
GATE Applications as Web Services

Ian Roberts

University of Sheffield NLP

Introduction

• Scenario:
 Implementing a web service (or other web

application) that uses GATE Embedded to process
requests.

 Want to support multiple concurrent requests
 Long running process - need to be careful to avoid

memory leaks, etc.
• Example used is a plain HttpServlet

 Principles apply to other frameworks (struts,
Spring MVC, Metro/CXF, Grails…)

University of Sheffield NLP

Setting up

• GATE libraries in WEB-INF/lib
 gate.jar + JARs from lib

• Usual GATE Embedded requirements:
 A directory to be "gate.home"
 Site and user config files
 Plugins directory
 Call Gate.init() once (and only once) before using

any other GATE APIs

University of Sheffield NLP

Initialisation using a
ServletContextListener

• ServletContextListener is registered in
web.xml

• Called when the application starts up
public void contextInitialized(ServletContextEvent e) {
 ServletContext ctx = e.getServletContext();
 File gateHome = new File(ctx.getRealPath("/WEB-INF"));
 Gate.setGateHome(gateHome);
 File userConfig = new File(ctx.getRealPath("/WEB-INF/user.xml"));
 Gate.setUserConfigFile(userConfig);
 // site config is gateHome/gate.xml
 // plugins dir is gateHome/plugins
 Gate.init();
}

<listener>
 <listener-class>gate.web..example.GateInitListener</listener-class>
</listener>

University of Sheffield NLP

GATE in a multithreaded
environment

• GATE PRs are not thread-safe
 Due to design of parameter-passing as JavaBean

properties
• Must ensure that a given PR/Controller

instance is only used by one thread at a time

University of Sheffield NLP

First attempt: one instance
per request

• Naïve approach - create new PRs for each
request

public void doPost(request, response) {
 ProcessingResource pr = Factory.createResource(...);
 try {
 Document doc = Factory.newDocument(getTextFromRequest(request));
 try {
 // do some stuff
 }
 finally {
 Factory.deleteResource(doc);
 }
 }
 finally {
 Factory.deleteResource(pr);
 }
}

Many levels of nested try/finally: ugly but
necessary to make sure we clean up even
when errors occur. You will get very used to
these…

University of Sheffield NLP

Problems with this approach

• Guarantees no interference between threads
• But inefficient, particularly with complex PRs

(large gazetteers, etc.)
• Hidden problem with JAPE:

 Parsing a JAPE grammar creates and compiles
Java classes

 Once created, classes are never unloaded
 Even with simple grammars, eventually

OutOfMemoryError (PermGen space)

University of Sheffield NLP

Second attempt: using
ThreadLocals

• Store the PR/Controller in a thread local
variable

private ThreadLocal<CorpusController> controller = new
ThreadLocal<CorpusController>() {
 protected CorpusController initialValue() {
 return loadController();
 }
};

private CorpusController loadController() {
 //...
}

public void doPost(request, response) {
 CorpusController c = controller.get();
 // do stuff with the controller
}

University of Sheffield NLP

Better than attempt 1…

• Only initialise resources once per thread
• Interacts nicely with typical web server thread

pooling
• But if a thread dies, no way to clean up its

controller
 Possibility of memory leaks

University of Sheffield NLP

A solution: object pooling

• Manage your own pool of Controller instances
• Take a controller from the pool at the start of a

request, return it (in a finally!) at the end
• Number of instances in the pool determines

maximum concurrency level

University of Sheffield NLP

Simple example
private BlockingQueue<CorpusController> pool;

public void init() {
 pool = new LinkedBlockingQueue<CorpusController>();
 for(int i = 0; i < POOL_SIZE; i++) {
 pool.add(loadController());
 }
}

public void doPost(request, response) {
 CorpusController c = pool.take();
 try {
 // do stuff
 }
 finally {
 pool.add(c);
 }
}

public void destroy() {
 for(CorpusController c : pool) Factory.deleteResource(c);
}

Blocks if the pool is empty: use
poll() if you want to handle empty
pool yourself

University of Sheffield NLP

Further reading

• Spring Framework
 http://www.springsource.org/
 Handles application startup and shutdown
 Configure your business objects and connections

between them using XML
 GATE provides helpers to initialise GATE, load

saved applications, etc.
 Built-in support for object pooling
 Web application framework (Spring MVC)
 Used by other frameworks (Grails, CXF, …)

University of Sheffield NLP

Conclusions

• Only use GATE Resources in one thread at a
time

• Make sure to clean up after yourself, even
when things go wrong
 try/finally
 Whenever you createResource, be sure to

deleteResource

