpus will be used to find out how well it is 
working, by comparing annotations created by the learner 
with the correct annotations that are already there

• In Evaluation mode, which we will try first, the ML PR 
automatically splits one corpus up into training and test 
sets
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Instances and
Attributes

• This corpus so far contains only the class 
annotations

• There is not much in this corpus to learn from

• What would our instances be?

• What would our attributes be?

• If we run ANNIE over the corpus, then we can use 
“Token” annotations for instances, and we would 
have various options for attributes

• Load ANNIE but add the Key AS to 
setsToKeep in the document reset PR!

• Run ANNIE over your corpus
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Running ANNIE on the 
corpus

• Having run 
ANNIE on the 
corpus, we have 
more annotations 
to work with
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Preparing the corpus: 
Classes

• What we have:

• What we need:
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Preparing the corpus: 
Classes

• Currently each class has its own 
annotation type (Date, Person, Percent 
etc.)

• But the ML PR expects the class to be a 
feature value, not an annotation type

• Therefore we are going to make a new 
annotation type for the ML to learn from, 
“Mention” (it doesn't matter what it's called 
as long as we're consistent)
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Making class
annotations

• Load a JAPE transducer from the 
module-11-hands-on/CreateMention.jape 
grammar

• Look at the grammar in GATE
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The CreateMention.jape 
grammar

• This grammar makes 
a new annotation 
type called “Mention”

• It makes the  
previous annotation 
type into a feature of 
the “Mention” 
annotation

• Feature name is 
“type” because 
“class” is reserved for 
ontologies
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Applying the grammar to 
the corpus

● Add the JAPE 
transducer at 
the end of your 
ANNIE 
application

● Set the 
inputASName to 
“Key”

● Leave the 
outputASName 
blank (default)
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Check the “Mention” 
annotations

● Rerun the 
application

● Check that you 
have some 
“Mention” 
annotations

● Check that they 
have a feature 
“type” and that the 
values look right
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The Configuration File



University of Sheffield NLP 

 

Looking at the 
configuration file

• In the configuration file, we tell the 
machine learning PR what we want it to 
do

• You will find a configuration file in your 
hands-on materials, called ml-config-
file.xml

• Open it using a text editor
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<SURROUND value="true"/>

• This class to be learned covers more than one 
instance; the PR has to learn the boundaries

• So surround mode

• Transparent to the user

California Governor Arnold Schwarzenegger proposes deep cuts.

Token Token

Entity.type=Person
Beginning of entity

End of entity
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Confidence Thresholds

• Classifiers provide confidence ratings—how likely a result is to be 
correct

• We must determine how certain is good enough

• Depending on the application we might prefer to include or exclude 
annotations for which the learner is not too sure

• thresholdProbabilityBoundary is a threshold for the beginning and 
end instances

• thresholdProbabilityEntity is a threshold for beginning and end 
instances combined

 
  <PARAMETER name="thresholdProbabilityEntity" value="0.2"/>  
  <PARAMETER name="thresholdProbabilityBoundary" value="0.4"/>
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<multiClassification2Binary 
method="one-vs-others"/>

California Governor Arnold Schwarzenegger proposes deep cuts.

Entity.type=Person
Entity.type
=Location

• Many algorithms are binary classifiers (e.g. yes/no)

• We have several classes (Person, Location, Organization etc.)

• Therefore the problem must be converted to a set of binary problems, so we can 
use binary algorithms

• one-vs-others
 LOC vs PERS+ORG / PERS vs LOC+ORG / ORG vs LOC+PERS

• one-vs-another
 LOC vs PERS / LOC vs ORG / PERS vs ORG
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<multiClassification2Binary 
method="one-vs-others"/>

• With more than a few classes, one-vs-another 
becomes very computationally expensive!

