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What is Machine Learning
and why do we want to do it?
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What is ML? -a \

* Automating the process of inferring new data from existing
data

* In GATE, that means creating annotations by learning how
they relate to other annotations
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Learning a pattern

GATE

* For example, we have “Token” annotations with “kind” and

“value” features

251000

Kind = symbol
value = “£”"

kind = number
value = “1000”

* ML could learn that a “£” followed by a number is an

amount of currency
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How is that better than making rules? GATE

. It is different to the rule-based approach

. Humans are better at writing rules for some things,
and ML algorithms are better at finding some things

. With ML you don't have to create all the rules

. However, you have to manually annotate a training
corpus (or get someone else to do it!)

. Rule-based approaches (e.g. JAPE) and ML work well
together; JAPE is often used extensively to prepare
data for ML
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GATE

Terminology: Instances, attributes, class

California Governor Arnold Schwarzenegger proposes deep cuts.

Instances: Any annotation

Tokens are often convenient
Token Token Token Token Token Tok || Tok
Attributes: Any annotation feature relative to instances

Token.String
Token.category (POS)
Sentence.length

Sentence

Class: The thing we want to learn
A feature on an annotation

Entity.type

=L ocation Entity.type=Person
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GATE

Instances
. Instances are cases that may be learned
. Every instance is a decision for the ML algorithm to
make

. To which class does this instance belong?
— “California™—Location
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GATE
__Attributes \

. Attributes are pieces of information about instances

. They are sometimes called “features” in machine
learning literature

. Examples
— Token.string == “Arnold”

— Token.orth == upperinitial

— Token(-1).string == “Governor”



University of Sheffield, NLP |
GATE
_ Classes \

. The class is what we want to learn

. Suppose we want to find persons' names: for every
iInstance, the question is “is this a person name?” and
the classes are “yes” and “no”

. Sometimes there are many classes, for example we
may want to learn entity types

—  For every instance, the question is “which type
from the list does this instance belong to?”

—  One answer is “none of them”
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~ ML Tasks \

* GATE supports 3 types of ML tasks:

* chunk recognition (named entity recognition, NP
chunking) as in the previous example

* text classification (sentiment classification, POS
tagging) as in the following example

* relation annotation (this requires special techniques
that are not covered in this module, although materials
are available)
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Example: text classification

The new Acme Model 33 stinks !
Token Token Token Token Token Token Token
Product
Sentence

* instance: Sentence annotation

* attributes: Token and Product annotations and their features
(suppose that the Product annotations have been created
earlier with gazetteers and rules)

* class: polarity= “negative”

* ML could learn that a Product close to the Token “stinks”
expresses a negative sentiment, then add a
polarity="negative” feature to the Sentence.
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. GATE
Training \

. Training involves presenting data to the ML algorithm
from which it creates a model

. The training data (instances) have been annotated
with class annotations as well as attributes

. Models are representations of decision-making
processes that allow the machine learner to decide
what class the instance has based on the attributes of
the instance
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~ Application \

. When the machine learner is applied, it creates new
class annotations on data using the model

. The corpus it is applied to must contain the required
attribute annotations

. The machine learner will work best if the application
data is similar to the training data
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~ Evaluation \

. We want to know how good our machine learner is before we
use it for a real task

. Therefore we apply it to some data for which we already have
class annotations

—  The “right answers”, sometimes called “gold standard”

. If the machine learner creates the same annotations as the gold
standard, then we know it is performing well

. The test corpus must not be the same corpus as you trained on

—  This would give the machine learner an advantage, and
would give a false idea of how good it is

. GATE's ML PR has a built-in evaluation mode that splits the
corpus into training and test sets and cross-validates them
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Setting up a Corpus
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Load the corpus -@

* Create a corpus (any name is fine; you can even leave it
blank)

* Populate it from ner/corpus/*.xml in the Module 11
hands-on materials

* Set the encoding to UTF-8

* You should get 93 documents (numbered 0 to 92 in the
corpus)

* Open a document and examine its annotations
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Examining the corpus

. The corpus contains an annotation set called “Key”,
which has been manually prepared

. Within this annotation set are annotations of types

“Date”, “Location”, “Money”, “Organization” and so
forth

. There are also some annotations in the “Original
markups” set (these represent HTML tags)
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_What are we going to do with this corpu \

. We are going to train a machine learner to annotate corpora
with these entity types

. We need a training corpus and a test corpus

. The training corpus will be used by the machine learner to
deduce relationships between attributes and entity types
(classes)

. The test corpus will be used to find out how well it is working,
by comparing annotations created by the learner with the
correct annotations that are already there

. In Evaluation mode, which we will try first, the ML PR
automatically splits one corpus up into training and test sets
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Instances and Attributes

. This corpus so far contains only the class annotations
. There is not much in this corpus to learn from

. What would our instances be?

. What would our attributes be?

. If we run ANNIE over the corpus, then we can use
“Token” annotations for instances, and we would have
various options for attributes

. Load ANNIE

. Check that the document reset PR's setsToKeep
parameter includes “Key”!

