
University of Sheffield NLP

Module 12:
Opinion Mining

© The University of Sheffield, 1995-2010
This work is licenced under the Creative Commons Attribution-NonCommercial-ShareAlike Licence

http://creativecommons.org/licenses/by-nc-sa/3.0/

University of Sheffield NLP

What is Opinion Mining?

• OM is a recent discipline that studies the extraction of opinions
using IR, AI and/or NLP techniques.

• More informally, it's about extracting the opinions or sentiments
given in a piece of text

• Also referred to as Sentiment Analysis
• Web 2.0 nowadays provides a great medium for people to

share things.
• This provides a great source of unstructured information

(especially opinions) that may be useful to others (e.g.
companies and their rivals, other consumers...)

University of Sheffield NLP

Opinion Mining is Big Business

●Someone who wants to buy a camera
● Looks for comments and reviews

●Someone who just bought a camera
● Comments on it
● Writes about their experience

●Camera Manufacturer
● Gets feedback from customer
● Improve their products
● Adjust Marketing Strategies

University of Sheffield NLP

Related (sub)topics: general

●Opinion extraction: extract the piece of text which represents
the opinion

● I just bought a new camera yesterday. It was a bit
expensive, but the battery life is very good.

●Sentiment classification/orientation: extract the polarity of
the opinion (e.g. positive, negative, neutral, or classify on a
numerical scale)

● negative: expensive
● positive: good battery life

●Opinion summarisation: summarise the overall opinion about
something

● price:negative, battery life: positive --> overall 7/10

University of Sheffield NLP

Feature-opinion association

● Feature-opinion association: given a text with target features
and opinions extracted, decide which opinions comment on which
features.

● “The battery life is good but not so keen on the picture
quality”

● Target identification: which thing is the opinion referring to?
● Source identification: who is holding the opinion?
● There may be attachment and co-reference issues

● “The camera comes with a free case but I don't like the
colour much.”

● Does this refer to the colour of the case or the camera?

University of Sheffield NLP

Spam opinion detection

● Spam opinion detection: detect whether opinions are written by
spammers

● Could involve language analysis, frequency analysis,..
● Could be either positive or negative opinions
● Generally, negative opinions are more damaging than positive

ones
● Spam opinions are typically posted by the same person on multiple

sites and/or threads with identical or very similar wording
● The Chinese government paid people to post spam opinions

supporting them: typically these are easily detectable due to their
similarity and frequency

● Look for outlier reviews (which go against the trend)

University of Sheffield NLP

Deep sentiment analysis

● The hardest thing about getting sentiment analysis right is uncovering exactly
what is being meant

● Difference between a customer saying they merely like a brand and saying that
they love it.

● Sentiment has many rich and nuanced dimensions that need to be teased apart to
make it insightful.

● “An old lady told me that warm Dr. Pepper is delicious”
● Is it only nice when warm?
● Does the author share the opinion of the old lady?
● Could this be a new insight for the manufacturers/advertisers?

● “I loved Dr. Pepper because of Dude.” (Dude was a character in the ad)
● Does the author still like Dr Pepper?
● Should the manufacturers consider bringing back the commercial?

● Classification of sentiment according to functional, insightful, emotional etc.

University of Sheffield NLP

The Ultimate Question

● The book "The Ultimate Question" recently ranked #1 on the Wall
Street Journal's Business Best-Sellers List and #1 on USA
TODAY's Money Best-Sellers List.

● It's all about whether a consumer likes a brand enough to
recommend it.

● This apparently is the key to a company's performance.
● General sentiment detection isn't precise enough to answer this

kind of question, because all kinds of “like” are treated equally
● Growing need for sentiment analysis that can get to very fine

levels of detail, while keeping up with the enormous (and
constantly increasing) volume of social media.

