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What do we want to accomplish?

● Identify mentions of concepts in the Knowledge Base (KB) in arbitrary text, including 
Tweets

● Link mentions to the concept in the KB that best matches the meaning in the given 
context.

● Determine when a mentioned concept is not in the KB
(OOKB / NIL)

● Do this efficiently for a KB with millions of concepts and with dozens or hundreds of 
concept candidates per mention.

... went to Paris on Thursday ...
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Identify Mentions: What?

● Identify KB concept labels: Gazetteer of known possible 
labels for all concepts

● DBpedia instance labels
● DBpedia name/nickname properties (from WP templates)
● YAGO labels of mapped YAGO instances
● Labels from redirected WP pages (spelling variations)
● Labels from WP Disambiguation pages
● Anchor text from intra-WP links to that concept

● Additional mentions from NER which may be variations of 
known multi-word labels
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Identify Mentions: How?

● For matching, normalize labels and text: 
- case, white-space, punctuation
- encoding / representation of accented characters

● Millions of labels, even after normalization

● Often many candidate concepts/URIs per label

● Will need a lot of information for each candidate concept:
- URI
- Original case
- concept type (Org, Pers, …)
- Frequency statistics
=> Cannot directly use a Gazetteer for all of this



 

University of Sheffield, NLP

Identify Mentions: How?

● Use gazetteer to just identify mentions, no data

● Prepare a database that maps each mention text to all the 
information we need.

● Prepare as much in advance as possible so we do not need 
to spend time on it in the pipeline

● Preparation only needed infrequently, may require a lot of 
computing resources

● Desired output: all the information for each mention text
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Candidate Preparation

● Sources (numbers just for EN):
- DBpedia labels: ~10M triples 
- YAGO labels: ~27M triples (including non-mappable)
- DBPedia properties: ~26M triples
- WP page links: ~172M links
- DBpedia/Airpedia types: 1.6M/10M triples

● Make sure URIs are normalized:
- proper %-encoding style (varies between DBP version)
- use IRIs not URIs everywhere

● Make sure labels are normalized
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Candidate Preparation: Normalization

Normalize and filter labels:

● exclude obvious cases (hundreds of chars, “List of ...”, 
numbers only, …)

● normalize for case-insensitive matching
 => but remember original case!

● canonical representation of accents etc.
● multiple white-space, punctuation
● Extract parentheses info, e.g

“Jean Lemaire (painter)” 
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Candidate Preparation: Merge

● Gather information per URI: class, frequency of related WP 
page link in WP articles, DBpedia properties …

● Gather information per label: original spelling, source 
(redirected page, disambiguation, canonical page, yago), 
frequencies, ….

● Gather information per label/URI pair: relative frequency of 
label used with this URI (WP page link), relative frequency 
of URI used with this label (“commonness”)

● Merge information and generate a de-normalized 
representation: key/value where the key is the label and the 
value is an array of rich URI-information, one element for 
each URI.
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Candidate Preparation: Example

“yorkshire” →

● original_label=”Yorkshire”, all_labels=[“Yorkshire”,”The 
Yorkshire Mafia”], uri=”dbp:The_Yorkshire_Mafia”, 
uriByLabel=0.0, sources=[“dbp_name”],....

● original_label=”Yorkshire”, all_labels=[“Yorkshire”,”Yorkshire, 
Ohio”, “Yorkshire, OH”], uri=”dbp:Yorkshire,_Ohio”, 
sources=[“dbp_labels”], uriByLabel=3.310E-3, 
airpClass=dbpo:PopulatedPlace, …

● original_label=”Yorkshire”,uri=”dbp:Yorkshire”, 
all_labels=[“Yorkshire”,”Yorks”,”County of Yorkshire”,...], 
uriByLabel=0.68,airpClass=dbpo:PopulatedPlace,parenthes
es=[“UK”,”England”],...
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Identify Mentions: How?

● Use ExtendedGazetteer PR to just match the labels
(~9M cleaned labels, 158M on disk, ~900M memory) 

● For each matched label, look up the de-normalized data 
from a key/value store (~21G on disk)

● Each candidate from the list is represented as an 
annotation, the fields as features in the FeatureMap

● In addition, store the list of annotation ids of each candidate 
annotation in the mention annotation.

● Subsequently, a lot of processing happens on entire 
candidate lists.



 

University of Sheffield, NLP

Reducing Candidates – Overall Strategy

● Initially over-annotate

● Remove obvious rubbish early on

● Deal with obvious cases early on

● Deal with overlaps early on

● Calculate scores for remaining candidates

● Pick best candidate or decide it must be OOKB

=> when to filter or when to just calculate a score?
=> how to decide based on scores and other features?
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Reducing Candidates

● Reduce based on POS tags: require at least one proper noun (plus some 
special cases like country demonyms)

● Problem: wrong POS tag will do unrecoverable harm,
but POS tags will often be wrong in Tweets, Title-case text..