. Run ANNIE over your corpus
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Running ANNIE on the corpus
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Preparing the corpus: Classes

What we have:

What we need:

o o o g
Organization -
- - x
P Open Search & Annotate tool
o F  O» o )
Mention -
ype - ||organization - ﬂ

b

P Open Search & Annotate tool
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GATE
__Preparing the corpus: Classes \

. Currently each class has its own annotation type
(Date, Person, Percent etc.)

. But the ML PR expects the class (ML term) to be a
feature value, not an annotation type

. So we need to make a new annotation type for the ML
to learn from: “Mention” (it doesn't matter what it's
called as long as we're consistent and configure the
PR to match)
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Making class annotations

. Load a JAPE transducer from the
ner/CreateMention.jape grammar

. Look at the grammar in GATE
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The CreateMention.jape grammar

GATE Developer 5.2-snapshot build 3518
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This grammar makes
a new annotation
type called “Mention”

It makes the
previous annotation
type into a feature of
the “Mention”
annotation

Feature name is
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“class” is reserved for
ontology use
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Applying the grammar to the corpus

File Options Tools Help

& @ D P

L

¢ () GATE
T %Applicaﬂuns
*ANNIE
?fe‘! Corpus Pipelin

o @ Language Resourg
Al
2 A ANNIE OrthoM
% ANNIE NE Tran

S ANNIE Sentenc
d ANNIE Gazette

[ ﬁ Processing Resoul

7 Jape Transduce=

B ANNIE POS Tag

'ﬁ: ANNIE English [ |

—| Corpus: “ GATE Corpus_0001A

. Messages GANNIE‘

Loaded Processing resources
Name Type

- Selected Processing resources

Name

ﬁﬁ Corpus Pipeline_00056|Corpus Pipe

«

1
[ ] 0 Document Reset PR Docume
[ ] 'ﬁ: ANNIE English Tokeniser ANNIE EI
[ ] g ANNIE Gazetteer ANNIE G
:ﬂ ANNIE Sentence Splitter |ANNIES
@ ANNIEPOS Tagger  |ANNIEP
.'#;E ANNIE NE Transducer  |ANNIEN
@, ; ANNIE OrthoMatcher  |ANNIE O
@ |~ Jape Transducer_00094 [Jape Tra

Il [

loaded in 0.032 seconds

Document Res v
(] Il | [»] | ff- Runtime Parameters for the "Jape Transducer_00094" Jape Transducer.
B T o Name T\jrpe Required Value
| |' ” [/ [éz5 inputasName [String Key
[l ) ontology Ontology <none> |v
|l <> outputasName|String
| Run this Application |
q] I | I Serial Application Editor Llnitialisatiun Parameters

Add the JAPE
transducer at
the end of your
ANNIE
application

Set the
inputASName to
“Key!!

Leave the

outputASName
blank (default)



University of Sheffield, NLP

Check the “Mention” annotations
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Check the “Mention” annotations

* Check that you have some “Mention” annotations

* Check that they have a feature “type” and that the
values look right

* These Mention annotations are derived from the named
entities in the “Key” AS, and may not always match the
NEs (Person, Location, etc.) generated by ANNIE in the
default AS.
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The Configuration File
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Looking at the configuration file

. In the configuration file, we tell the machine learning
PR what we want it to do

. You will find a configuration file in your hands-on
materials, called ner/ner-config-file.xml

. Open it using a text editor
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<SURROUND value="true"/>

GATE

California Governor Arnold Schwarzenegger proposes deep cuts.

Token

/ Token

Beginning of entity

Entity.type=Person

N

End of entity

* The class to be learned covers more than one
instance (chunking problem)

* The PR has to learn the boundaries (chunking

problem)

 So we tell the PR to use surround mode
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GATE

Confidence Thresholds

<PARAMETER name="thresholdProbabilityEntity" value="0.2"/>
<PARAMETER name="thresholdProbabilityBoundary" value="0.4"/>

. Classifiers provide confidence ratings—how likely a result is to be
correct

. We must determine how certain is good enough

. Depending on the application we might prefer to include or exclude
annotations for which the learner is not too sure

. thresholdProbabilityBoundary is a threshold for the beginning and end
instances

. thresholdProbabilityEntity is a threshold for beginning and end
instances combined
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<multiClassification2Binary
_method="one-vs-others"/>

GATE

California Governor Arnold Schwarzenegger proposes deep cuts.

Entity.type
=Location

Entity.type=Person

* Many algorithms are binary classifiers (e.g. yes/no)
*  We have several classes (Person, Location, Organization etc.)

* Therefore the problem must be converted to a set of binary problems, so we can

use binary algorithms

* one-vs-others

* LOC vs PERS+ORG / PERS vs LOC+ORG / ORG vs LOC+PERS

* one-vs-another

* LOC vs PERS /LOC vs ORG / PERS vs ORG
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<multiClassification2Binary GATE
‘method="one-vs-others"/>

* With more than 3 classes, one-vs-another becomes
very computationally expensive!

