
GATE in Multi-threaded/Web Applications
Extending GATE

Advanced GATE Embedded
Module 8, part 3

Twelfth GATE Training Course
June 2019

c© 2019 The University of Sheffield

This material is licenced under the Creative Commons

Attribution-NonCommercial-ShareAlike Licence

(http://creativecommons.org/licenses/by-nc-sa/3.0/)

Advanced GATE Embedded 1 / 64

http://creativecommons.org/licenses/by-nc-sa/3.0/


GATE in Multi-threaded/Web Applications
Extending GATE

Outline

1 GATE in Multi-threaded/Web Applications
Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

2 Extending GATE
Adding new document formats

Advanced GATE Embedded 2 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Outline

1 GATE in Multi-threaded/Web Applications
Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

2 Extending GATE
Adding new document formats

Advanced GATE Embedded 3 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Introduction

Scenario:
Implementing a web application that uses GATE Embedded to
process requests.
Want to support multiple concurrent requests
Long running process - need to be careful to avoid memory leaks,
etc.

Example used is a plain HttpServlet
Principles apply to other frameworks (struts, Spring MVC,
Grails. . . )

Advanced GATE Embedded 4 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Setting up

GATE libraries in WEB-INF/lib
dependencies from central via your build tool, or copy the lib
folder from GATE installation

Optional:
user config file if you need to configure things in there (e.g. “add
space on markup unpack”)

Advanced GATE Embedded 5 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

GATE in a Multi-threaded Environment

GATE initialization needs to happen once (and only once) before
any other GATE APIs are used.

The Factory is synchronized internally, so safe for use in multiple
threads.
Individual PRs/controllers are not safe – must not use the same
PR instance concurrently in different threads

this is due to the design of runtime parameters as Java Beans
properties.

Individual LRs (documents, ontologies, etc.) are only thread-safe
when accessed read-only by all threads.

if you need to share an LR between threads, be sure to
synchronize (e.g. using ReentrantReadWriteLock)

Advanced GATE Embedded 6 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Initializing GATE using a ServletContextListener

ServletContextListener called by container at startup and
shutdown (only startup method shown).

1 public void contextInitialized(ServletContextEvent e) {
2 / / if you want a user config
3 Gate.runInSandbox(false);
4 ServletContext ctx = e.getServletContext();
5 File userConfig = new File(
6 ctx.getRealPath("/WEB-INF/user.xml"));
7 Gate.setUserConfigFile(userConfig);
8 / / otherwise ignore this and use the default (sandbox=true)
9

10 / / initialise GATE
11 Gate.init();
12 }

Advanced GATE Embedded 7 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Initializing GATE using a ServletContextListener

You must register the listener in web.xml

1 <listener>
2 <listener-class>
3 gate.web.example.GateInitListener
4 </listener-class>
5 </listener>

Advanced GATE Embedded 8 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Handling Concurrent Requests

Naïve approach – new PRs for every request
1 public void doPost(request, response) {
2 ProcessingResource pr = Factory.createResource(...);
3 try {
4 Document doc = Factory.newDocument(
5 getTextFromRequest(request));
6 try {
7 / / do some stuff
8 }
9 finally {

10 Factory.deleteResource(doc);
11 }
12 }
13 finally {
14 Factory.deleteResource(pr);
15 }
16 }

Advanced GATE Embedded 9 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Handling Concurrent Requests

Naïve approach – new PRs for every request
1 public void doPost(request, response) {
2 ProcessingResource pr = Factory.createResource(...);
3 try {
4 Document doc = Factory.newDocument(
5 getTextFromRequest(request));
6 try {
7 / / do some stuff
8 }
9 finally {

10 Factory.deleteResource(doc);
11 }
12 }
13 finally {
14 Factory.deleteResource(pr);
15 }
16 }

Advanced GATE Embedded 9 / 64

Many levels of try/finally
– make sure you clean up
even when errors occur



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Problems with Naïve Approach

Guarantees no interference between threads

But inefficient, particularly with complex PRs (large gazetteers,
JAPE grammars, etc.)

Advanced GATE Embedded 10 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Take Two: using ThreadLocal

Store the PR/Controller in a thread-local variable

1 private ThreadLocal<CorpusController> controller =
2 new ThreadLocal<CorpusController>() {
3

4 protected CorpusController initialValue() {
5 return loadController();
6 }
7 };
8

9 private CorpusController loadController() { ... }
10

11 public void doPost(request, response) {
12 CorpusController c = controller.get();
13 / / do stuff with the controller
14 }

Advanced GATE Embedded 11 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

An Improvement. . .

