
University of Sheffield NLP 

Module 2: Introduction to JAPE

© The University of Sheffield, 1995-2019
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike Licence 



University of Sheffield NLP 

Topics covered in this module

• What is JAPE?

• Parts of the rule: LHS and RHS

• How to write simple patterns

• How to create new annotations and features

• Different operators

• Different matching styles

• Macros

2



University of Sheffield NLP 

What is JAPE and what 
is it good for?

3



University of Sheffield NLP 

What is JAPE?

• a Jolly And Pleasant Experience :-)

• Specially developed pattern matching language for GATE

• Each JAPE rule consists of

– LHS which contains patterns to match

– RHS which details the annotations to be created

• JAPE rules combine to create a phase

• Rule priority based on pattern length, rule status and rule 
ordering 

• Phases combine to create a grammar

4



University of Sheffield NLP 

Limitations of gazetteers

 Gazetteer lists are designed for annotating simple, regular 
features

 Some flexibility is provided, but this is not enough for most 
tasks

 recognising e-mail addresses using just a gazetteer 
would be impossible

 but combined with other linguistic pre-processing 
results, we have lots of annotations and features

 POS tags, capitalisation, punctuation, lookup features, etc 
can all be combined to form patterns suggesting more 
complex information

 This is where JAPE comes in.
5



University of Sheffield NLP 

JAPE example

• A typical JAPE rule might match all university names in the 
UK, e.g. “University of Sheffield”

• The gazetteer might contain the word “Sheffield” in the list 
of cities

• The rule looks for specific words such as “University of” 
followed by the name of a city.

• This wouldn't be enough to match all university names, but 
it's a start.

• Later, we'll see how we can extend this kind of rule to cover 
other variations.

6



University of Sheffield NLP 

Simple JAPE Rule

Rule: University1 

(

 {Token.string == "University"} 

 {Token.string == "of"}

 {Lookup.minorType == city} 

):orgName 

-->

:orgName.Organisation = 

  {kind = "university", rule = "University1"}

7



University of Sheffield NLP 

Parts of the rule

Rule: University1 

(
 {Token.string == "University"} 
 {Token.string == "of"}
 {Lookup.minorType == city} 
):orgName 

-->

:orgName.Organisation = 

  {kind = "university", 

   rule = "University1"}

Rule Name

LHS

   RHS

8



University of Sheffield NLP 

LHS of the rule

Rule: University1

(

 {Token.string == "University"} 

 {Token.string == "of"}

 {Lookup.minorType == city} 

):orgName 

-->

• LHS is everything before the arrow

• It describes the pattern to be matched, in terms of annotations 
and (optionally) their features

• Each annotation is enclosed in a curly brace 9



University of Sheffield NLP 

Matching a text string

• Everything to be matched must be specified in terms of 
annotations

• To match a string of text, use the “Token” annotation and the 
“string” feature

{Token.string == "University"} 

• Note that case is important in the value of the string

• You can combine sequences of annotations in a pattern

{Token.string == "University"} 
{Token.string == "of"}
{Lookup.minorType == city} 

10



University of Sheffield NLP 

Labels on the LHS

• For every combination of patterns that you want to create an 
annotation for, you need a label

• The pattern combination that you want to label is enclosed in 
round brackets, followed by a colon and the label

• The label name can be any legal name you want: it's only used 
within the rule itself 

(
 {Token.string == "University"} 

 {Token.string == "of"}

 {Lookup.minorType == city} 

) :orgName 

11



University of Sheffield NLP 

Operators on the LHS

Traditional Kleene and other operators can be used 

|     OR

*    zero or more occurrences

?   zero or one occurrence

+   one or more occurrences

({Lookup.minorType == city}|
 {Lookup.minorType == country})

12



University of Sheffield NLP 

Delimiting operator range

• Use round brackets to delimit the range of the operators

({Lookup.minorType == city}|

 {Lookup.minorType == country}

)+

is not the same as

({Lookup.minorType == city}|

 ({Lookup.minorType == country})+

)

One or more cities or 
countries in any order 
and combination

One city OR one or 
more countries

13



University of Sheffield NLP 

JAPE RHS

Rule: University1 

(

 {Token.string == "University"} 

 {Token.string == "of"}

 {Lookup.minorType == city} 

):orgName 

-->

:orgName.Organisation = 

 {kind = "university", rule = "University1"}

14



University of Sheffield NLP 

Breaking down the RHS

(…)

:orgName 

-->

:orgName . Organisation  = {kind = "university"}

label
annotation type

feature + value

15



University of Sheffield NLP 

Labels

• The label on the RHS must match a label on the LHS
(

 {Token.string == "University"}

 {Token.string == "of"}

 {Lookup.minorType == city}

) :orgName 

-->

:orgName .Organization = {kind = organization}

• This is so we know which part of the pattern to attach the 
new annotation to

16



University of Sheffield NLP 

Go label crazy...