* one-vs-others: N classes => N classifiers
* Avs B+C+D, B vs A+C+D, C vs A+B+D, D vs A+B+C
* one-vs-another: N classes => Nx(N-1)/2 classifiers
*AvsB,AvsC,AvsD,BvsC,BvsD,CvsD
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<EVALUATION method="kfold" runs="4

. We are going to evaluate our application in two ways
today
— The ML PR can automatically evaluate for us

— We will also run our own evaluation

. This parameter dictates how the ML PR will work in
evaluation mode

. The PR ignores this part of the config file in training
and application modes
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GATE

Evaluation

<EVALUATION method="kfold" runs="4"/>
OR
<EVALUATION method="holdout" ratio="0.66"/>

. Holdout randomly picks ratio documents for training
and uses the rest for testing; this is faster than k-fold
because it only runs once

. k-fold cross-validation will give you more reliable
results and lets you “stretch” your corpus
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~ K-Fold Cross-Validation \

. In k-fold cross-validation, the corpus is split into k equal parts, and
the learner is trained k times on k-1 parts and evaluated on 1; the
results are averaged

. For example, if k=4, the documents are split into groups A, B, C, &
D, then:
— train on A+B+C, test on D;

— train on A+B+D, test on C;
— train on A+C+D, test on B;
— train on B+C+D, test on A;

— average these 4 results

. This maximises the use of the training data without losing testing
accuracy, but takes 4 times as long

 <EVALUATION method="kfold" runs="4"/>
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GATE

<ENGINE nickname="PAUM" ..

. Next we specify what machine learning algorithm we
wish to use

. Today we are using the Perceptron with uneven
margins ("PAUM?)

. We will use the following options: options="-p 50 -n 5
-optB 0.3"

— Challenge: find out what these options do! (Hint:
user guide §18.2)
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- <INSTANCE-TYPE>... D \

. Next, we tell the ML PR what our instance annotation is

. The goal of the ML PR is to try to learn how the
attributes of every instance relate to its class, so the
Instance is an important choice

. We have decided that the “Token” is our instance
annotation type

— We have run the tokenizer to ensure we have
“Token annotations in our corpus

— The POS tagger adds category features to the
Token annotations
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Specifying Attributes

<ATTRIBUTELIST>
<NAME>Form</NAME >
<SEMTYPE>NOMINAL</SEMTYPE>
<TYPE>Token</TYPE>
<FEATURE>Category</FEATURE>
<RANGE from="-2" to="2"/>

</ATTRIBUTELIST>
. For every attribute, we create a specification like the one above
. This is the information from which the PR will learn, so it is important to

give it some good data

. You can see in the configuration file that there are several attributes
(including Lookup.majorType), providing a good range of information

. However, if you have too many attributes it can take a very long time to
learn!
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__Breaking down the attribute specificatior. \

. <NAME>Form</NAME>

— This is the name that we choose for this
attribute. It can be anything we want, but it will
help us later if we make it something sensible!

. <SEMTYPE>NOMINAL</SEMTYPE>

— Is the value of this attribute a number or a
name? (Currently only nominal types are
supported.)
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__Breaking down the attribute specificatior. \

. <TYPE>Token</TYPE>

—  The value of the attribute will be taken from the
“Token” annotation

+  <FEATURE>category</FEATURE>

—  The value of the attribute will be taken from the
“category” feature
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__Breaking down the attribute specificatior. \

<ATTRIBUTELIST>

<RANGE from="-2" to="2"/>
</ATTRIBUTELIST>

. Because this is an “ATTRIBUTELIST” specification,
we can specify a "RANGE”

. In this case, we will gather attributes from the current
instance and also the preceding and following two;
l.e., a window of 5 Token annotations centred on the
one in question
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Specifying the Class Atftribute

<ATTRIBUTE>
<NAME>Class</NAME>
<SEMTYPE>NOMINAL</SEMTYPE>
<TYPE>Mention</TYPE>
<FEATURE>type</FEATURE>
<POSITION>0</POSITION>
<CLASS/>

</ATTRIBUTE>

* You can call the class attribute whatever you want, but “Class” is a
sensible choice

* Remember that our class attribute is the “type” feature of the
“Mention” annotation

* Thisis an ATTRIBUTE, not an ATTRIBUTELIST, so we have
“position”, not “range”

* The <CLASS/> element tells the Batch Learning PR that this is the
class attribute to learn.
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Running the ML PR in evaluation mode
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Loading the Learning plugin
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. Load the “Learning” plugin

. (We are not going to use the “Machine Learning” plugin, which is obsolete
and does not have all the functionality we want.)
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Creating a learning application

. Create a “Batch Learning PR” with

ner/ner-config.xml as the the configFileURL
parameter

. Make a new corpus pipeline and put this PR
(only!) in it
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Running the application in evaluation

mode
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Inspecting the results
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& | o] x [f rﬁzc - - The application

For the information about this learning see the log file B may ta ke a feW

Al /home/genevieve/ gate-top/externals/sale/talks/ gate- course-may10/track-1/module-4-ml/mil-ha

[»

ATE

t Applications

gng- Corpus Pipeline_0009E nds—nn,fsa\redFiIes,fIngFiIan_rNLPLearning.sa\re . t t
i The number of threads used is 1 F
*ANNIE ** Evaluation mode: m I n U eS O rU n

§§ Hold-out test runs=1, ratio of training docs is 0.66

|# Language Resources /|| Split, k=1, trainingNum=61. ag =
* Whenitis

{@/ in-whitbread-10-aug-2 | {*** Averaged results for each label over 1 runs as:

:: L Ll
@ in-tesco-citywire-07-a Results of single label: fl n IS hed y

i o :| 0 LabelName=date, number of instances=532
@ in-shell-cirywire-03-au | .|\ (correct, partialCorrect, spurious, missingy= (185.0, 28.0, 21.0, 47.0); (precision, recall, F1)=

Ll
|/ (0.7905983, 0.71153843, 0.74898785); Lenient (0.9102564, 0.8192308, 0.862348 t h t th
@in—scout—lﬂ—aug—zuﬂl. 19 %); Lenient @ ) SWI C 0 e

2|1 LabelName=location, number of instances=426
- e ~ §§ (correct, partialCorrect, spurious, missing)= (175.0, 10.0, 24.0, 29.0); (precision, recall, F1)= (14 L1}
&7 in-rover-10-aug-2001 | ©0.83732057, 0.817757, 0.82742316); Lenient (0.8851675, 0.864486, 0.8747045) Messages
@in—reed—lu—aug—zﬂm.x 2(Lahe|ch:’amen=_n'||gnw,crll,umhe_r of insf.an_ce;;a(ﬁltlzlﬂ 20,7.0,10.0; @redsi 0 FD .
A (correct, partialCorrect, spurious, missing)= .0, 2.0, 7.0, 10.0); (predision, recall, F1)=
@ in-outlook-ba-04-aug- ;| (0.9307692, 0.9097744, 0.92015207); Lenient (0.9461538, 0.924812, 0.9353612) tab to exam I ne
‘|| 3 LabelName=organization, number of instances=963
@ in-outlook-10-aug-20 gﬁ (correct, partialCorrect, spurious, missing)= (374.0, 28.0, 60.0, 69.0); (precision, recall, F1)= th It
| 7|[(0.8095238, 0.7940552, 0.8017149); Lenient (0.8701299, 0.85350317, 0.86173636) e resu s
@’ in-outlook-09-aug-20(~| ‘{4 LabelName=percent, number of instances=219
] M | [¥] |:| C(correct, partialCorrect, spurious, missing)= (93.0, 0.0, 2.0, 2.0); (precision, recall, F1)= (0.97894734,
TR e R 7| 0.97894734, 0.97894734); Lenient (0.97894734, 0.97894734, 0.97894734)
§§ 5 LabelName=person, number of instances=217

i|| (correct, partialCorrect, spurious, missing)= (107.0, 5.0, 7.0, 16.0); (precision, recall, F1)=
§§ (0.89915967, 0.8359375, 0.8663967); Lenient (0.9411765, 0.875, 0.90688264

Overall results as:
5| (correct, partialCorrect, spurious, missing)= (1053.0, 73.0, 121.0, 173.0); (precision, recall, F1)=
§§ (0.8446757, 0.8109147, 0.827451); Lenient: (0.9031225, 0.8670254, 0.8847059)

This learning session finished!

(1l

Corpus Pipeline_0009E run in 38.361 seconds




University of Sheffield, NLP |
GATE

How well did we do?

. Here is my previous result:

(precision, recall, F1)= (0.82714,

0.818435, 0.8225587)

. These figures look pretty good, but what do they
mean?

. Next we will discuss evaluation measures
. Then we will run the PR in different modes
. Then we will see if we can improve these numbers
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Evaluation in Machine Learning
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__Recap of Evaluation in GATE \

. Evaluation is an important part of information extraction
work

—  We need to find out how good our application is by
comparing its annotations to the “right answers”
(manually prepared or corrected annotations)

— Sometimes we need to compare the work of different
human annotators, to see how consistent they are

. We use similar functions for both types of evaluation tasks
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__Evaluation Mode \

. We ran the machine learning PR in evaluation mode
earlier

. We specified how the PR should run evaluation in the
configuration file

. Once we had run the application, we obtained
evaluation statistics in the “Messages” tab
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What are precision, recall and F17?

* Precision: what proportion of our automatic
annotations were correct?

* Recall: what proportion of the correct
annotations did our automatic tool create?

* P =correct/ (correct + spurious) =tp / (tp + fp)
* R =correct/ (correct + missing) =tp / (tp + fn)

* where tp = true positives, fp = false positives,
fn = false negatives
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What are precision, recall and F17?

* F-score is an amalgam of the two measures
-F=1/(B/P + (1-B)/R)

— The equally balanced F1 ( = 0.5) is the most
common F-measure

~F1=2PR/(R +P)

* We can also run our own ML evaluation using
the Corpus QA tool—Iet's do that now
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Splitting into training and test corpora

 To tell how well a machine learner is performing,
you need to train it and test it on different sets of
data

* Evaluation mode does this automatically over
“folds” of the corpus

* To see a detailed evaluation, we need to split our
corpus into two parts: the training corpus and the
test corpus; we will train and apply in separate
runs
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Saving and splitting the corpus

1l-hands-on
m Name v | Size Type
~| P [E= corpus 93 itemséfolder
b [ test ] itemséfnlder
b (g2 training 4item5§fnlder
| | CreateMention.jape 571 h‘,rtesé plain te:
@] ml-config-file.xml 1.8 KBEKML doc
. Create new “training” and “test” directories on your

computer (somewhere easy to find)

. Right click on your corpus, select “Save as XML”, and save
the whole corpus in the “training” directory

. Use your file manager to move roughly half the documents
from “training” into “test” (try to randomise them a little)
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Tidying up

. Do not close the Batch Learning PR and its corpus
pipeline! (We are going to keep using them.)

