

Module 3: Introduction to JAPE

About this tutorial

- As in previous modules, this tutorial will be a hands on session with some explanation as you go
- Things for you to try yourself are in red
- Example JAPE code is in blue
- Your hands-on materials are in module-3-jape/japehands-on
- There you'll find a corpus directory containing documents, and a grammar directory containing JAPE grammar files

Topics covered in this module

- What is JAPE?
- Parts of the rule: LHS and RHS
- How to write simple patterns
- How to create new annotations and features
- Different operators
- Different matching styles
- Macros

What is JAPE and what is it good for?

What is JAPE?

- a Jolly And Pleasant Experience :-)
- Specially developed pattern matching language for GATE
- Each JAPE rule consists of
 - LHS which contains patterns to match
 - RHS which details the annotations to be created
- JAPE rules combine to create a phase
- Rule priority based on pattern length, rule status and rule ordering
- Phases combine to create a grammar

Limitations of gazetteers

- Gazetteer lists are designed for annotating simple, regular features
- Some flexibility is provided, but this is not enough for most tasks
 - recognising e-mail addresses using just a gazetteer would be impossible
 - but combined with other linguistic pre-processing results, we have lots of annotations and features
- POS tags, capitalisation, punctuation, lookup features, etc can all be combined to form patterns suggesting more complex information
- This is where JAPE comes in.

JAPE example

- A typical JAPE rule might match all university names in the UK, e.g. "University of Sheffield"
- The gazetteer might contain the word "Sheffield" in the list of cities
- The rule looks for specific words such as "University of" followed by the name of a city.
- This wouldn't be enough to match all university names, but it's a start.
- Later, we'll see how we can extend this kind of rule to cover other variations.

Simple JAPE Rule


```
Rule: University1
 {Token.string == "University"}
 {Token.string == "of"}
 {Lookup.minorType == city}
):orgName
-->
:orgName.Organisation =
  {kind = "university", rule = "University1"}
```

Parts of the rule


```
Rule: University1
                                 Rule Name
 {Token.string == "University"}
 {Token.string == "of"}
                                            LHS
 {Lookup.minorType == city}
 :orgName
-->
:orgName.Organisation =
  {kind = "university",
                                        RHS
   rule = "University1"}
```


LHS of the rule

```
Rule: University1

(
    {Token.string == "University"}
    {Token.string == "of"}
    {Lookup.minorType == city}
):orgName
-->
```

- LHS is everything before the arrow
- It describes the pattern to be matched, in terms of annotations and (optionally) their features

Matching a text string

- Everything to be matched must be specified in terms of annotations
- Each annotation is enclosed in a curly brace
- To match a string of text, use the "Token" annotation and the "string" feature

```
{Token.string == "University"}
```

- Note that case is important in the value of the string
- You can combine sequences of annotations in a pattern

```
{Token.string == "University"}
{Token.string == "of"}
{Lookup.minorType == city}
```

Labels on the LHS

- For every combination of patterns that you want to create an annotation for, you need a label
- The pattern combination is enclosed in round brackets, followed by a colon and the label
- The label name can be any legal name you want: it's only used within the rule itself

```
{Token.string == "University"}
{Token.string == "of"}
{Lookup.minorType == city}
:orgName
```


Operators on the LHS

Traditional Kleene and other operators can be used

```
OR
```

- * zero or more occurrences
- ? zero or one occurrence
- + one or more occurrences

```
({Lookup.minorType == city}|
{Lookup.minorType == country})
```


Delimiting operator range

Use round brackets to delimit the range of the operators

```
({Lookup.minorType == city}|
  {Lookup.minorType == country}
)+
```

One or more cities or countries in any order and combination

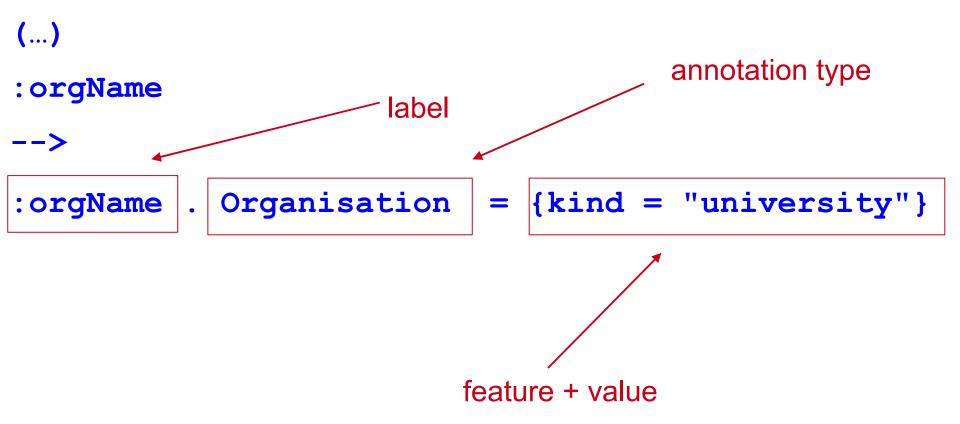
is not the same as

```
({Lookup.minorType == city}|
  ({Lookup.minorType == country})+
)
```