University of Sheffield NLP

All opinions are not equal

● Opinion Mining needs to take into account how much influence
any single opinion is worth

● This could depend on a variety of factors, such as how much trust
we have in a person's opinion, and even what sort of person they
are

● Need to account for:
● experts vs non-experts
● spammers
● frequent vs infrequent posters
● “experts” in one area may not be expert in another
● how frequently do other people agree?

University of Sheffield NLP

Trust Recommenders

● Two types of trust:
● relationship (local) trust
● reputation (global) trust.

● Relationship trust: if you and I both rate the same things, and our
opinions on them match closely, we have high relationship trust.
This can be extended to a social networking group --> web of trust.

● Reputation trust: if you've recommended the same thing as other
people, and usually your recommendation is close to what the
majority of people think, then you're considered to be more of an
expert and have high reputation trust.

● We can extend relationship trust to form clusters of interests and
likes/dislikes

● We can narrow reputation trust to opinions about similar topics

University of Sheffield NLP

Rule-based Opinion Mining from
Political Tweets

University of Sheffield NLP

Processing political tweets

● Application to associate people with their political leanings, based
on pre-election tweets

● First stage is to find triple <Person, Opinion, Political Party>
● e.g. John Smith is pro_Labour

● Usually, we will only get a single sentiment per tweet
● Later, we can collect all mentions of “John Smith” that refer to the

same person, and collate the information
● For example, John may be equally in favour of several

different parties, not just Labour, but hates the
Conservatives above all else

University of Sheffield NLP

Creating a corpus

● First step is to create a corpus of tweets
● Created an API to suck up all the tweets over the pre-election

period according to various criteria (e.g. use of certain hash tags,
mention of various political parties etc.)

● Rather than collect just the tweets, we collect them in json format
and then convert these to xml

● This means that we have lots of additional twitter metadata, such
as the date and time of the tweet, the number of followers of the
person tweeting, the location and other information about the
person tweeting, and so on

● This information is useful for disambiguation and for collating the
information later

University of Sheffield NLP

Tweets with metadata

Original markups set

University of Sheffield NLP

Metadata

Date
Tweet

Profile info
Number of friends

Location
Name

University of Sheffield NLP

Gazetteers

● We create an instance of a flexible gazetteer to match certain useful
keywords, in various morphological forms:

● political parties, e.g. “Conservative”, “LibDem”
● concepts about winning election, e.g. “win”, “landslide”
● words for politicians, e.g. “candidate”, “MP”
● words for voting and supporting a party/ person, e.g. “vote”
● words indicating negation, e.g. “not”, “never”

● We create another gazetteer containing affect/emotion words from
WordNet.

● these have a feature denoting part of speech (category)
● Keeping category information may be important, so we

don't want a flexible gazetteer here

University of Sheffield NLP

Grammar rules: creating temporary
annotations

● Identify questions or doubtful statements as opposed to "factual"
statements in tweets.

● Initially, we just look for question marks
● “Wont Unite's victory be beneficial to Labour?”

● Create temporary Affect annotations if an “affect” Lookup is found
and if the category matches the POS tag on the Token (this
ensures disambiguation of the different possible categories)

● “Just watched video about awful days of Tory rule” vs “Ah
good, the entertainment is here.”

● “People like her should be shot.” vs “People like her.”

University of Sheffield NLP

Question grammar

Phase: Preprocess
Input: Token
Options: control = appelt

Rule: Question
(
 {Token.string == "?"}
):tag
-->
:tag.Question = {rule = "Question"}

University of Sheffield NLP

Affect grammar

Phase: Affect
Input: AffectLookup Token
Options: control = appelt

Rule: AffectAdjective
(
 {AffectLookup.category == adjective,Token.category == VBN}|
 {AffectLookup.category == adjective, Token.category == JJ}
):tag
-->
:tag.Affect = {kind = :tag.AffectLookup.kind,
 category = :tag.AffectLookup.category,
 rule = "AffectAdjective"}

Check category of both Lookup and Token
are adjectives or past participles

copy category and kind
values from Lookup to new
Affect annotation

University of Sheffield NLP

Grammar rules: finding triples

● We first create temporary annotations for Person, Organization,
Vote, Party, Negatives etc. based on gazetteer lookup, NEs etc.