• one-vs-others: N classes => N classifiers
 A vs B+C+D, B vs A+C+D, C vs A+B+D, D vs A+B+C

• one-vs-another: N classes => N×(N-1)/2 classifiers
 A vs B, A vs C, A vs D, B vs C, B vs D, C vs D
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<EVALUATION method="holdout" 
ratio="0.66"/>

• We are going to evaluate our application in two ways today

– The ML PR can automatically evaluate for us

– We will also run our own evaluation

• This parameter dictates how the ML PR will evaluate for 
us, if we run it in evaluation mode

• We are telling it that it should reserve a third of the data as 
a test set, train, then apply the result to the held out set

• Alternatively, we could ask the PR to run a cross-validation 
evaluation
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Evaluation

• Holdout randomly picks ratio documents 
for training and uses the rest for testing; 
this is faster than k-fold because it only 
runs once

• But k-fold cross-validation will give you 
more reliable results and lets you 
“stretch” your corpus

  <EVALUATION method="kfold" runs="10"/>  
OR
  <EVALUATION method="holdout" ratio="0.66"/>  
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K-Fold Cross-Validation

• In k-fold cross-validation, the corpus is split into k equal 
parts, and the learner is trained k times on k-1 parts and 
evaluated on 1; the results are averaged

• For example, if k=4, the documents are split into groups 
A, B, C, & D, then:

– train on A+B+C, test on D

– train on A+B+D, test on C

– train on A+C+D, test on B

– train on B+C+D, test on A

– average these 4 results

• This maximises the use of the training data without losing 
testing accuracy, but takes 4 times as long 

• <EVALUATION method="kfold" runs="4"/>
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<ENGINE nickname="PAUM" ..

• Next we specify what machine learning 
algorithm we wish to use

• Today we are using the perceptron with 
uneven margins (“PAUM”)

• We will use the following options: 
options="-p 50 -n 5 -optB 0.3"
– Challenge: find out what these options 

do!  (Hint: user guide §17.2)
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<INSTANCE-
TYPE>Token</INSTANCE-TYPE>

• Next, we tell the ML PR what our instance 
annotation is

• The goal of the ML PR is to try to learn how the 
attributes of every instance relate to its class, 
so the instance is an important choice

• We have decided that the “Token” is our 
instance annotation type
– We made sure, earlier, that we have “Token” 

annotations in our corpus
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Specifying Attributes

• For every attribute, we create a specification like the one above

• This is the information from which the PR will learn, so it is 
important to give it some good data

• You can see in the configuration file that there are several 
attributes, providing a good range of information

• However, if you have too many attributes it can take a very long 
time to learn!

<ATTRIBUTELIST>  
     <NAME>Form</NAME>  
     <SEMTYPE>NOMINAL</SEMTYPE>  
     <TYPE>Token</TYPE>  
     <FEATURE>category</FEATURE>  
     <RANGE from="-2" to="2"/>  
   </ATTRIBUTELIST>  



University of Sheffield NLP 

 

Breaking down the 
attribute specification

• <NAME>Form</NAME>
– This is the name that we choose for this 

attribute. It can be anything we want, but 
it will help us later if we make it 
something sensible!

• <SEMTYPE>NOMINAL</SEMTYPE>
– Is the value of this attribute a number or a 

name?
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Breaking down the 
attribute specification

• <TYPE>Token</TYPE>
– The value of the attribute will be taken 

from the “Token” annotation
• <FEATURE>category</FEATURE>
– The value of the attribute will be taken from 

the “category” feature
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Breaking down the 
attribute specification

• Because this is an “ATTRIBUTELIST” 
specification, we can specify a “RANGE”

• In this case, we will gather attributes from 
the current instance and also the preceding 
and following two

<ATTRIBUTELIST>  
       : 
       <RANGE from="-2" to="2"/>  
   </ATTRIBUTELIST>
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Specifying the Class 
Attribute

<ATTRIBUTE>
       <NAME>Class</NAME>
       <SEMTYPE>NOMINAL</SEMTYPE>
       <TYPE>Mention</TYPE>
       <FEATURE>type</FEATURE>
       <POSITION>0</POSITION>
       <CLASS/>
</ATTRIBUTE>

● You can call the class attribute whatever you want, but “Class” is a 
sensible choice

● Remember that our class attribute is the “type” feature of the 
“Mention” annotation

● This is an ATTRIBUTE, not an ATTRIBUTELIST, so we have 
“position”, not “range”

● The <CLASS/> element tells the Batch Learning PR that this is the 
class attribute to learn.
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Running the ML PR in 
evaluation mode
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Loading the Learning plugin