● Currently working on including a recaser
● Reduce based on known patterns, e.g.

● [Mention1], [Mention2] with Mention1 containing location candidates, 
Mention2 containing location candidates and some pairs of candidates 
related, e.g. “Yorkshire, Ohio”

● [Mention1] ([Mention2]) with Mention1 a multi word term and Mention2 
something that looks like an acronym, e.g. “Inter-Services Intelligence (ISI)”

● Reduce based on known overlap patterns, e.g. a mention of a person name 
within a longer mention of a person name

● ….
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Choosing a Candidate

● Now we have a good quality candidate list

● Useful information such as different kinds of commonness 
information and the original labels is available

● We need to make a final decision about which is the best 
candidate
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Semantic Relatedness: Have/Want

● Have:
- lists of candidates for each detected mention
- context words
- other context info (e.g. Tweet metadata)

● Want:
- determine semantic relatedness between each candidate 
and the context
- determine semantic relatedness between candidate pairs 
of different mentions
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Context for Tweets

● Tweets are very short, barely any context at all

● Try to retrieve additional context from what we have
● Resolve hash-tags:

● split multiword hash-tags
● add hash-tag expansion candidates as text

● Resolve user screen names:

● retrieve user profile information from Twitter and add as 
annotated text (location, description, language …)

● Resolve linked web pages:

● retrieve content of web page and add as text
● filter web page content to remove boilerplate/navigation
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Disambiguation in LODIE

● Scoring and feature creation—applying metrics indicating 
the quality of the candidate

● Contextual similarity
● Structural similarity (relationships between candidates on 

nearby mentions)
● Case match, class match ...

● Selection—choosing the best candidate based on scores 
and other information

● Rule-based, intuitive approaches
● Machine learning
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The Challenge—Beat Commonness!

Measure F1

Random choice of candidate (baseline) 0.39

Relative label frequency by URI in Wikipedia 0.65

Relative URI frequency by label in Wikipedia 0.78

URI frequency in Wikipedia 0.77

Label URI combination frequency in Wikipedia 0.78

Label frequency in Wikipedia 0.36

● It's hard to beat just picking the most common entity!

● However, if we can supplement that information with other 
valuable sources, we might just be able to nudge the score up 
a bit, even if the individual metric doesn't beat commonness

(All results presented are on a corpus of 200 manually annotated gold standard tweets.)
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Contextual Similarity

● Each candidate for a mention is a DBpedia page describing 
that entity

● DBpedia page contains different kinds of information about 
the entity

● We can learn something about the likelihood of that 
candidate being correct by comparing the context in which 
the mention appears with the information on the DBpedia 
page

● How to do this? Vector space approaches
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Contextual Similarity

● Word bag vectors are constructed from the context window 
of the mention and the content of the DBpedia page for 
each candidate

● Stop words are removed
● Words are lower-cased

● A semantic space is prepared in advance from an 
appropriate corpus—the semantic space records what 
words appear together in the same document

● Context and candidate vectors are mapped through the 
semantic space to expand them with related terms

● The resulting vectors are then compared for similarity
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Contextual Similarity—Implementation

● We use the Airhead API to implement contextual similarity

● We have prepared a semantic space using Airhead, over a 
subset of abstracts in DBpedia

● We use TFIDF to improve the quality of the semantic space, 
by upweighting more meaningful words

● Airhead provides a variety of similarity metrics

● Cosine, Euclidean, Jaccard index, etc. ..
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Contextual Similarity

● We have implemented a PR for the project that takes the following 
parameters:

● Context window length (chars)--this rounds down to the nearest 
whole word

● Similarity function
● Init-time parameter for which database to connect to and which 

table, to access the content of the DBpedia page
● We use three separate PRs to implement contextual similarity for 

different types of information about the candidate

● Abstracts
● All textual content for the entity
● All textual content including the results of following links to 

related entities
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Contextual Similarity

● Results

● The three different information types (abstracts, all textual 
data and all textual data including indirect) seem to give 
similar results

● Probably no need to include all three!
● Overall result is much lower than commonness but 

significantly higher than choosing a random candidate
● This information differs from commonness and so it may 

be combined with commonness to achieve a score higher 
than is possible using commonness alone
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Contextual Similarity—Further Research

● Other ideas within contextual similarity include:

● Process the semantic space with random indexing
● This gave a worse result, though the semantic space was 

much smaller and the resulting PR was faster
● Process the semantic space with LSA

● Still to try—implementation issues to resolve!
● Different similarity metrics

● Cosine seems to give the best result of the ones tried, but 
systematic experimentation would be a good idea!