. Close all your open documents and corpora in
GATE Developer

. Close the modified ANNIE application recursively

. Create new GATE corpora called “training” and
“test!!

. Populate each corpus from the appropriate
directory (as before, set the encoding to UTF-8!)



Setting up the application
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. Create a Document Reset PR

. Add it to the ML pipeline before the Batch
Learning PR

. Edit the Document Reset PR's setsToRemove
parameter to include just “ML”

. Edit the setsToKeep parameter to be an empty list
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Running the ML PR in Training Mode

@ - O GATE Developer 7.2-SNAPSHOT build 4620

File Options Tools Help

O B %)%k ¥

G cate
T ?‘Applications

%‘ Corpus Pipeline_000§

o= @ Language Resources

b ﬁ' Processing Resources
0 Document Resek PR

Q*h, Batch Learning PR_0O

ﬁ Dratastores

1
3

¢| Messages & Corpus Pipeline... I/f Eraining I/‘. test
~ Loaded Processing resources ————————————— — Selected Processing resources
A ramel ! Mame
L ] 0 Document Reset PR_O00FC|Docume
L ] Qq, Bakch Learning PR_O008D |Batch Le
[4] Il | [»] [4] Il
Corpus: " training

~ Runtime Parameters For the "Batch Learning PR_0008D" Batch Learning PR:

: Mame Type |Required
1] I | [ ] [l |42} inputasMame  |string
il THT e e e e e e e
| | |l [62¥ learningiode  |RunMode|~ TRAINING
-]

{2) outputAsMamelstring
{?} runProtocolDir|URL
<

Resource Features

<] T [ ]

| Run Ehis Application |

serial Application Editor L Initialisation Parameters |

Corpus Pipeline_0008E runin 11.362 seconds

Set your pipeline
to run on the
training corpus

Change the PR's
learningMode to
“TRAINING” (the
outputASName
doesn't matter)

Run the pipeline

Training may
take a few
minutes
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Finished Training!

: Messages | #& training | #& test ,;g_'::':iﬁ'CDFFJUSF'ipEHHE...

ﬁ Pre-processing the 47 documents...

“| Learning starts.

ﬁ For the information abouf fthis learning see the log file
| Shome/adam/module-11-hands-on/savedFiles/logFileForNLFLearning, save
“| The number of threads used is 1

|| *% Training mode:

| time for NLF features: 3

A time for fv: 5

N time for filtering: @

o| time for MLP training: 12

:\|This learning session finished!

. Because we saved the documents after running our modified ANNIE, they
already have the instances and attributes for ML

. This time there are no evaluation results in the messages tab (because we are
only training the model)

. Note the “savedFiles” directory beside the XML configuration file
— Training mode saves the model there

— Application mode reads it from there

— The runProtocolDir parameter (in recent versions of GATE) can change the
location
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Running the ML PR in Application Mode

@ - O GATE Developer 7.2-SNAPSHOT build 4620

File Options Tools Help

4] Il |
Corpus Pipeline_0008E run in 8.82

Resource Features

[¥]

[ ]
G GATE g|| Messages .&ﬁl Corpus Pipeline... ’/" training r & test ‘
T %‘ Applications — Loaded Processing resources ———————————— ~ Selected Processing resources
Ef I
?ﬁ Corpus Pipeline_000§ - Name - Mame
i [ ] 0 Documenk Reset PR_O0OOFC|Documel o
o= @ Language Resources ;
[ ] Qq, Bakch Learning PR_0008D |Batch Le
T ﬁ Processing Resources
@ Document Resek PR
Q‘h. Bakch Learning PR_0O {(
ﬁ Datastores [
A Y
[«] Il | [v] [«] Il
Corpus: " test
~ Runtime Parameters For the "Batch Learning PR_O008D" Batch Learning FR:
Mame Type |Required
1] Il [ 1r] |2} inputasname  |string
O OOOOOrr, ::
{7} learningMode [RunhMode|~” APPLICATION
| |'|| [l 2 autputasnamelstring ML
{2} runProtacolDir|URL
[ J

| ({x: I

‘ Run this &ppli

cakion ‘

Serial Application Editor L Initialisation Parameters |

4 seconds

Change corpus to
“test”

Change
learningMode to
“APPLICATION”

Set outputASName
to “ML”: your new
(automatic)
annotations will go
here so they don't
get mixed up with
the existing ones

Application mode is
faster than training
mode
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Examining the results of application

w» O

File Options Tools Help

GATE Developer 7.2-SNAPSHOT build 4620

2y

ik

3

e

8 &%

G cate
T #Applications

7
Dakasktores

gﬁ‘ Corpus Pipeline_0008
o= @ Language Resources

T %E' Processing Resources

fMessages ’/gﬁ Corpus Pipeline... ’/ f kesk ’/ @ Ft-GKM-09-aug-2... |

;? off first-half pre-tax prnfiﬁs at GKN, the recently demerged
HRUK automotive and asrospace engineering group.