• Load the “Learning” plugin

• (We are not going to use the “Machine Learning” plugin, which is 
obsolete and does not have all the functionality we want.)
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Creating a learning 
application

• Create a “Batch Learning PR” 
using your configuration file

• Make a new corpus pipeline and 
put this PR in it
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Running the application 
in evaluation mode

• Make sure the corpus 
is selected

• The inputASName is 
blank because the 
attributes and classes 
are in the default 
annotation set

• Select “EVALUATION” 
for the learningMode

• OutputASName should 
be the same as 
inputASName in 
evaluation mode

• Run the application!
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Inspecting the results

• The application 
may take a few 
minutes to run

• When it is 
finished, 
switch to the 
“Messages” 
tab to examine 
the results
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How well did we do?

• Here is my result:

(precision, recall, F1)= (0.8462151, 0.81629515, 
0.83098596)

• These figures look pretty good, but what do they mean?

• Next we will discuss evaluation measures

• Then we will run the PR in different modes

• Then we will see if we can get these numbers any 
higher!
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Evaluation in Machine 
Learning
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Recap of Evaluation in 
GATE
• Evaluation is an important part of information extraction 

work

– We need to find out how good our application is by 
comparing its annotations to the “right answers” 
(manually prepared or corrected annotations)

– Sometimes we need to compare annotations by 
different annotators, to see how consistent they are

• We use similar functions for both types of evaluation tasks
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Evaluation Mode

• We ran the machine learning PR in 
evaluation mode earlier

• We specified how the PR should run 
evaluation in the configuration file

• Once we had run the application, we 
obtained evaluation statistics in the 
“Messages” tab



University of Sheffield NLP 

 

What are precision,
recall and F1?

• Precision: what proportion of our ML 
annotations were correct?

• Recall: what proportion of the correct 
annotations did our ML create?

• P = correct / (correct + spurious) = tp / (tp + fp)

• R = correct / (correct + missing) = tp / (tp + fn)

• where tp = true positives, fp = false positives, 
fn = false negatives
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What are precision,
recall and F1?
• F-score is an amalgam of the two measures

– F = 1 / ( β/P + (1-β)/R )
– F1 = 2PR / (R + P)
– The equally balanced F1 (β = 0.5) is the 

most common F-measure

• We can also run our own ML evaluation using 
the Corpus QA tool—let's do that now
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Splitting into training 
and test corpora

• As mentioned earlier, to truly know how well a 
machine learner is performing, you need to test it 
on data that it was not trained on

• We need separate test and training corpora

• So now we are going to split our corpus in two
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Saving and splitting
the corpus

• Right click on your corpus and select “Save as XML”

• Create a new folder called “training” and save the documents in it

• Use your file manager to create a new directory alongside it called 
“test”

• Use your file manager to pick half the documents in “training” and 
move them into “test” (try to randomise them a bit)
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Tidying up

• Close all your open documents and 
corpora in GATE Developer

• Close the modified ANNIE application 
recursively

• Create new corpora called “training” and 
“test”

• Populate your corpora with the 
documents you saved to disk
– As before, use UTF-8
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Running the ML PR in 
Training Mode

• Check that your 
PR is set to run 
on the training 
corpus

• Change the 
learningMode to 
“TRAINING” (the 
outputASName 
doesn't matter)

• Run the 
application
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Finished Training!

• Training may take a few minutes
• This time there is no evaluation result in 

the messages tab
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Running the ML PR in 
Application Mode

• Change corpus to 
“test”

• Change 
learningMode to 
“APPLICATION”

• Set outputASName 
to “ML”: your new 
annotations will go 
here, and you don't 
want to get them 
mixed up with the 
existing ones!
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Examining the results
of application

• Choose a document 
from the test corpus to 
look at

• You should have a new 
annotation set, created 
by the ML application

• There will be a “Mention” 
type both in the new set 
and the original

• They are similar but not 
identical!

