
GATE LearningFramework

Neural Network Support: Outlook

June 2018

NNs for LF

Neural Networks (NNs) / Deep Neural Networks (DNNs)
have become important for NLP

Plan: add NNs/DNNs to LearningFramework

Ideally, should be as easy to use as existing algorithms:

Define features to use
Select ML algorithm
Press a button and wait . . .
Use the model

Turns out: not quite that simple!

Why? Major differences between ”classic” ML and NN-ML

Classic ML

Our pipeline creates lots of good features

Features get converted to sparse vector

Numeric values get represented as numeric values
Nominal values get represented by as many dimensions as
there are values (for tokens: tens of thousands), only one
of those dimensions is non-zero (=sparse)
Value is frequency or tf-idf (valuefrom)
Token!stringLC!L-2!have=1,Token!upos!L-0!VERB=1.0 . . .

Good features, right algorithm choice are very important

Switch algorithms on same training set to find best

Hyperparms not so much, only few of form -p val

NN ML

No different algorithms, instead:

Different frameworks

Different architectures / network graphs

Different loss functions, optimizers

Regularization, attention, CRF layer, GANs, . . .

Many hyperparms for all of these

Need/allow huge corpora: not in memory! Maybe need
GPU to process!

Features less important, often just ”the text”

Dense representation

Other kinds of features: char embeddings

Need much more experimentation, tuning, exploration

NN ML Dense Representation

Numeric values are represented as numeric values

Nominal values are mapped to a value index, each index is
mapped to an “embedding” (a dense vector of numbers)

Low number of nominal values can also get mapped to
”one-hot” vectors

Embeddings can get learned as part of the training or
pre-trained Embeddings get used, or a combination

NN ML Architecture

Feed-forward (FF), Convolutional (CNN), Recursive
(RNN)

Number of layers, non-linearities, drop-out

CNN: features, size, stride, pooling

RNN: LSTM, GRU

NN Libraries

Many NN libraries exist: Tensorflow (Google) Keras (wraps
Tensorflow, Theano, CNTK) Lasagne (wraps Theano)
Theano (RIP!) Torch, Pytorch Caffe (Berkely VLC),
Caffe2 (Facebook) Chainer DyNet (Carnegie Mellon)
CNTK (Microsoft) MxNet (Amazon) DeepLearning4J
Paddle (Baidu) DSSTNE, BigDL, Gensim,

Almost all written in C/C++/Python

Almost all try to support GPUs

We have to divide the work between GATE and the
Library somehow: Wrapper!

Choice

Keras:

+ Based on Tensorflow but much easier, high-level,
CNTK?
+ Better save/load
+ Easy installation as Python package
+ Professional IT experts use it
– Static graphs

PyTorch:

+ Fast C++ foundation
+ ! Dynamic graphs (recent SOA!)
+ Built-in CUDA support
+ Easy installation
+ All the cool kids use it

Status: alpha1

+ LF: Dense Feature Extraction, additional options for
embeddings

+ LF: Out of memory dense corpus representation

+ LF: bridge between GATE and Python programs
(currently: Linux/Mac only)

+ Python: library gate-lf-python-data: process dense
corpus, convert, batch-iteration, validation split

+ Python: library gate-lf-keras-json: NN Keras

+ Python: library gate-lf-pytorch-json: NN Pytorch

- Auto-model generation

- Model zoo

- Documentation

Demos

Demo 1: Ionosphere Classification

Demo 2: English UPOS using SEQ

Demo 3: English UPOS using FF and window

Demo 4: Sentence Classification using N-grams