55 Frofits for the group's continuing businesses, after
0 Document Reset PR

Nto £132m ($187m) compared with £245m this time last year.
Q‘b_ Batch Learning PR_0( :
; Before exceptionals underlying profits fell by 24 per cent to
iRE198m from £259m, well within analysts' expectations of
|foetween E£18@m and £205m. But the company warned that the
iffeconomic outlook remained unstable and that while north

; expected vehicle production in both the US and Europe to be
iflower in the second half.

EE "It's a tough environment and its probably going to get
“INtougher," said Marcus Beresford, chief executive.

; Demonstrating just how tough things were, WMr Beresford

‘ Annotakion Seks | | Annokations List ‘ ‘ Annotations Stack‘ ‘ Co-reference Edit0r| ‘ Text |

e T T T T T T T T A T T T T T B T T T T B S A B AR R R R R R R BRI

he downturn in the US automotive markef sliced 46 per cent -

exceptional items and goodwill amortisation, slipped downward

merican vehicle production levels could be stabilising, it

A (S Sy 1ol e P PR | R P S|

B e i

‘ Previous boundary H Mext boundary| [ ] overlapping Target set: Undefined

gakte.SourcelURL

|MatchesAnnots |v| fnull—
|MirneTy|:|e |v| Eexk]
|entity5et |v| ===
gate MAME

o ]

Views builk!

Context

MMention.kype |percent | |date |

ML#ENMention.type

1] [ |

ol

1
k

v

1 | ] pake

[] FirstPerson
] JobTitle

[] Location

[ Lookup
Menkion

|:| Money

["] organization
[] Percent

[] Person

[] sentence
[] spaceToken
| O EE—
HmE

] Token

[] unknown

46 per cenk off First-half pre-tax profiks at GKM ' P Key

organizakion| | -
organizakion| | -

P oOriginal marku

v ML
Menktion

Documenk Edikor L Initialisation Paramekers |

Examine a document
from the test corpus

You should have a new
“ML” AS with Mention
annotations

The original Mention
annotations (in the
default AS) are similar
but not always identical!

The Annotations Stack is
good for comparing them

How similar do they
appear to be? Do you
think you will get a good
result?
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Comparing the Sets with Corpus QA

( Messages % Corpus Pipeline... “ keskt @ FE-GKM-09-aug-2...

Corpus skatistics rDucument skakiskics | ; === el
Annotakion Makch | Only & | Only B | Overlap | Prec.B/A | Rec.BfA | F1.0-s, Annotation Sets AfKey & B/Respons
Mention 1867 [154 |11 108 0.8823  [0.8769 [0.8796 ||:|[Defaultset] (A) ]
Macro summary 0.8823  [0.8769 [0.8796 ||:[KE¥
Micro summary |1867 [154  |141  |108 0.8823 [0.8769 |0.8796 ||-JMLIB)
COriginal markups
[] present in every document
» Select the test corpus and click on the Corpus i““ztﬂti“wes
. . . “fLooku =
Quality Assurance tab (it will take a few seconds to | Mention -
scan the documents) Jerer o i
 Select the Default and ML annotation sets as A | present in every selected set
and B, reSpeCtlve|y ;EAnnntatinn Features 3
1] . 1] rob
« Select the “Mention” type |me
- Select the “type” feature Q;
® Choose an F'measure [] present in every selected type
° CI|Ck on Compare Measures Opktions
« Did you get a good result? How does it compare to |[Fescore [ Clazsication |
. . ZJ|F1.0-score skrick =
the result you got using evaluation mode? |F1.0-score lenient =
:f[F1.0-score average | &
F1.0-score skrick BOM |
H <] I [ <] = T I *Il

L Corpus editor L Initialisakion Parameters L Corpus Quality Assurance |
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Using Annotation Diff to examine performance

17531761 5co0t- UK
11811195 late - last-year
1007(1017 Air- Canada

e class=organization, prob=1.0} An notation Diff ‘ i‘
class=organization}|-? .
class=date} -1 ICOI’]

class=organization}|-?

Annotation Difference ° SWItch tO the

Key doc |fl—BT—hriefing—l]2—a...‘v‘Kw set: T}rpe: Weight @ “D t
Resp. doc |fl—BT—hriefing—l]2—a...‘ v‘ Resp. set: Features: _Jall ®some 'none m g Compare o_cu_rne,r,]
Start| End Key Features =17|5tart| End Response Features StatIStlcs tab
15171519 BT {class=organization}|= (1517|1519 BT {class=organization, prob=1.0} .
171 173 2p {class=money} = (171 173 |2p {class=money, prob=1.0} | ° Choose a
1956(1972 Deutsche - Telekom|{class=organization}j= |1956{1972Deutsche - Telekom|{class=organization, prob=1.0}
46 |35 |yesterday [class=date} = 46 |35 [|yesterday [class=date, prob=1.0} docu ment
13221327 Oftel {class=organization}|= |1322{1327|0ftel {class=organization, prob=1.0}
867 (882 |January-22-2001 |{class=date} = (867 |B82 |January-22-2001 ({class=date, prob=1.0} =
11981203 /5coot {class=organization}|= |[1198/12035coot {class=organization, prob=1.0} ¢ CIICk on the
514 524 Amazon.com [class=organization}~ (514 520 [Amazon {