Only initialise resources once per thread

Interacts nicely with typical web server thread pooling

But if a thread dies (e.g. with an exception), no way to clean up its
controller

Advanced GATE Embedded 12 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

One Solution: Object Pooling

Manage your own pool of Controller instances

Take a controller from the pool at the start of a request, return it
(in a finally!) at the end

Number of instances in the pool determines maximum
concurrency level

Advanced GATE Embedded 13 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Simple Example of Pooling

Setting up and cleaning up:

1 private BlockingQueue<CorpusController> pool;
2

3 public void init() {
4 pool = new LinkedBlockingQueue<CorpusController>();
5 for(int i = 0; i < POOL_SIZE; i++) {
6 pool.add(loadController());
7 }
8 }
9

10 public void destroy() {
11 for(CorpusController c : pool) {
12 Factory.deleteResource(c);
13 }
14 }

Advanced GATE Embedded 14 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Simple Example of Pooling

Processing requests:

15 public void doPost(request, response) {
16 CorpusController c = pool.take();
17 try {
18 / / do stuff
19 }
20 finally {
21 pool.add(c);
22 }
23 }

Advanced GATE Embedded 15 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Simple Example of Pooling

Processing requests:

15 public void doPost(request, response) {
16 CorpusController c = pool.take();
17 try {
18 / / do stuff
19 }
20 finally {
21 pool.add(c);
22 }
23 }

Advanced GATE Embedded 15 / 64

↖
This blocks when the
pool is empty. Use poll
for non-blocking check.



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Creating the pool

Typically to create the pool you would use PersistenceManager

to load a saved application several times.

But this is not always optimal, e.g. large gazetteers consume lots
of memory.

GATE provides API to duplicate an existing instance of a
resource: Factory.duplicate(existingResource).

By default, this simply calls Factory.createResource with the
same class name, parameters, features and name.
But individual Resource classes can override this by
implementing the CustomDuplication interface (more later).

e.g. DefaultGazetteer uses a SharedDefaultGazetteer

— same behaviour, but shares the in-memory representation of
the lists.

Advanced GATE Embedded 16 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Other Caveats

With most PRs it is safe to create lots of identical instances
But not all!

e.g. training a machine learning model with the learning
framework
but it is generally safe to have several instances applying an
existing model.

When using Factory.duplicate, be careful not to duplicate a
PR that is being used by another thread

i.e. either create all your duplicates up-front or else keep the
original prototype “pristine”.

Advanced GATE Embedded 17 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Exporting the Grunt Work: Spring

https://spring.io/

“Inversion of Control”

Configure your business objects and connections between them
using XML, Groovy or Java annotations.

Handles application startup and shutdown

GATE provides helper library to initialise GATE, load saved
applications, etc.

Built-in support for object pooling

Web application framework (Spring MVC)

Used by other frameworks (Grails, etc.)

Advanced GATE Embedded 18 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Initializing GATE via Spring XML

1 <beans
2 xmlns="http://www.springframework.org/schema/beans"
3 xmlns:gate="http://gate.ac.uk/ns/spring">
4 <gate:init run-in-sandbox="false"
5 user-config-file="gate-files/user-gate.xml" />
6

7 <gate:extra-plugin group-id="uk.ac.gate.plugins"
8 artifact-id="annie"
9 version="8.6" />

10 </beans>

Paths can be full URLs (file:/...) or resource paths that are
resolved appropriately by Spring

Advanced GATE Embedded 19 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Loading a Saved Application

To load an application state saved from GATE Developer:

1 <gate:saved-application
2 id="myApp"
3 location="gate-files/application.xgapp"
4 scope="prototype" />

scope="prototype" means create a new instance each
time we ask for it

Default scope is “singleton” — one instance is created at startup
and shared.

Advanced GATE Embedded 20 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Duplicating an Application

Alternatively, load the application once and then duplicate it

1 <gate:duplicate id="myApp" return-template="true">
2 <gate:saved-application location="..." />
3 </gate:duplicate>

<gate:duplicate> creates a new duplicate each time we ask for
the bean.

return-template means the original controller (from the
saved-application) will be returned the first time, then
duplicates thereafter.