● Different representative texts
● Comparing context of the mention with the context in which 

the entity normally appears might work better than the 
abstract for that entity
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Structural Similarity

● Candidates on adjacent mentions are more likely to be 
correct if they are known to be related to each other 

Paris, Texas

Paris, France

Paris Hilton

... Paris, and Lamar schools ...
Lamar Odom

Lamar County

Lamar University
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Structural Similarity

● Relation types

● Direct connection—inbound
● Direct connection—outbound
● Indirect:

● unidirectional—both inbound
● unidirectional—both outbound
● shared parent
● shared child
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Structural Similarity—Some Results

Link Type F1

Random 0.39

Unidirectional direct link 0.41

Bidirectional direct link 0.43

Shared parent 0.48

Shared child 0.42

Unidirectional indirect link 0.41

Bidirectional indirect link 0.42

Combined 0.49
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Structural Similarity—Slow!

Relation Type Time (millis) Log Time F1

Shared parent 75858358 18.1443784489 0.4015605406

Indirect 366706 12.8123157161 0.3209839508

Shared child 77442 11.2572845481 0.2817679558

Direct 34431 10.4467126003 0.1790426908
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(Results shown are on TAC 2010 with nils excluded, no backoff to random candidate 
and on an earlier version of LODIE.)
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Structural Similarity—Practicality

● Capping inbound links

● Shared parent is slow because some popular entities 
have very many inbound links (the US has ~200,000!)

● We can speed up the PR by not calculating a result for an 
entity with more than X inbound links—but there is a cost

Max inbound links (shared parent) F1

1000,000 0.45

10,000 0.40

1000 0.32

(TAC 2010 data, key spans only, backoff to random candidate.)
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Structural Similarity—Contribution

● Hopefully structural similarity provides a different type of information 
than commonness, and has the potential to improve overall 
performance in combination with it

● However, it is possible that structural similarity simply provides an 
alternative measure of commonness!

● Perhaps shared parent is such a successful relation because very 
common concepts tend to score higher

● Two entities having a shared relation is intuitively a highly valuable 
source of information, but DBpedia is sparse in providing these 
relations

● Future work could involve supplementing the relations database

● We can test to see if shared parent contributes anything useful in 
addition to commonness—if not we can exclude this very slow 
calculation
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Coreference in Scoring

● Coreference has been implemented in LODIE using the 
ANNIE orthographic coreferencer

● If two mentions are identified as being coreferences, then 
scoring metrics are improved by using the longest, most 
detailed mention only for scoring.

● This mention will have the shortest, best quality 
candidate list.

● Time is saved by not scoring poorer quality mentions.
● Coreference has been used in both PRs presented

● Coreference normally improves the result for that scoring 
metric by a few percent, and makes it faster too.
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Further Features

● Class match

● ANNIE is used to determine what class of entity we expect at that point in the 
text

● We can then calculate, for each candidate, whether that candidate would be a 
class match to ANNIE

● String and POS features for this and adjacent tokens

● Commonness metrics

● As discussed earlier, these are calculated in advance for all entities in 
DBpedia

● Case match

● Context case is determined (sentence/title case, all lower, all upper) to decide 
whether the case of the mention is useful information

● In the case that case appears to be well-formed and valid, candidates that 
aren't a case match are penalized

● Future work will involve case-correcting the input text
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Choosing a Candidate

● This can be presented as a machine learning classification 
problem

● Each candidate becomes an instance
● Scores etc. become features for the machine learning
● Class is true or false for whether it is the right answer
● ML task is to decide if a candidate is right or not based on 

features
● This may mean that we have multiple trues, or none, in 

which case we can use the score assigned by the 
machine learner (e.g. probability) to select the best
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Problems with ML for Disambiguation

● Too many negative candidates creates an extremely 
conservative learner

● This problem was improved by reducing the candidate list 
to the five most common—we can do this with relatively 
minor loss of recall

● Probability may not be a probability—is this number really 
the best way to select the best candidate?

● It can take a long time to train some algorithms, and it isn't 
always practical to try everything we want to
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More on Candidate Selection

● Would like to try more algorithms

● Reliance on the probability for choosing between multiple 
“true” candidates means PAUM isn't suitable. However it 
would be good to find a solution to this because PAUM is 
fast

● Decision trees show promise but take a long time to train. 
Perhaps it's worth it though ..

● Rule-based approaches

● Simple additive combinations of metrics, including 
commonness or with commonness as a backoff only, has 
failed to improve on commonness alone
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