One city OR one or more countries

Exercise: using operators

- Start GATE. Load ANNIE with defaults, but remove the NE transducer completely from GATE
- Load the grammar location1.jape, add it to your application, and run on the text locations.txt
- Now open the grammar location1.jape in your favourite text editor and change the kind of operator or its coverage
- Just ignore the rest of the rule and don't change it, we'll come to that later
- Save the file, then reinitialise the grammar in GATE and run the application again. View the difference.
- **WARNING**: be very careful with typos, brackets etc. when editing the grammar. Your syntax HAS TO BE CORRECT!



JAPE RHS

```
Rule: University1
 {Token.string == "University"}
 {Token.string == "of"}
 {Lookup.minorType == city}
):orgName
-->
:orgName.Organisation =
 {kind = "university", rule = "University1"}
```


Breaking down the RHS

Labels

The label on the RHS must match a label on the LHS. {Token.string == "University"} {Token.string == "of"} {Lookup.minorType == city} prgName --> :orgName | .Organization = {kind = organization}

 This is so we know which part of the pattern to attach the new annotation to

Go label crazy...

- You can have as many patterns and actions as you want
- Patterns can be consecutive, nested, or both!
- Patterns cannot overlap

```
(
({Token.string == "University"}):uniKey
{Token.string == "of"}
({Lookup.minorType == city}):cityName
) :orgName
-->
```


Multiple patterns and labels

- We can have several actions on the RHS corresponding to different labels.
- Separate the actions with a comma ({Token.string == "University"}) {Token.string == "of"} ({Lookup.minorType == city}) : :orgName :cityName. Location = {kind = city},

:orgName.Organization = {kind = university}

Patterns and actions

- A pattern does not have to have a corresponding action
- If there's no action, you don't need to label it, but you still need to bracket it
- Here, we want to add a special annotation for university towns

```
{Token.string == "University"}
{Token.string == "of"}
)
({Lookup.minorType == city}): cityName
-->
:cityName. Location = {kind = university_town}
```


Annotations and Features

- The annotation type and features created can be anything you want (as long as they are legal names)
- They don't need to currently exist anywhere
- Features and values are optional, and you can have as many as you like
- All the following are valid:

```
:orgName.Organization = {}
:orgName.Organization = {kind=university}
:orgName.Organization =
    {kind=university, rule=University1}
:fishLabel.InterestingFishAnnotation = {scales=yes}
```

Exercise: annotation types and features

- Remove any existing grammars that you have loaded in GATE
- Load the grammar university1.jape, add it to your application, and run on the text university.html
- View the results
- Now open the grammar university1.jape in your favourite text editor and change the name of the annotation type created
- Save the file, then reinitialise the grammar in GATE and run the application again. View your new annotation..
- Try changing the name of the features, removing features, and adding new ones, and adding multiple labels
- Don't forget to reinitialise the grammar before re-running!

Copying Feature Values to the RHS

 JAPE provides simple support for copying feature values from the LHS to the RHS

```
{Lookup.majorType == location}
):loc
-->
:loc.Location = { type = :loc.Lookup.minorType}
```

- This copies the value of the Lookup minorType feature from the LHS to the new Location annotation
- Note that if more than one Lookup annotation is covered by the label, then one of them is chosen at random to copy the feature value from
- It's best not to use this facility unless you know there is only one matching annotation

Exercise: copying Lookup features

- Open university1.jape in your text editor and create a new annotation called "UniversityTown" that matches just the city name.
- Also copy the value of the majorType of the city to a new feature of this annotation, called "kind"

Hint: the RHS for the previous example looked like this:

```
:loc.Location = { type = :loc.Lookup.majorType}
```

- Run this on the university1.txt document and check the results
- You should see "Sheffield" annotated like this:

Туре	Set	Start	End	Id	Features
UniversityTown		36	45	49	{kind=location}

More complex RHS

- So far we've just shown RHS syntax involving JAPE
- You can also use any Java on the RHS instead, or as well
- This is useful for doing more complex things, such as
 - Iterating through a list of annotations of unknown number
 - Checking a word has a certain suffix before creating an annotation
 - Getting information about one annotation from inside another annotation
- Complex Java on the RHS is taught in module 6 in Track 2 (Programming in GATE)