Without this the original is kept pristine and only used as a source
for duplicates.

Advanced GATE Embedded 21 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Worked example – a Spring Boot webapp

Spring Boot is a framework to get a Spring-based application up
and running with a few lines of code.

“Convention over configuration” approach, providing sensible
defaults that you can override.

Builds using Maven 3 (or Gradle)
Example is a Spring MVC web application

see hands-on materials for the code.

Advanced GATE Embedded 22 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Setting up a Spring Boot app

One “parent” and one “plugin” to add to Maven POM
Add dependencies on the relevant “starter” modules, which
themselves depend on the required libraries

spring-boot-starter-web for a basic Spring MVC
application
your preferred view technology, in our case
spring-boot-starter-thymeleaf

And whatever other libraries you require
in this case we need gate-spring, which in turn depends on
gate-core

Advanced GATE Embedded 23 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Setting up a Spring Boot app

Entry point is a simple boilerplate class with annotations.

Automatically scans sub-packages for other annotated classes
(controllers, etc.).

1 package gatetutorial;
2 import org.springframework.boot.SpringApplication;
3 import org.springframework.boot.autoconfigure.

SpringBootApplication;
4

5 @SpringBootApplication
6 public class TutorialApp {
7

8 public static void main(String... args) {
9 SpringApplication.run(TutorialApp.class, args);

10 }
11 }

Advanced GATE Embedded 24 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

A simple example controller

Our example is a single controller that presents an HTML form to
enter text.

When form is submitted, process the document with a GATE
application and show the document features as a table.

Advanced GATE Embedded 25 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Spring pooling support

Spring’s built-in AOP features offer support for object pooling.

Given a bean definition, we can expose a proxy object with the
same behaviour backed by a pool of instances

Each method call on the proxy is dispatched to one of the objects
in the pool.

Each target bean is guaranteed to be accessed by no more than
one thread at a time.

When the pool is empty, can configure further requests to block or
fail.

Advanced GATE Embedded 26 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

The gate:pooled-proxy helper

The machinery is all Spring but complex to configure.

gate-spring provides a helper to automate this in Spring
XML configuration.

Don’t pool GATE applications directly, instead pool a helper class
that calls GATE.

1 <bean id="gateService"
2 class="gatetutorial.service.GateService">
3 <gate:pooled-proxy max-size="3"
4 initial-size="3" />
5 </bean>

Advanced GATE Embedded 27 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

More advanced pooling options

Many more options to control the pool, e.g. for a pool that grows
as required and shuts down instances that have been idle for too
long, and where excess requests fail rather than blocking:

1 <gate:pooled-proxy
2 max-size="10"
3 max-idle="3"
4 time-between-eviction-runs-millis="180000"
5 min-evictable-idle-time-millis="90000"
6 when-exhausted-action-name="WHEN_EXHAUSTED_FAIL"
7 />

Under the covers, <gate:pooled-proxy> creates a Spring
CommonsPool2TargetSource, attributes correspond to properties
of this class.

See the Spring documentation for full details.

Advanced GATE Embedded 28 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

The GateService

The GateService is written assuming single-threaded access.

1 public class GateService {
2 / / will be injected automatically
3 @Autowired private CorpusController application;
4

5 private Corpus corpus;
6

7 @PostConstruct
8 public void init() throws GateException {
9 corpus = Factory.newCorpus("GateService");

10 application.setCorpus(corpus);
11 }

Advanced GATE Embedded 29 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

The GateService

13 @PreDestroy
14 public void destroy() {
15 Factory.deleteResource(corpus);
16 / / not strictly necessary as gate:duplicate will handle this
17 Factory.deleteResource(application);
18 }

Advanced GATE Embedded 30 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

The GateService

20 public FeatureMap processWithGate(Document doc)
21 throws GateException {
22 try {
23 corpus.add(doc);
24 application.execute();
25 return doc.getFeatures();
26 } finally {
27 corpus.clear();
28 }
29 }
30 }

Advanced GATE Embedded 31 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Tying it together

Initialize GATE and configure service pool in XML (in
src/main/resources)

1 <gate:init />
2 <gate:duplicate id="gateApplication"
3 return-template="true">
4 <gate:saved-application
5 location="gate-files/application.xgapp" />
6 </gate:duplicate>
7

8 <bean id="gateService"
9 class="gatetutorial.service.GateService">

10 <gate:pooled-proxy max-size="3"
11 initial-size="3" />
12 </bean>

Advanced GATE Embedded 32 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Tying it together

Add an annotation to TutorialApp to load the XML.