● We then have a set of rules to combine these into pairs or triples:
● <Person, Vote, Party> “Tory Phip admits he voted

LibDem”.
● <Party, Affect> “When they get a Tory government they'll

be sorry.”
● We create an annotation “Sentiment” which has the following

features:
● kind = “pro_Labour”, “anti_LibDem”, etc.
● opinion_holder = “John Smith”, “author” etc.

University of Sheffield NLP

Identifying the Opinion Holder

● If the opinion holder in the pattern matched is a Person or
Organization, we just get the string as the value of opinion_holder

● If the opinion holder in the pattern matched is a pronoun, we first
find the value of the string of the antecedent and use this as the
value of opinion_holder

● Currently we only match opinion holders within the same sentence.
● If no explicit opinion holder then we use "author" as the value of

opinion_holder.
● Later we could look at grabbing the details of the twitterer instead

of just using "author".

University of Sheffield NLP

Grammar rules: finding antecedents

● Find the antecedents of pronouns within a sentence so that we can
refer a sentiment back to the original opinion holder or object of the
opinion.

● First run the pronominal coreference PR
● Then use a JAPE rule to find pronouns linked to a Person or

Organization
● We can identify these because they will have the feature

“ENTITY_MENTION_TYPE” (created by the coreferencer)
● The co-referring pronouns all have also an antecedent_offset feature

pointing to the proper noun antecedent
● The matching proper noun antecedent is found and its string is added

as a feature on the relevant pronoun annotation

University of Sheffield NLP

Implicit Opinion Holders

● There may not always be an explicit opinion holder
● In many cases, the author of the tweet is the opinion holder

● I'm also going to vote Tory. Hello new world.”
● Here we can co-refer “I” with the person tweeting (using

the metadata)
● In other cases, there is no explicit opinion holder:

● “Vote for Labour. Harry Potter would.”
● However, we can infer by this instruction that the author

of the tweet shares this opinion.
● In all these cases, we add the value “author” to the feature

“opinion_holder”

University of Sheffield NLP

Creating the Application

● We only want to process the actual text of the tweet, not all the
other information

● To do this, we use a Segment Processing PR to run the sentiment
app over just the "text" annotation in Original Markups set.

● So, we need two applications: one containing the Segment
Processing PR and one containing the actual sentiment
application

University of Sheffield NLP

Hands-on 1: Analysing political tweets

● Load the ANNIE, Tools and Alignment plugins
● Load the document corpus/politwits-smiley.xml from the hands-on

material and add it to a corpus
● Load the application resources/sentiment-all.gapp
● This should also load the sentiment-processing application
● Run sentiment-all.gapp on the corpus and look at the results
● Tip: Make sure you run the right application
● Click on Sentiment to see the overall Sentiment of the tweet

● Sentiment.kind should be pro-Con
● Click on Party and Vote to see intermediate annotations

University of Sheffield NLP

Hands-on 2: Modifying the application

● Task: modify the application to annotate the following sentence as
“anti_Tory”:

● They all voted Tory :-(
● Step 1: add the emoticon as a new entry in the affect gazetteer list

affect_sadness.lst, with feature “category” and value “smiley”
● Step 2: add a new rule in the affect.jape grammar to create an

Affect annotation from an AffectLookup with category=smiley
● Reinitialise grammar and gazetteer and rerun the application
● Sentiment.kind should now be anti-Con instead of pro-Con

University of Sheffield NLP

Hands-on 3: Using ANNIC

● Create a new Lucene datastore in GATE
● Use default parameters, except set “AnnotationSets” parameter to

exclude “Key”
● Create a new empty corpus, save it to the datastore, then populate

it with the politwits-500 corpus
● Run the application on the corpus (this may take a little while)
● Select “Lucene datastore searcher” from the datastore viewer
● Try out some patterns to see what results you get: if you find a

pattern that enables you to find an opinion, try implementing it in a
JAPE grammar

● If you get stuck, have a look at some examples of patterns on the
next slide.....