JAPE Headers

Each JAPE file must contain a set of headers at the top

Phase: University

Input: Token Lookup

Options: control = appelt

- These headers apply to all rules within that grammar phase
- They contain Phase name, set of Input annotations and other Options

GATE

JAPE Phases

- A typical JAPE grammar will contain lots of different rules, divided into phases
- The set of phases is run sequentially over the document
- You might have some pre-processing, then some main annotation phases, then some cleanup phases
- Each phase needs a name, e.g Phase: University
- The phase name makes up part of the Java class name for the compiled RHS actions, so it must contain alphanumeric characters and underscores only, and cannot start with a number

Input Annotations

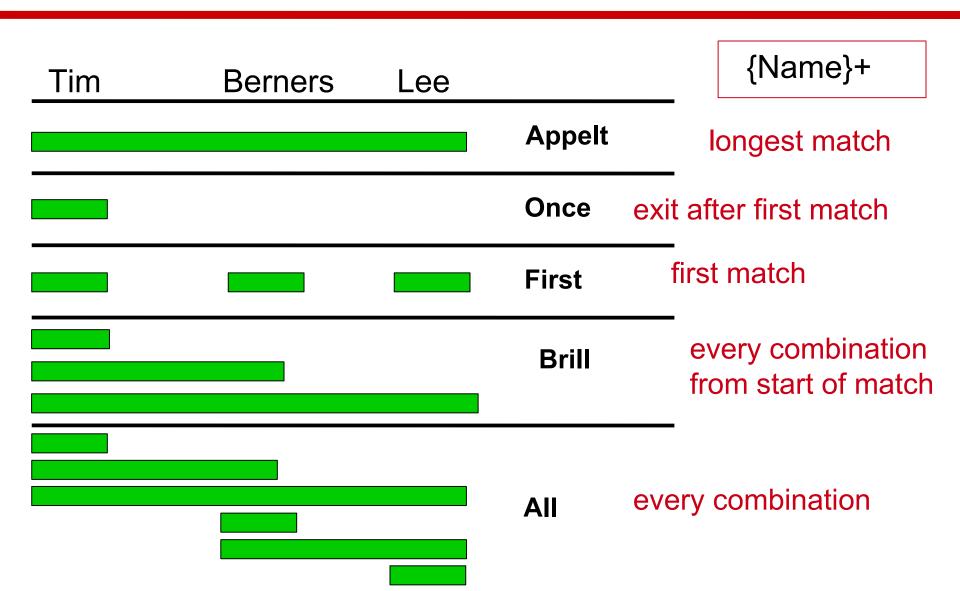
 The Input Annotations list contains a list of all the annotation types you want to use for matching on the LHS of rules in that grammar phase, e.g.

Input: Token Lookup

- If an annotation type is used in a rule but not mentioned in the list, a warning will be generated when the grammar is compiled in GATE
- If no input is included then all annotations are used

Exercise: Input annotations

- Try altering the Input annotations in university1.jape
- Remove the Lookup annotation from the list. What happens when you run the grammar?
- Why?
- Add "SpaceToken" to the list. What happens when you run the grammar?
- What happens if you then add SpaceToken annotations into the rule?
- Check the Messages tab each time to see if GATE generates any warnings.


Matching styles

Options: control = appelt

- The matching style defines how we deal with annotations that overlap, or where multiple matches are possible for a particular sequence
- Do we want to return the longest or the shortest sequence, or define explicit priority?
- 5 different control styles possible:
 - appelt (longest match, plus explicit priorities)
 - first (shortest match fires)
 - once (shortest match fires, and all matching stops)
 - brill (fire every match that applies)
 - all (all possible matches, starting from each offset in turn)