1 import org.springframework.context.annotation.
ImportResource;

2 / / . . .
3

4 @SpringBootApplication
5 @ImportResource("/gate-beans.xml")
6 public class TutorialApp {

Advanced GATE Embedded 33 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Tying it together

And finally, autowire the GateService into controller, and call
its methods without having to worry about threading.

1 / / imports as required
2

3 @Controller
4 public class GateController {
5

6 @Autowired
7 private GateService gateService;

Advanced GATE Embedded 34 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Tying it together

9 @RequestMapping(value="/",
10 method = RequestMethod.POST)
11 public String process(
12 @ModelAttribute("params")
13 AnnotationRequest params,
14 Map<String, Object> model) throws GateException {
15 Document doc = / / extract text from request
16 try {
17 FeatureMap features =
18 gateService.processWithGate(doc);
19 model.put("features", features);
20 return "index";
21 } finally { Factory.deleteResource(doc); }
22 }
23 }

Advanced GATE Embedded 35 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Exercise 1: The Spring Boot example

In hands-on/webapps you have the source code for the
Spring Boot example we’ve been discussing.
What’s provided:

the pom.xml with the necessary dependencies,
source code for the controller and GateService (in
src/main/java),
the Thymeleaf view with the text entry form and results table,
configuration in src/main/resources, including GATE
config files and the bean definition XML.

Advanced GATE Embedded 36 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Exercise 1: The Spring Boot example

What’s missing:
the GATE application iself. . .

Use the document statistics PR from earlier.

In GATE Developer, create a “corpus pipeline” application
containing a tokeniser and your statistics PR.
Right-click on the application and “Export for GATE Cloud”.

This will save the application state along with all the plugins it
depends on in a single zip file.

Unpack the zip file under
src/main/resources/gate-files

don’t create any extra directories – you need
application.xgapp and maven-cache.gate to end up
in gate-files.

Advanced GATE Embedded 37 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Exercise 1: The Spring Boot example

Now you can run the application – in hands-on/webapps run
mvn spring-boot:run

Browse to http://localhost:8080/, enter some text and
submit

Watch the log messages. . .

Notice the result page includes a feature “handledBy” – each
service instance in the pool has a unique ID.

Multiple submissions go to different instances in the pool.

Try editing src/main/resources/gate-beans.xml and
change the pooling configuration.

Test concurrent requests – the service has a built-in delay to
simulate a slow application.

Advanced GATE Embedded 38 / 64

http://localhost:8080/


GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Not Just for Webapps

Spring Boot (and Spring in general) isn’t just for web applications

You can use the same tricks in other embedded apps

GATE provides a DocumentProcessor interface suitable for
use with Spring pooling, which exposes one void method
processDocument

1 <bean id="processor"
2 class="gate.util.LanguageAnalyserDocumentProcessor">
3 <property name="analyser" ref="gateApplication"/>
4 <gate:pooled-proxy max-size="3" initial-size="3" />
5 </bean>

Advanced GATE Embedded 39 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

A simple command-line app

1 @Component
2 public class GateCommand implements CommandLineRunner {
3 @Autowired private DocumentProcessor proc;
4

5 public void run(String... args) throws Exception {
6 Document doc = Factory.newDocument(args[0]);
7 try {
8 proc.processDocument(doc);
9 / / . . .

10 } finally { Factory.deleteResource(doc); }
11 }
12 }

The main entry point TutorialApp is unchanged from the web
example.

Advanced GATE Embedded 40 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

A JMS message consumer

1 @Component
2 public class Receiver {
3 @Autowired private DocumentProcessor proc;
4

5 @JmsListener(destination = "someQueue",
6 concurrency = "3")
7 public void receive(String stringMessage) {
8 Document doc = Factory.newDocument(stringMessage);
9 try {

10 proc.processDocument(doc);
11 doStuffWithResults(doc);
12 } finally { Factory.deleteResource(doc); }
13 }
14 }

In this case we need to add @EnableJms to the entry point class,
and relevant dependencies to the POM.