• You can have as many patterns and actions as you want

• Patterns can be consecutive, nested, or both!

• Patterns cannot overlap

(

 ({Token.string == "University"}):uniKey

 {Token.string == "of"}

 ({Lookup.minorType == city}):cityName

) :orgName 

-->

17



University of Sheffield NLP 

Multiple patterns and labels

• We can have several actions on the RHS corresponding to 
different labels. 

• Separate the actions with a comma
(

 ({Token.string == "University"})

 {Token.string == "of"}

 ({Lookup.minorType == city}) : cityName

) :orgName 

-->

:cityName. Location  = {kind = city},

:orgName.Organization = {kind = university}
18



University of Sheffield NLP 

Patterns and actions

• A pattern does not have to have a corresponding action

• If there's no action, you don't need to label it

• Patterns specified will normally be consumed (more on this 
later)

• Here, we want to add a special annotation for university towns
(

 {Token.string == "University"}

 {Token.string == "of"}

)

 ({Lookup.minorType == city}):  cityName

-->

:cityName. Location  = {kind = university_town}

19



University of Sheffield NLP 

Annotations and Features

 The annotation type and features created can be anything you want 
(as long as they are legal names)

 They don't need to currently exist anywhere
 Features and values are optional, and you can have as many as 

you like
 All the following are valid:

:orgName.Organization = {}

:orgName.Organization = {kind=university}

:orgName.Organization = 

  {kind=university, rule=University1}

:fishLabel.InterestingFishAnnotation = {scales=yes}
20



University of Sheffield NLP 

Exercise: annotation types and features

• Remove any existing applications and processing resources 
that you have loaded in GATE

• Load ANNIE and remove the JAPE grammar and orthomatcher

• Load the grammar university1.jape, add it to your application, 
and run on the text university1.txt

• View the results

• Now open the grammar university1.jape in your favourite text 
editor and change the name of the annotation type created

• Save the file, then reinitialise the grammar in GATE and run the 
application again. View your new annotation.

• Try changing the name of the features, removing features, and 
adding new ones, and adding multiple labels

21



University of Sheffield NLP 

More complex RHS

 So far we've just shown RHS syntax involving JAPE
 You can also use any Java on the RHS instead, or as well
 This is useful for doing more complex things, such as

 Iterating through a list of annotations of unknown number
 Checking a word has a certain suffix before creating an 

annotation
 Getting information about one annotation from inside 

another annotation
 More complex Java on the RHS will be taught later in this 

module

22



University of Sheffield NLP 

JAPE Headers

• Each JAPE file must contain a set of headers at the top

Phase: University

Input: Token Lookup

Options: control = appelt

• These headers apply to all rules within that grammar phase

• They contain Phase name, set of Input annotations and other 
Options 

23



University of Sheffield NLP 

JAPE Phases

• A typical JAPE grammar will contain lots of different rules, 
divided into phases

• The set of phases is run sequentially over the document
• You might have some pre-processing, then some main 

annotation phases, then some cleanup phases
• Each phase needs a name, e.g  Phase: University
• The phase name makes up part of the Java class name for 

the compiled RHS actions, so it must contain alphanumeric 
characters and underscores only, and cannot start with a 
number

24



University of Sheffield NLP 

JAPE Phases (2)

• Rules in the same phase compete for input
• Rules in separate phases run independently
• One phase can use annotations created by previous 

phases
• Instead of loading each JAPE grammar as a separate 

transducer in GATE, you can combine them in a multiphase 
transducer

• A multiphase transducer chains a set of JAPE grammars 
sequentially

25



University of Sheffield NLP 

Multiphase transducer

The multiphase transducer lists the other grammars to be loaded: all 
you need to load is this file

 In ANNIE this is called main.jape - by default we usually label 
multiphase transducers with “main” in the filename

MultiPhase: TestTheGrammars

Phases: 

first

name

date

final

name of the multiphase

list the phases in order of processing

26



University of Sheffield NLP 

Input Annotations

• The Input Annotations list contains a list of all the annotation 
types you want to use for matching on the LHS of rules in that 
grammar phase, e.g. 