Matching styles

Appelt style

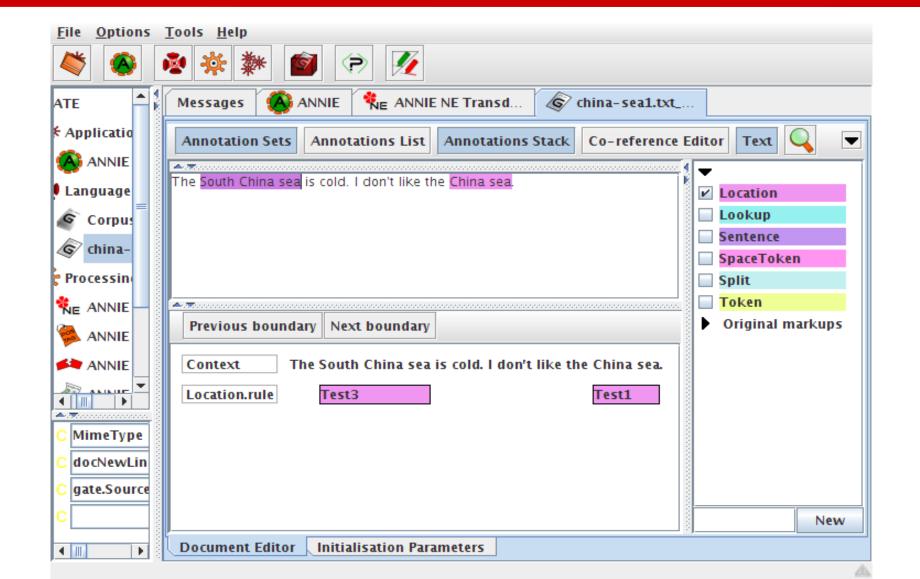
- In the appelt style, which rule to apply is selected in the following order:
 - longest match
 - explicit priority
 - rule defined first
- Each rule has an optional priority parameter, whose value is an integer
- Higher numbers have greater priority
- If no explicit priority parameter, default value is -1
- Once a match has fired, matching continues from the next offset following the end of the match

Rule: Location1

Priority: 25

Priorities in appelt style

- Remove any NE transducers and any documents and corpora you have loaded in GATE
- Load the document china-sea1.txt
- Load grammar china-sea1.jape and add it to the ANNIE application
- Run the application on the corpus
- View the Location annotations
- "South China sea" is matched by rule 3, because it is the longest match
- "China sea" is matched by rule 1, because match length is the same for all 3 rules, and rule 1 has highest priority



Annotations stack view

- For these exercises, you might wish to use the annotations stack view.
- This shows the annotations in "stack" form rather than tabular form
- In the document viewer, select "Annotation Sets" and "Annotation Stack"
- Select Location from the annotation set view
- A viewer will show the Location annotations
- Use the "previous boundary" and "next boundary" to move between the different Location annotations
- Double click "Location" in the stack viewer to add features you wish to view (e.g. "rule")

Viewing the annotation stack

Difference between first and once

- With both styles, the first match is fired
- This means they're inappropriate for rules ending in the operators + ? or *
- The difference between the two styles is what happens after a match has been found
- With the once style, the whole grammar phase is exited and no more matches are attempted
- With the first style, matching continues from the offset following the end of the existing match

What does "first match" mean?

 Some people think of the "first match" as the shortest, but it's not quite the same.

```
Phase: MatchingStyles
Input: Lookup
Options: control = first
Rule: Test1
 {Lookup.majorType == location}
 ({Lookup.majorType == loc key})?
):match
-->
:match.Location = {rule=Test1}
```

What do you think this grammar will do on your document?

Will it annotate "China" or "China sea"?

First match

- Remove old grammar, load the grammar "china-sea2.jape"
- Add it to your application and run it on the china-sea document
- "China" is annotated rather than "China sea" because it is a shorter match (the optional Lookup at the end is ignored)

Shortest match?

Now look at this rule:

```
Phase: MatchingStyles
Input: Lookup
Options: control = first
Rule: Test1
 {Lookup.majorType == location}
 ({Lookup.majorType == loc key})?
):match
-->
:match.Location = {rule=Test1}
```

What about this grammar rule?

Will it annotate "China" or "China sea"?

First match (2)

- Now remove the grammar and load the grammar "chinasea3.jape", add it to your application and run it on the china-sea document
- Were you expecting just "sea" to be annotated?
- The first Lookup is optional, BUT there is a possible match starting from the beginning of "China" before moving on to the next offsets. So this match is the one that is chosen.

Difference between brill and all

- Both Brill and all match every possible combination from a given starting position
- When a match has been found, brill starts looking for the next match from the offset at the end of the longest match
- All starts looking for the next match by advancing one offset from the beginning of the previous match

Offset advancing: brill and all

- Unload the grammar and load the grammar "china-sea4.jape"
- Add it to the application, and run on your china-sea document
- Use the annotation stack viewer to see the results.
- You should get 4 Location annotations in total.
- Now change the matching style from brill to all in the grammar (using your text editor), reinitialise the NE transducer in GATE and run again
- See the difference using the annotation stack viewer
- You should now get 6 Location annotations

South China Sea Results

({Lookup.minorType == pre})?

{Lookup.majorType == location}

({Lookup.majorType == loc_key})?