University of Sheffield NLP

Hands-on 3: Pattern examples

● Try thinking up your own patterns, but here are some you can try
out to get you started (try changing the number of Tokens, or
adding negatives):

● {Lookup.majorType == negation} ({Token})*4 {Lookup.majorType
== "vote"}{Lookup.majorType == "party"}

● {Token.string == "I"} ({Token})*4 {Lookup.majorType == "vote"}
{Lookup.majorType == "party"}

● {Person} ({Token})*4 {Lookup.majorType == "vote"}
{Lookup.majorType == "party"}

● {Affect} ({Token})*5 {Lookup.majorType == "candidate"}
● {Vote} ({Token})*5 {Lookup.majorType == "candidate"}

University of Sheffield NLP

Linguistic information for better analysis

● Linguistic information can give you a lot of clues about meaning
● “Good battery life” seems to indicate a positive feature.
● But conditional sentences can have subtly different meanings:

● I'd have bought a Nikon if I'd wanted good battery life
● I'll buy a Nikon if it has good battery life
● I'll buy a Nikon if I want good battery life
● I'd buy a Nikon unless I wanted good battery life
● I'd buy a Nikon even if it doesn't have good battery life.

University of Sheffield NLP

Conditional Types

0. If a camera has 20 hours of battery life, you can take many pictures.
● statement of fact or certainty

1. If someone makes a camera with 20 hours of battery life, I'll buy it
● potential conditional
● long battery life is my top priority

2. If someone made a camera with 20 hours of battery life, I'd buy it
● less probably conditional. Indicates preference
● as (1), but I think it's unrealistic so I'll settle for something else

3. If someone had made a camera with 20 hours of battery life, I'd have
bought it

● Impossible past events
● as (1), but they don't make one, so I bought something else

University of Sheffield NLP

More examples

2. If I wanted a camera with 20 hours of battery life, I would buy a Nikon
● battery life is not my priority, so I'll probably buy something

else

3. If I had wanted a camera with 20 hours of battery life, I'd have bought a
Nikon

● battery life is not my priority and so I bought something other
than Nikon

University of Sheffield NLP

Linguistic analysis of conditional types

Type 0: If + simple present --> simple present
● If it has good battery life, you can take lots of pictures

Type 1: If + simple present --> simple future
● If it has good battery life, I will buy it

Type 2: If + past --> would + infinitive
● If it had good battery life, I would buy it

Type 3: If + past perfect --> present perfect
● If it had had good battery life, I would have bought it

University of Sheffield NLP

Simple conditional application in GATE

● Gazetteer list gives us words associated with conditionals
● if, assuming, even if, as long as, on condition that...

(positive)
● unless (negative)

● Verb chunker segments the VPs and also gives
● the tense of the verb
● active or passive
● positive or negative

● Grammar rules combine items from gazetteer with verb information
to create rules for sentences

University of Sheffield NLP

Sample grammar for type 0 conditional

Input: Split VG ConditionalIndicator

Rule: Conditional0

(

 {ConditionalIndicator}

 {VG.tense == SimPre}

 {VG.tense == SimPre}

 {Split}

):tag

-->

:tag.Conditional = {type = "0"}

Pattern: If + simple present, simple present

{Lookup.majorType == conditional}

Verb phrases with verb in the
simple present tense

Don't let the pattern span a
sentence boundary

Tag the whole sentence
as a conditional of type 0

University of Sheffield NLP

Why do we do the Lookup in a separate
phase?

● Why do we first find the Conditional Lookups and annotate them
separately? Why not just use the Lookup annotation within the
rule?

● The clue is in the Input headers
● If we use a Lookup annotation within the rule, we need to add

“Lookup” to the Input headers
● What effect might this have on the rule?
● Remember that we only want to state explicitly in the rule the

things we care about.
● We don't care (at this stage) which nouns occur in the sentence so

we want to leave as much as possible unspecified.