    Input: Token Lookup

• If an annotation type is used in a rule but not mentioned in the 
list, a warning will be generated when the grammar is compiled 
in GATE

• If an annotation is listed in Input but not used in the rules, it can 
block the matching (e.g Split)

• If no input is included, then all annotations are used

27



University of Sheffield NLP 

Input Annotations

{Organization} {Location}

28

No Input

Input: Organization Location



University of Sheffield NLP 

Exercise: input annotations

• Try altering the Input annotations in university1.jape

• Remove the Lookup annotation from the list. What 
happens when you run the grammar?

• Why?

• Add “SpaceToken” to the list. What happens when you run 
the grammar? 

• What happens if you then add SpaceToken annotations 
into the rule?

• Check the Messages tab each time to see if GATE 
generates any warnings.

29



University of Sheffield NLP 

Matching styles

Options: control = appelt

• “Rules in the same phase compete for input”

• What happens when 2 rules can match the same input?

• What happens when the same rule can match different lengths of 
input (e.g. +,* operators)?

• The matching style controls

– Which rule gets applied

– How much document content is ‘consumed’

– Which location to attempt matching next 

30



University of Sheffield NLP 

Matching styles

5 different control styles possible:

• appelt (longest match, plus explicit priorities)

• first (shortest match fires)

• once (shortest match fires, and all matching stops)

• brill (fire every match that applies) (this is the default)

• all (all possible matches, starting from each offset in turn)

31



University of Sheffield NLP 

Matching styles

Tim          Berners       Lee          

Appelt

Once

Brill

First

All

{Name}+

longest match

exit after first match

first match

every combination 
from start of match

every combination 

32



University of Sheffield NLP 

Appelt style

• In the appelt style,  which rule to apply is selected in the following order:
 longest match
 explicit priority
 rule defined first

• Each rule has an optional priority parameter, whose value is an integer

• Higher numbers have greater priority

• If no explicit priority parameter, default value is -1

• Once a match has fired, matching continues from the next offset 
following the end of the match

Rule:   Location1  

Priority: 25  

33



University of Sheffield NLP 

Difference between first and once

• With both styles, the first match is fired

• This means they're inappropriate for rules ending in the 
operators +  ? or * 

• The difference between the two styles is what happens 
after a match has been found

• With the once style, the whole grammar phase is exited 
and no more matches are attempted

• With the first style, matching continues from the offset 
following the end of the existing match

34



University of Sheffield NLP 

Difference between brill and all

• Both Brill and all match every possible combination from a 
given starting position

• When a match has been found, brill starts looking for the 
next match from the offset at the end of the longest match

• All starts looking for the next match by advancing one 
offset from the beginning of the previous match

35



University of Sheffield NLP 

LHS Macros

• Macros provide an easy way to reuse long or complex 
patterns

• The macro is specified once at the beginning of the 
grammar, and can then be reused by simply referring to its 
name, in all future rules

• Macros hold for ALL subsequent grammar files

• If a new macro is given later with the same name, it will 
override the previous one for that grammar

• Macro names are by convention  written in capitals, and 
can only contain alphanumeric characters and underscores

• A macro looks like the LHS of a rule but without a label

36



University of Sheffield NLP 

Using a macro in a rule

Macro: NUMBER_FULL 

({Token.kind == number}  

 (({Token.string == ","}| {Token.string == "."}) 

  {Token.kind == number}  

 )* 

)  

Rule: MoneyCurrencyUnit  

  ( 

   (NUMBER_FULL)?

   ({Lookup.majorType == currency_unit})  

  )  

:number -->  

  :number.Money = {kind = “number”, rule = 
"MoneyCurrencyUnit"} 

37



University of Sheffield NLP 

Multi-constraint statements

• You can have more than one constraint on a pattern

• Just separate the constraints with a comma

• Make sure that all constraints are enclosed within a single 
curly brace

{Lookup.majorType == loc_key, 

 Lookup.minorType == post}

Is not the same as

{Lookup.majorType == loc_key}

{Lookup.minorType == post}

38



University of Sheffield NLP 

Negative constraints on annotations (!)