Advanced GATE Embedded 41 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Conclusions

Two golden rules:

Only use a GATE Resource in one thread at a time

Always clean up after yourself, even if things go wrong
(deleteResource in a finally block).

Advanced GATE Embedded 42 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Duplication and Custom PRs

Recap: by default, Factory.duplicate calls createResource

passing the same type, parameters, features and name

This can be sub-optimal for resources that rely on large read-only
data structures that could be shared

If this applies to your custom PR you can take steps to make it
handle duplication more intelligently

For simple cases: sharable properties, for complex cases:
custom duplication.

Advanced GATE Embedded 43 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Sharable properties

A way to share object references between a PR and its duplicates

A JavaBean setter/getter pair with the setter annotated (same as
for @CreoleParameter)

1 private Map dataTable;
2

3 public Map getDataTable() { return dataTable; }
4

5 @Sharable
6 public void setDataTable(Map m) {
7 dataTable = m;
8 }

Advanced GATE Embedded 44 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Sharable properties

Default duplication algorithm will get property value from original
and set it on the duplicate before calling init()

init() must detect when sharable properties have been set and
react appropriately.

1 public Resource init() throws /∗ . . . ∗ / {
2 if(dataTable == null) {
3 / / only need to build the data table if we weren’t given a shared one
4 buildDataTable();
5 }
6 }
7

8 public void reInit() throws /∗ . . . ∗ / {
9 / / clear sharables on reInit

10 dataTable = null;
11 super.reInit();
12 }

Advanced GATE Embedded 45 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Sharable properties – Caveats

Anything shared between PRs must be thread-safe
use appropriate synchronization if any of the threads modifies the
shared object (e.g. a ReentrantReadWriteLock which is itself
@Sharable).
or (for the dataTable example), use an inherently safe class such
as ConcurrentHashMap
for shared counter, use AtomicInteger

If you use sharable properties, take care not to break reInit

Advanced GATE Embedded 46 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Exercise 2: Multi-threaded cumulative statistics

hands-on/shared-stats contains a variation on the
DocStats PR that keeps a running total of the number of
Tokens it has seen.

Build this (using the Maven pom), load the plugin, create an
application containing a tokeniser and a “Shared document
statistics” PR, export for GATE Cloud and unzip into your webapp
as before.

Try posting some requests to the webapp.

You will see a running_total feature, but this is per handler,
not global across handlers.

Advanced GATE Embedded 47 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Exercise 2: Multi-threaded cumulative statistics

Your task: make the running total global.
Make the totalCount field into a sharable property

it’s already a thread-safe AtomicInteger

add a getter and setter, with the right annotation
init() logic to handle the shared/non-shared cases
implement a sensible reInit()

You will need to re-build your PR and re-export (or just copy the
compiled plugin JAR file to the appropriate place under
gate-files/maven-cache.gate)

Advanced GATE Embedded 48 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Exercise 2: Solution

Getter and setter:

1 private AtomicInteger totalCount;
2

3 public AtomicInteger getTotalCount() {
4 return totalCount;
5 }
6

7 @Sharable
8 public void setTotalCount(AtomicInteger tc) {
9 this.totalCount = tc;

10 }

Advanced GATE Embedded



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Exercise 2: Solution

init() and reInit():

1 public Resource init() throws
2 ResourceInstantiationException {
3 if(totalCount == null) {
4 totalCount = new AtomicInteger(0);
5 }
6 return this;
7 }
8

9 public void reInit() throws
10 ResourceInstantiationException {
11 totalCount = null;
12 super.reInit();
13 }

execute() is unchanged.

Advanced GATE Embedded



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Custom Duplication

For more complex cases, a resource can take complete control of
its own duplication by implementing CustomDuplication

This tells Factory.duplicate to call the resource’s own
duplicate method instead of the default algorithm.

1 public Resource duplicate(DuplicationContext ctx)
throws ResourceInstantiationException;

duplicate should create and return a duplicate, which need not
be the same concrete class but must “behave the same”

Defined in terms of implemented interfaces.
Exact specification can be found in the Factory.duplicate
JavaDoc.