University of Sheffield NLP

Hands-on 3: conditionals

● Remove all loaded applications and documents from GATE
● Load the application resources/conditionals.gapp from the hands-

on materials
● Load the text corpus/conditional-sentences.txt, add to a corpus

and run the application on it
● Check the results
● Have a look at the grammar conditional-polarity.jape and see if you

can work out how the negation part works

University of Sheffield NLP

Negation: adding the polarity feature

● The sentence is divided into its two verb phrases: firstPol and
secondPol

● For each phase, if the value of the neg feature is “yes”, then “neg”
is stored as the new value

● If the value of the neg feature is “no”, then “pos” is stored as the
new value

● A new feature called “polarity” is added to the final annotation that
covers the whole sentence

● The values of the two neg features (one for each VP) are added
consecutively as the values of polarity, e.g. “neg” + “pos”

University of Sheffield NLP

Machine Learning
Hands-on Exercise

University of Sheffield NLP

Machine Learning for Sentiment Analysis

● ML is an effective way to classify opinionated texts
● We want to train a classifier to categorize free text according to the

training data.
● Good examples are consumers' reviews of films, products, and

suppliers.
● Sites like www.pricegrabber.co.uk show reviews and an overall

rating for companies: these make good training and testing data
● We train the ML system on a set of reviews so it can learn good

and bad reviews, and then test it on a new set of reviews to see
how well it distinguishes between them

University of Sheffield NLP

Examples of consumer reviews

University of Sheffield NLP

Preparing the corpus

● Corpus of 40 documents containing 552 company reviews.
● Each review has a 1- to 5-star rating.
● We pre-processed these in GATE to label each review with a

comment annotation with a rating feature
● In ML terms:

● instance = comment annotation
● class = rating feature
● attributes = NLP features of the underlying text

● We will keep the spans of the comment annotations and use ML to
classify them with the rating feature

University of Sheffield NLP

Annotated review

University of Sheffield NLP

Developing the training application

● We will develop an application that runs a set of NLP components to
provide ML instance attributes, and train the classifier

● Take the config file ml-exercise/paum.xml from the hands-on
materials and copy it to a writable directory on your machine.

● The Batch Learning PR needs to create a savedFiles directory and
write inside that.

● Load the ANNIE, Tools, and Learning plugins.
● Create a new corpus called “training” and populate it from the

directory ml-exercise/corpora/training in the hands-on material

University of Sheffield NLP

Batch learning config (paum.xml)

<PARAMETER name="thresholdProbabilityClassification"
 value="0.5"/>
● This threshold will probably produce a class for each instance
● Classification problems do not use the other threshold probability

parameters
<multiClassification2Binary method= "one-vs-others"/>
● this is much faster than one-vs-another
<ENGINE nickname="PAUM" implementationName="PAUM"
 options=" -p 50 -n 5 -optB 0.0 "/>
● Perceptron with uneven margins
● default options

University of Sheffield NLP

Batch learning config (2)

<INSTANCE-TYPE>comment</INSTANCE-TYPE>
<ATTRIBUTE>
<NAME>Class</NAME>
<SEMTYPE>NOMINAL</SEMTYPE>
<TYPE>comment</TYPE>
<FEATURE>rating</FEATURE>
<POSITION>0</POSITION>
<CLASS/></ATTRIBUTE>
● Takes comment annotations as instances, and classifies them using

the rating feature.
● The classes (values of the rating features) form an unordered set

(current limitation of the PR).

University of Sheffield NLP

Batch learning config (3)

<NGRAM>
<NAME>ngram</NAME>
<NUMBER>1</NUMBER>
<CONSNUM>1</CONSNUM>
<CONS-1>
 <TYPE>Token</TYPE>
 <FEATURE>root</FEATURE>
</CONS-1>
</NGRAM>
● Uses unigrams of Token.root features inside the comment

annotations as the instance attributes (bag of words).
● An additional feature in the hands-on file is commented out for you

to experiment with later.