• You can use the ! operator to  indicate negation

• Negative constraints are generally used in combination with positive 
ones to constrain the locations at which the positive constraint can 
match.

Rule: PossibleName  
(  
 {Token.orth == upperInitial, !Lookup}  
):name  
-->  
 :name.PossibleName = {} 

• Matches any uppercase-initial Token, where there is no Lookup 
annotation starting at the same location

39



University of Sheffield NLP 

Negative constraints on features (!=)

• The previous example showed a negative constraint on an 
annotation {!Lookup}

• You can also constrain the features of an annotation

• {Lookup.majorType != stop} would match any 
Lookup except those with majorType “stop” (stopwords)

• Be careful about the difference between this and 

{!Lookup.majorType == stop} 

• This matches ANY annotation except a Lookup whose 
majorType is “stop”, rather than any Lookup where the 
majorType is not “stop”

40



University of Sheffield NLP 

Comparison operators

• So far, we have compared features with the equality 
operators == and !=

• We can also use the comparison operators >, >=. < and <=

• {Token.length > 3} matches a Token annotation 
whose length is an integer greater than 3

41



University of Sheffield NLP 

Kleene operator for ranges

 You can specify ranges when you don't know the exact number of 
occurrences of something

 ({Token})[2,5] will find between 2 and 5 consecutive Tokens
 In most cases you do NOT want to use unbounded Kleene 

operators (*, +) because they are not very efficient

42



University of Sheffield NLP 

Regular expression operators

• You can also use =~ and ==~ to match regular expressions

• {Token.string ==~ "[Dd]ogs"} matches a Token 
whose string feature value is (exactly) either “dogs” or “Dogs”

• {Token.string =~ "[Dd]ogs"} is the same but 
matches a Token whose string feature contains either “dogs” 
or “Dogs” within it

• Similarly, you can use !=~ and !~ 

• In the first example, it would match a Token whose string 
feature is NOT either “dogs” or “Dogs”

• In the second example, it would match a Token whose string 
feature does NOT contain either “dogs” or “Dogs” within it

43



University of Sheffield NLP 

Contextual operators

• The contextual operators “contains” and “within” match 
annotations within the context of other annotations

• {Organization contains Person}  matches if an Organization 
annotation completely contains a Person annotation.

• {Person within Organization} matches if a Person annotation lies 
completely within an Organization annotation

• The difference between the two is that the first annotation 
specified is the one matched

• In the first example, Organization is matched

• In the second example, Person is matched

44



University of Sheffield NLP 

Combining operators

• You can combine operators of different types, e.g.

• {Person within {Lookup.majorType == 
organization}}

• {!Person within {Lookup.majorType == 
organization}}

• {Person within {Lookup.majorType != 
organization}}

• {Person contains {!Lookup}, Person within 
{Organization}}

• But be sure you know what you're doing, as it can get quite 
complicated!

• Note that {Person contains Person} might give some 
unexpected results! 45



University of Sheffield NLP 

Copying Feature Values to the RHS

• JAPE provides simple support for copying feature values from the 
LHS to the RHS 

(
{Lookup.majorType == location}
):loc  
-->   
:loc.Location = { type = :loc.Lookup.minorType} 

• This copies the value of the Lookup minorType feature from the LHS 
to the new Location annotation

• Note that if more than one Lookup annotation is covered by the 
label, then one of them is chosen at random to copy the feature 
value from

• It's best not to use this facility unless you know there is only one 
matching annotation

46



University of Sheffield NLP 

Exercise: copying Lookup features

• Open university1.jape in your text editor and create a new 
annotation called “UniversityTown” that matches just the city 
name. 

• Also copy the value of the majorType of the city to a new feature 
of this annotation, called “kind”

Hint: the RHS for the previous example looked like this:

:loc.Location = { type = :loc.Lookup.minorType}  

• Run this on the university1.txt document and check the results

• You should see “Sheffield” annotated like this:

47



University of Sheffield NLP 

Summary

 This module has looked at some basic operations within JAPE.
 The best way to learn is to keep practising. Try things out and see 

what happens.
 It's usually best to build up JAPE rules in simple steps. 
 Trying to do too much in a single rule will get you confused.
 Pay close attention to syntax and to things like making sure case is 

respected and that you have no typos in your rules.

 Remember you can use in your JAPE rules any annotations that 
you have previously used in your pipeline.

 You can also use any Java you want in your rules.

48


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