{

{

{

{

1924/1926/DT class=organization}|-? ° Wh t kln f
?- 11499/1511(0800-192-192 {class=money, prob=1.0} L . a d O

482 488 Amazon {class=organization}|< =482 488 Amazon {class=location, prob=0.99999946} m|StakeS d|d your
800 806 Amazon {tlasg=organization}|< =800 [B06 |Amazon {class=location, prob=0.99999905} . . ?
796 (762 Amazon {clas’i";nmznjlmnmn?qﬁ 767 Amazon {class=location, prob=1.0} | app|ICatI0n make H
‘| {class=organization} | O

To edit, double-click or press F2.
Correct: 36 Recall Precision F-measure 93 documents loaded
Partially correct: 1 Strict. 0.82 0.88 0.85 Show document
Missing: 7 Lenient: 0.84 0.90 0.87
False positives: 4 Average: 0.83 0.89 0.86 ﬂ. Export to HTML

Statistics LAdjudicatiun
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~ Using Annotation Diff... \

. “Correct”. the response annotation has the right
feature and span

. “Partially correct”: response has the right feature and
overlapping but not exactly matched span; this counts
as correct in the “lenient” scoring

. “Missing”: key annotation+feature is missing from the
response (a.k.a. “false negative”)

. “False positive”. response annotation+feature
shouldn't be there (a.k.a. “spurious”)
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~ Varying the configuration file \

. Now we are going to experiment with varying the
configuration file to see if we can produce varied
results

. You can edit the configuration file in your favourite text
editor

. Make sure you save your changes then reinitialise
the PR (this reads the file again and updates the
configuration used inside GATE)



Exercises

University of Sheffield, NLP .E

. Spend some time working on your exercise sheet
. Feel free to ask questions
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Confidence Thresholds

<PARAMETER name="thresholdProbabilityEntity"” value="0.2"/>
<PARAMETER name="thresholdProbabilityBoundary" value="0.42"/>
<PARAMETER name="thresholdProbabilityClassification” value="0.5"/>

. Each classifier will provide confidence ratings—how likely is a result to be
correct; we must determine how certain is good enough

. Depending on the application we might prefer to include or exclude
annotations for which the learner is not too sure

. thresholdProbabilityBoundary and thresholdProbabilityEntity are thresholds
for chunk learning

. thresholdProbabilityClassification applies to classification tasks, such as
sentiment or genre detection, author identification, language identification
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Engines and Algorithms
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_Support Vector Machines

* Attempt to find a
hyperplane that
0

separates data 0
[ Samples

* Goal: maximize with positive
margin separating =
two classes = ,

* Wider margin =
greater
generalisation

-7 Samples

label

o with negative .
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_Support Vector Machines

* Points near decision boundary: support vectors (removing
them would change boundary)

* Points far from boundary not important for decision
* What if data doesn't split?

—  Soft boundary methods exist for imperfect
solutions

— However linear separator may be completely
unsuitable
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Support Vector Machines

* What if there is no
separating
hyperplane?

* See example:

* Or class may be a
globule

They do
not work!
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Kernel Trick GATE

* Map data into
different
dimensionality

* As shown in the
video, due to
polynomial kernel
elliptical separators
can be created
nevertheless.

* Now the points are
separable!



http://www.youtube.com/watch?v=3liCbRZPrZA
http://www.youtube.com/watch?v=3liCbRZPrZA
http://www.youtube.com/watch?v=3liCbRZPrZA
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~ Kernel Trick in GATE and NLP \

. Binomial kernel allows curved and elliptical separators
to be created

. These are commonly used in language processing
and are found to be successful

. Linear and polynomial kernels are implemented in
Batch Learning PR's SVM
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_Support Vector Machines

* SVMs combined with kernel trick provide a
powerful technique

* Multiclass methods simple extension to two class
technique (one vs. another, one vs. others)

* Widely used with great success across a range of
linguistic tasks
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~ Perceptron and PAUM \

. Perceptron is one of the oldest ML methods (invented
in the 50s)

. Like SVM, it determines a hyperplane separator
between the data points

. Theoretically SVM works better because it calculates
the optimal separator, but in practice, however, there
Is usually little difference, and Perceptron is a lot faster
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Perceptron

@O

-t

. You might think of perceptrons as being these things
(correct)

. What this is actually calculating is a dot product w.x
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~ More perceptron \

f(x) = 1 fwx+b>0
0O otherwise

. X IS a datapoint represented as a vector

. w is a vector that defines the separating hyperplane (it
IS perpendicular to it)

. This function tells you which side of the hyperplane
your point lies

. b defines an offset from the origin



More perceptron
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. How does it learn?

— Each datapoint is annotated with class value 1
or0

—  Function returns 1 or O depending on which side
of the separator the point lies

—  Calculate difference between actual and desired
output

—  Multiply input vector by this delta and add it to
the weight vector

—  Given sufficient iterations the separator will find
a solution
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Perceptron update

> NS
e 7N

Dot p’r'__,.o'dfuct is
. Negative

3 The
separator

Dot product is
negative, so f=0
But xis a
positive
example!

Oh no! Must
update



University of Sheffield, NLP .a

Perceptron update

. x class is 1
. f(x)=0
*  w+=(1-0)x

X

The
separator
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Perceptron update

. x class is 1
. f(x)=0
*  w+=(1-0)x

The
separator
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Perceptron update

. x class is 1
. f(x)=0
*  w+=(1-0)x

New
separator
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Perceptron update

. Now X is on the
right side of the
separator!