Advanced GATE Embedded 49 / 64

https://javadoc.io/page/uk.ac.gate/gate-core/latest/gate/Factory.html#duplicate-gate.Resource-
https://javadoc.io/page/uk.ac.gate/gate-core/latest/gate/Factory.html#duplicate-gate.Resource-


GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Custom Duplication

If you need to duplicate other resources, use the two-argument
Factory.duplicate, passing the ctx as the second parameter,
to preserve object graph

two calls to Factory.duplicate(r, ctx) for the same
resource r in the same context ctx will return the same duplicate.
calls to the single argument Factory.duplicate(r) or to the
two-argument version with different contexts will return different
duplicates.

Can call the default duplicate algorithm (bypassing the
CustomDuplication check) via Factory.defaultDuplicate

it is safe to call defaultDuplicate(this, ctx), but calling
duplicate(this, ctx) from within its own custom
duplicate will cause infinite recursion!

Advanced GATE Embedded 50 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

Custom Duplication Example (SerialController)

1 public Resource duplicate(DuplicationContext ctx)
2 throws ResourceInstantiationException {
3 / / duplicate this controller in the default way - this handles subclasses nicely
4 Controller c = (Controller)Factory.defaultDuplicate(
5 this, ctx);
6

7 / / duplicate each of our PRs
8 List<ProcessingResource> newPRs =
9 new ArrayList<ProcessingResource>();

10 for(ProcessingResource pr : prList) {
11 newPRs.add((ProcessingResource)Factory.duplicate(
12 pr, ctx));
13 }
14 / / and set this duplicated list as the PRs of the copy
15 c.setPRs(newPRs);
16

17 return c;
18 }

Advanced GATE Embedded 51 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Adding new document formats

Outline

1 GATE in Multi-threaded/Web Applications
Multi-threading and GATE
Servlet Example
The Spring Framework
Making your own PRs duplication-friendly

2 Extending GATE
Adding new document formats

Advanced GATE Embedded 52 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Adding new document formats

Adding new document formats

GATE provides default support for reading many source
document formats, including plain text, HTML, XML, PDF, DOC,
. . .

The mechanism is extensible – the format parsers are themselves
resources, which can be provided via CREOLE plugins.
GATE chooses the format to use for a document based on MIME
type, deduced from

explicit mimeType parameter
file extension (for documents loaded from a URL)
web server supplied Content-Type (for documents loaded from an
http: URL)
“magic numbers”, i.e. signature content at or near the beginning of
the document

Advanced GATE Embedded 53 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Adding new document formats

The DocumentFormat resource type

A GATE document format parser is a resource that extends the
DocumentFormat abstract class or one of its subclasses.

Override unpackMarkup method to do the actual format parsing,
creating annotations in the Original markups annotation
set and optionally modifying the document content.

Override init to register with the format detection mechanism.

In theory, can take parameters like any other resource . . .

. . . but in practice most formats are singletons, created as
autoinstances when their defining plugin is loaded.

Advanced GATE Embedded 54 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Adding new document formats

Repositioning info

Some formats are able to record repositioning info

Associates the offsets in the extracted text with their
corresponding offsets in the original content.

Allows you to save annotations as markup inserted into the
original content.
Of the default formats, only HTML can do this reliably.

If you’re interested, see the NekoHtmlDocumentFormat

Advanced GATE Embedded 55 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Adding new document formats

Implementing a DocumentFormat

Define a class that extends DocumentFormat, with CREOLE
metadata

1 import gate.*;
2 import gate.creole.metadata.*;
3 import gate.corpora.*;
4

5 @CreoleResource(name = "Example DocumentFormat",
6 autoinstances = {@AutoInstance})
7 public class MyDocumentFormat
8 extends TextualDocumentFormat {
9 / / . . .

10 }

autoinstances causes GATE to create an instance of this
resource automatically when the plugin is loaded.

Advanced GATE Embedded 56 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Adding new document formats

DocumentFormat methods

Most formats need to override three or four methods.

supportsRepositioning to specify whether or not the format is
capable of collecting repositioning info – most aren’t

1 public Boolean supportsRepositioning() {
2 return false;
3 }

Advanced GATE Embedded 57 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Adding new document formats

DocumentFormat methods

Two variants of unpackMarkup

If you don’t support repositioning then best to extend
TextualDocumentFormat and just override the simple one:

1 public void unpackMarkup(Document doc)
2 throws DocumentFormatException {
3 AnnotationSet om = doc.getAnnotations(
4 GateConstants.ORIGINAL_MARKUPS_ANNOT_SET_NAME);
5 / / Make changes to the document content, add annotations to om
6 }