• How similar do they 
appear to be? Do you 
think you will get a good 
result?
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Comparing the Sets with 
Corpus QA

•
Select the test corpus and click on 
the Corpus QA tab (it will take a 
few seconds to scan the document)

•
Select the Default and ML 
annotation sets

•
Select the “Mention” type

•
Select the “type” feature

•
Choose an F-measure

•
Click on Compare

•
Did you get a good result? How 
does it compare to the result you 
got using evaluation mode?
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Using Annotation Diff
to examine performance

• Switch to the 
“Document 
statistics” tab

• Choose a 
document

• Click on the 
Annotation Diff 
icon

• What kind of 
mistakes did your 
application make?
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Varying the
configuration file

• Now we are going to experiment with 
varying the configuration file to see if we 
can produce varied results

• You can edit the configuration file in your 
text editor

• Make sure you save your changes then 
reinitialise the PR (this reads the file 
again)
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Exercises

• Spend some time working on your 
exercise sheet

• Feel free to ask questions
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Confidence Thresholds

• Each classifier will provide confidence ratings—how likely is a result to be 
correct; we must determine how certain is good enough

• Depending on the application we might prefer to include or exclude 
annotations for which the learner is not too sure

• thresholdProbabilityBoundary and thresholdProbabilityEntity are thresholds 
for chunk learning

• thresholdProbabilityClassification applies to classification tasks, such as 
relation learning

 
  <PARAMETER name="thresholdProbabilityEntity" value="0.2"/>   
  <PARAMETER name="thresholdProbabilityBoundary" value="0.42"/>
  <PARAMETER name="thresholdProbabilityClassification" value="0.5"/>
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Classification tasks
●Example: the documents contains spans of 

text, which you want to classify as 
positive, negative, or neutral.

●   This will be covered in more detail in 
Module 12 (Opinion Mining) tomorrow, 
with hands-on work
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Classification tasks
• thresholdProbabilityClassification: the 

“pickiness” of the classifiers
•  increasing this generally raises precision 

and reduces recall
• decreasing this generally increases recall 

and reduces precision
• thresholdProbabilityBoundary and 

thresholdProbabilityEntity: ignored
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Classification tasks
• <SURROUND VALUE=”FALSE”/>
• INSTANCE-TYPE: type of annotation that 

covers each span of text to classify
• Typically use NGRAM elements as 

attributes
• The GATE user guide gives examples
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Engines and Algorithms
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Support Vector Machines

• Attempt to find a 
hyperplane that 
separates data

• Goal:  maximize 
margin separating 
two classes

• Wider margin = 
greater 
generalisation
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Support Vector Machines

• Points near decision boundary:  support 
vectors (removing them would change 
boundary)

• Points far from boundary not important for 
decision

• What if data doesn't split?
– Soft boundary methods exist for imperfect 

solutions
– However linear separator may be 

completely unsuitable
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Support Vector Machines

• What if there is 
no separating 
hyperplane?

• See example:
• Or class may 

be a globule

They do 
not work!
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Kernel Trick

• Map data into 
different 
dimensionality

• http://www.youtube.com/watch?v=3liCbRZPrZA

• As shown in the 
video, due to 
polynomial kernel 
elliptical separators 
can be created 
nevertheless. 

• Now the points are 
separable!

http://www.youtube.com/watch?v=3liCbRZPrZA
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Kernel Trick in GATE and 
NLP

• Binomial kernel allows curved and 
elliptical separators to be created

• These are commonly used in language 
processing and are found to be 
successful

• Linear and polynomial kernels are 
implemented in Batch Learning PR's 
SVM
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Support Vector Machines

 SVMs combined with kernel trick provide a 
powerful technique

 Multiclass methods simple extension to two class 
technique (one vs. another, one vs. others)

 Widely used with great success across a range of 
linguistic tasks
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Perceptron and PAUM

• Perceptron is one of the oldest ML methods 
(invented in the 50s!)