Sty	le
-----	----

brill

all

Annotated text

South China sea South China

South China sea South China China sea China

LHS Macros

- Macros provide an easy way to reuse long or complex patterns
- The macro is specified once at the beginning of the grammar, and can then be reused by simply referring to its name, in all future rules
- Macros hold for ALL subsequent grammar files
- If a new macro is given later with the same name, it will override the previous one for that grammar
- Macro names are by convention written in capitals, and can only contain alphanumeric characters and underscores
- A macro looks like the LHS of a rule but without a label

Using a macro in a rule

```
Macro: NUMBER FULL
({Token.kind == number}
 (({Token.string == ","}| {Token.string == "."})
  {Token.kind == number}
 1 *
Rule: MoneyCurrencyUnit
   (NUMBER FULL)?
   ({Lookup.majorType == currency unit})
:number -->
  :number.Money = {kind = "number", rule =
  "MoneyCurrencyUnit"}
```


Multi-constraint statements

- You can have more than one constraint on a pattern
- Just separate the constraints with a comma
- Make sure that all constraints are enclosed within a single curly brace

```
{Lookup.majorType == loc_key,
Lookup.minorType == post}

Is not the same as
{Lookup.majorType == loc_key}
{Lookup.minorType == post}
```


Negative constraints on annotations (!)

- You can use the! operator to indicate negation
- Negative constraints are generally used in combination with positive ones to constrain the locations at which the positive constraint can match.

```
Rule: PossibleName
(
    {Token.orth == "upperInitial", !Lookup}
):name
-->
:name.PossibleName = {}
```

 Matches any uppercase-initial Token, where there is no Lookup annotation starting at the same location

Negative constraints on features (!=)

- The previous example showed a negative constraint on an annotation {!Lookup}
- You can also constrain the features of an annotation
- Lookup.majorType != stop} would match any
 Lookup except those with majorType "stop" (stopwords)
- Be careful about the difference between this and

```
{!Lookup.majorType == stop}
```

 This matches ANY annotation except a Lookup whose majorType is "stop", rather than any Lookup where the majorType is not "stop"

Comparison operators

- So far, we have compared features with the equality operators == and !=
- We can also use the comparison operators >, >=. < and <=
- {Token.length > 3} matches a Token annotation whose length is an integer greater than 3

Regular expression operators

- You can also use =~ and ==~ to match regular expressions
- {Token.string ==~ "[Dd]ogs"} matches a Token
 whose string feature value is (exactly) either "dogs" or "Dogs"
- {Token.string =~ "[Dd]ogs"} is the same but matches a Token whose string feature CONTAINS either "dogs" or "Dogs" within it
- Similarly, you can use !~ and !=~
- In the first example, it would match a Token whose string feature is NOT either "dogs" or "Dogs"
- In the second example, it would match a Token whose string feature does NOT contain either "dogs" or "Dogs" within it

Contextual operators

- The contextual operators "contains" and "within" match annotations within the context of other annotations
- {Organization contains Person} matches if an Organization annotation completely contains a Person annotation.
- {Person within Organization} matches if a Person annotation lies completely within an Organization annotation
- The difference between the two is that the first annotation specified is the one matched
- In the first example, Organization is matched
- In the second example, Person is matched

Combining operators

- You can combine operators of different types, e.g.
- Person within {Lookup.majorType ==
 organization}}
- {!Person within {Lookup.majorType ==
 organization}}
- Person within {Lookup.majorType !=
 organization}}
- {Person contains {!Lookup}, Person within {Organization}}
- But be sure you know what you're doing, as it can get quite complicated!

Summary

- This module has looked at some basic operations within JAPE.
- The best way to learn is to keep practising. Try things out and see what happens.
- It's usually best to build up JAPE rules in simple steps.
- Trying to do too much in a single rule will get you confused.
- Pay close attention to syntax and to things like making sure case is respected and that you have no typos in your rules.
- Remember you can use in your JAPE rules any annotations that you have previously used in your pipeline.
- You can also use any Java you want in your rules.
- Come back next time for the programming track to learn more about that!

China Sea Results (1)

{Lookup.majorType == location} ({Lookup.majorType == loc_key})?

Style	Annotated text	No of annotations
first	China	2
once	China	1
appelt	China sea	2
brill	China sea China	2 2
all	China sea China	2 2

China Sea Results (2)

({Lookup.majorType == location})? {Lookup.majorType == loc_key}

Style	Annotated text	No of annotations
first	China sea	2
once	China sea	1
appelt	China sea	2
brill	China sea	2
all	China sea China	2 2