Other variant (for repositioning formats) is implemented in terms
of this one by TextualDocumentFormat

Advanced GATE Embedded 58 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Adding new document formats

DocumentFormat methods

Finally, init to register the format with GATE
Mostly boilerplate, using protected Map fields defined in
DocumentFormat

1 public Resource init() throws
ResourceInstantiationException {

2 MimeType mime = new MimeType("text", "x-special");
3 mimeString2ClassHandlerMap.put(
4 mime.getType()+ "/" + mime.getSubtype(), this);
5 mimeString2mimeTypeMap.put(
6 mime.getType() + "/" + mime.getSubtype(), mime);
7 suffixes2mimeTypeMap.put("spec", mime);
8 magic2mimeTypeMap.put("==special==", mime);
9

10 setMimeType(mime);
11 return this;
12 }

Advanced GATE Embedded 59 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Adding new document formats

Registering a document format

2 MimeType mime = new MimeType("text", "x-special");
3 mimeString2ClassHandlerMap.put(
4 mime.getType()+ "/" + mime.getSubtype(), this);

Create a MimeType object representing the “primary” MIME type
for this format.

Register this object as the handler for this MIME type.

5 mimeString2mimeTypeMap.put(
6 mime.getType() + "/" + mime.getSubtype(), mime);

Establish a mapping between the MIME string “text/x-special” and
the primary MimeType object.

To register a format against several different MIME types (e.g.
text/json and application/json), add them to the
mimeString2mimeTypeMap

Advanced GATE Embedded 60 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Adding new document formats

Registering a document format

7 suffixes2mimeTypeMap.put("spec", mime);

Register the file suffixes (not including the leading dot) that the
format will handle, by mapping them to the primary MimeType

Can add several different suffixes for the same type (txt, text, etc.)

8 magic2mimeTypeMap.put("==special==", mime);

Add “magic numbers” – strings whose presence within the first
2kB of content will select the format

E.g. “<?xml” is a strong predictor of XML documents.

Advanced GATE Embedded 61 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Adding new document formats

Registering a document format

10 setMimeType(mime);
11 return this;

Boilerplate.

Suffixes and magic numbers are optional – don’t use them if they
don’t make sense for your particular format.

. . . but if neither are specified then only documents created with
an explicit mimeType parameter will use the format.

Advanced GATE Embedded 62 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Adding new document formats

Exercise: Document format registration

hands-on/yam-format contains a simple document format
implementation.

Processes text files in the “YAM” format (the Wiki markup syntax
used on http://gate.ac.uk).

unpackMarkup has been written for you.

Annotates *bold*, _italic_ and ^teletype^ text, and
section headings (lines starting %1, %2, etc.).

For simplicity, does not modify the text or do repositioning, only
adds Original markups annotations.

Advanced GATE Embedded 63 / 64

http://gate.ac.uk


GATE in Multi-threaded/Web Applications
Extending GATE

Adding new document formats

Exercise: Document format registration

Your task – write the init method registration code
Primary MIME type “text/x-yam”
File suffixes “.yam” and “.gate”
No magic numbers

To test, mvn install, then load the yam-format plugin into
GATE Developer.

Note the auto-instance created when the plugin loads

Create a document from the overview.yam file and inspect
the Original markups.

Advanced GATE Embedded 64 / 64



GATE in Multi-threaded/Web Applications
Extending GATE

Adding new document formats

Solution

1 @Override
2 public Resource init() throws

ResourceInstantiationException {
3 / / create the primary MIME type
4 MimeType mime = new MimeType("text", "x-yam");
5 / / usual boilerplate
6 mimeString2ClassHandlerMap.put(
7 mime.getType()+ "/" + mime.getSubtype(), this);
8 mimeString2mimeTypeMap.put(
9 mime.getType() + "/" + mime.getSubtype(), mime);

10 / / file suffixes
11 suffixes2mimeTypeMap.put("yam", mime);
12 suffixes2mimeTypeMap.put("gate", mime);
13 / / more boilerplate
14 setMimeType(mime);
15 return this;
16 }

Advanced GATE Embedded


	GATE in Multi-threaded/Web Applications
	Multi-threading and GATE
	Servlet Example
	The Spring Framework
	Making your own PRs duplication-friendly

	Extending GATE
	Adding new document formats