• Has some similarities to SVM (it determines a 
hyperplane separator)

• Theoretically SVM works a little better because it 
calculates the optimal separator

• In practice, however, there is usually little 
difference, and Perceptron is a lot faster!
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Perceptron

• You might think of perceptrons as being 
these things (correct)

• What this is actually calculating is a dot 
product w.x

x2

x1

x3

f

w1

w2

w3
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More perceptron

f(x) = 1 if w.x + b > 0
          0 otherwise{

• x is a datapoint represented as a vector
• w is a vector that defines the separating 

hyperplane (it is perpendicular to it)
• This function tells you which side of the 

hyperplane your point lies
• b defines an offset from the origin
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More perceptron

• How does it learn?
– Each datapoint is annotated with class value 1 

or 0

– Function returns 1 or 0 depending on which 
side of the separator the point lies

– Calculate difference between actual and 
desired output

– Multiply input vector by this delta and add it to 
the weight vector

– Given sufficient iterations the separator will 
find a solution
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Perceptron update

w

x

• Dot product 
is negative, 
so f=0

• But x is a 
positive 
example!

• Oh no! 
Must 
update

The 
separator

Dot product is 
negative
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Perceptron update

w

x • x class is 1
• f(x) = 0
• w += (1-0)x

The 
separator

x
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Perceptron update

w

x • x class is 1
• f(x) = 0
• w += (1-0)x

The 
separator

x
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Perceptron update

• x class is 1
• f(x) = 0
• w += (1-0)xw

New 
separator

x
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Perceptron update

• Now x is on 
the right side 
of the 
separator!

New 
separator

wx
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Perceptron with Uneven 
Margins

• Both Perceptron and SVM implement 
“uneven margins”

• (PAUM stands for Perceptron Algorithm 
with Uneven Margins)

• This means that it doesn't position the 
separator centred between the points, 
but more towards one side
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Even Margins
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Uneven Margins
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Why Uneven Margins?

• In NLP the datasets are often very imbalanced

• For example if you are finding instances of “Person”, you 
will have very many words that are not people and only a 
few that are

• Uneven margins may help with this

• Y. Li, K. Bontcheva, and H. Cunningham. Using Uneven 
Margins SVM and Perceptron for Information Extraction. 
Proceedings of Ninth Conference on Computational 
Natural Language Learning (CoNLL-2005), pp. 72-79. 
2005.
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Some Other Algorithms

• Batch Learning PR also includes the following from Weka

– Naïve Bayes

• Uses Bayes' theorem (probabilities) to determine 
the most likely class given attributes and training 
corpus

– K-Nearest Neighbour

• Determines class of a point based on k training 
points positioned geometrically closest to it

– C4.5 (decision tree)

• Makes a series of binary decisions that determine 
the class of a point based on its attribute values 
(e.g. “is string length > 3?”)


	M11: Machine Learning
	What & why?
	What is ML?
	Learning a pattern
	ML versus rules
	Terminology
	Instances
	Attributes
	Classes
	ML Tasks
	Training
	Application
	Evaluation in ML
	Setting up a corpus
	Setting up a corpus 1
	Setting up a corpus 2
	Setting up a corpus 3
	Setting up a corpus 4
	Setting up a corpus 5
	Preparing the corpus 1
	Preparing the corpus 2
	Preparing the corpus 3
	Preparing the corpus 4
	Preparing the corpus 5
	Preparing the corpus 6
	Config file
	Config file 1
	Config file 2
	Config file 3
	Config file 4
	Config file 5
	Config file 6
	Config file 7: evaluation
	Config file 8: evaluation
	Config file 9
	Config file 10
	Config file 11: attributes
	Config file 12: attributes
	Config file 13: attributes
	Config file 14: attributes
	Config file 15: class attribute
	Running it
	Running it 1
	Running it 2
	Running it 3
	Running it 4
	Running it 5
	Evaluation
	Evaluation 1
	Evaluation 2
	Evaluation 3
	Evaluation 4
	Evaluation 5
	Evaluation 6
	Evaluation 7
	Eval 8: training mode
	Eval 9: training mode
	Eval 10: application mode
	Eval 11
	Eval 12
	Eval 13
	Varying the config file
	Exercises
	Confidence
	Classification 1
	Classification 2
	Classification 3
	Engines
	SVM 1
	SVM 2
	SVM 3
	SVM 4
	SVM 5
	SVM 6
	Perceptron 1
	Perceptron 2
	Perceptron 3
	Perceptron 4
	Perceptron 5
	Perceptron 6
	Perceptron 7
	Perceptron 8
	Perceptron 9
	Perceptron 10
	Perceptron 11
	Perceptron 12
	Perceptron 13
	Other algorithms