New
separator
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Perceptron with Uneven Margins

. Both Perceptron and SVM implement “uneven
margins”
. PAUM = “Perceptron Algorithm with Uneven Margins”

. This means that it doesn't position the separator
centred between the points, but more towards one

side



University of Sheffield, NLP

Even Margins

[ Samples

with positive
label

)
-

“ Samples
with negative (]
label
o I
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Why Uneven Margins”?

. In NLP the datasets are often very imbalanced.

. If you are tagging instances of “Person”, there are a few
positive cases mixed with many words that are not
persons.

. In opinion mining, you may have a few sentences with

opinions but mostly sentences without them.

. So move the margin away from the smaller group of
training examples.

° Y. Li, K. Bontcheva, and H. Cunningham. Using Uneven
Margins SVM and Perceptron for Information Extraction.
CoNLL-2005.
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Uneven Margins

| Samples
with positive
label

o .# [Margin
le®
@,
@
. . ®

Fa
o7 Samples @

label

0 with negative (7
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~ Some Other Algorithms \

. Batch Learning PR also includes the following from Weka
— Nalve Bayes

* Uses Bayes' theorem (probabilities) to determine
the most likely class given attributes and training
corpus

—  K-Nearest Neighbour

* Determines class of a point based on k training
points positioned geometrically closest to it

—  (C4.5 (decision tree)

* Makes a series of binary decisions that determine
the class of a point based on its attribute values
(e.g. “is string length > 377)
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~ Classification tasks \

. Opinion mining
— Example: the documents contain spans of text (such
as individual sentences or longer consumer reviews)
which you want to classify as positive, neutral, or
negative

— Module 12 tomorrow will cover this, with hands-on
work

. Genre detection: classify each document or section as
a type of news

. Author identification
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Classification tasks \

- thresholdProbabilityClassification: the “pickiness” of the
classifiers

*Increasing this generally raises precision and reduces
recall

- decreasing this generally increases recall and reduces
precision

* thresholdProbabilityBoundary and
thresholdProbabilityEntity: ignored
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Classification tasks

- <SURROUND VALUE="FALSE"/>

- the class boundaries are known

- INSTANCE-TYPE: type of annotation that covers each
span of text to classify (Sentence, p (paragraph), etc.)

- We typically use NGRAM elements as attributes

+ The GATE user guide gives examples, and Module 12 will
cover this for opinion mining
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Hands-on: text classification

Close open applications, PRs, and LRs in GATE

* |If you've closed GATE since the last exercise, you need the ANNIE,
Tools, and Learning plugins for this exercise

* [f you haven't closed GATE, load the Tools plugin
* Create new empty “training” and “test” corpora

* Populate them from “language/training-corpus” and
“‘language/test-corpus” directories in the hands-on material

* Set the encoding to UTF-8 before you click OK

* Inspect the documents: the Key AS contains Sentence annotations with
a lang feature

* Very few documents, but many instances (Sentence annotations)

* Task: language identification
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Text classification

* Create a new Conditional Corpus Pipeline and add the
following PRs:

* Document Reset

* ANNIE English Tokenizer
* ANNIE Sentence Splitter
* Annotation Set Transfer

e Batch Learning PR with “language/mli-language.xml” as the
config file

* Examine this config file in an editor and notice how it differs
from the NER file
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Text classfication config file

. Note the changes for text classification:

. <SURROUND value="false”/>

. thresholdProbabilityClassification is used
. INSTANCE-TYPE is Sentence
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Text classification example

* Training

* We use the Sentence annotations as instances, lang features
as ML classes, and the tokenizer's output as attributes

* Check that Document Reset will keep the “Key” AS
* Switch the Sentence Splitter off (red signal light)

* Configure the AS Transfer PR to copy all annotations from
“Key” to the default AS

* Set the Batch Learning PR to TRAINING mode
* Set the pipeline to run on the training corpus

* Run the pipeline
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Text classification example

* Testing

e Here we create our own Sentence annotations and use ML to
classify them

* Switch the Sentence Splitter on (green light)
* Switch the AS Transfer PR off (red light)
* Set the Batch Learning PR to APPLICATION mode

* Leave the inputASName blank (default AS)
* Set the Batch Learning PR's output AS to “Output”

* Set the pipeline to run on the test corpus

* Run the pipeline



University of Sheffield, NLP
Text classification example

* [nspect the test corpus with Corpus QA:
* A =Key, B =Output
* select “Sentence” annotations and the “lang” feature
* select “F1 strict” and click “Compare”

* My results:

* 411 matches, 16 “only A", 16 “only B”

* so all sentences were classified, and only 16 were classified
incorrectly
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Text classification example

In Corpus QA, try Classification — Observed Agreement, click
Compare, and look at the “Confusion Matrices” tab

| get a table like this:

de en fr
de 294 0 0
en 8 86 0
fr 8 0 31

This shows that 8 English & 8 French sentences were
misclassified as German

Module 12 will include ML text classification examples for
opinion mining
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Further tinkering

* Try lower or higher threshold values

* Try different combinations of attributes
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