University of Sheffield NLP

Building the training application (1)

● Create the following PRs with the default init parameters:
● Document Reset PR
● Annotation Set Transfer
● ANNIE English Tokeniser
● ANNIE Sentence Splitter
● ANNIE POS Tagger
● GATE Morphological Analyser

● Create a Batch Learning PR with the configFileURL init
parameter set to the new location of your paum.xml file

● Create a new Conditional Corpus Pipeline.

University of Sheffield NLP

Building the application (2)

● We want to copy the comment annotations to the default
annotation set to provide the ML instances and classes

● We want to make sure we don't remove the Key annotations
● Add the PRs to the pipeline as follows

● Document Reset:
● setsToKeep = “Key”

● Annotation Set Transfer:
● annotationTypes = [comment]
● copyAnnotations = true
● inputASName = “Key”
● outputASName, tagASName,

 textTagName = “”

University of Sheffield NLP

Building the application (3)

● Add the remaining loaded PRs to the pipeline
● English tokeniser
● Sentence splitter
● POS tagger
● Morphological analyser
● Batch Learning:

● inputASName, outputASName = “”
● learningMode = TRAINING

● Run it on the training corpus (this should take less than 1 minute)
● The classifier's model is stored in the savedFiles directory beside the

paum.xml file. The model is stored in text files, but they are not
meant to be human-readable.

University of Sheffield NLP

Applying the training model

● Create a “testing” corpus and populate it from the corpora/testing
directory.

● To apply the classifier, we need to have comment annotations
without rating features on the default AS. These will give us the
instances to classify. A simple JAPE Transducer can do this.

● Load the grammar resources/grammar/copy_comment_spans.jape.
● Insert the grammar in the pipeline after the AS Transfer PR.
● Set the transducer parameters:

● inputASName = “Key”
● outputASName = “”

University of Sheffield NLP

Applying the training model (2)

● Set the AS Transfer PR's run-mode to “no”
● Set the Batch Learning PR's parameters:

● inputASName = “”
● learningMode = APPLICATION
● outputASName = “Output”

● The classifier will get instances and attributes from the default AS
and put instances with classes in the Output AS.

● Run the pipeline on the testing corpus
● Open a few documents and inspect the “comment” annotations:

● Key set = user ratings
● default set = instances with no classes
● Output set = instances with ML classes

University of Sheffield NLP

Annotation Results

University of Sheffield NLP

Evaluation: Precision and Recall

● On the test corpus, click the Corpus Quality Assurance tab.
● Select

● Annotation Sets A = Key, B = Output
● Annotation Types = comment
● Annotation Features = rating
● F-Score = F1.0-score strict

● Click “Compare”
● If every instance has been classified, then the total P = R = F1,

because every spurious classification is paired with a missing
classification

● Use the “Document statistics” sub-pane of Corpus QA to confirm
this, and to see how specific documents were annotated

University of Sheffield NLP

Corpus QA parameters

University of Sheffield NLP

Results

University of Sheffield NLP

Evaluation: Cohen's Kappa

● Click on Measures in the Corpus QA settings and select
“Classification”, then Cohen's Kappa, and click “Compare”.

● In addition to the document statistics with summary lines, there
is now a “Confusion Matrices” sub-pane.

● The confusion matrix shows how many of each class were
classified in that class (or in other classes)

● Cells in these tables can be selected with the mouse (or Ctrl-A
to select all) and copied with Ctrl-C, so you can paste them in to
a spreadsheet.

University of Sheffield NLP

Built-in cross-validation

● Cross-validation is a standard way to “stretch” the validity of a
manually annotated corpus, because it enables you to test on
a larger number of documents

● The 5-fold averaged result is more significant than the result
obtained by training on 80% of the same corpus and testing
on 20% once.

● In GATE, you can't use the Corpus QA tool on the result, but
you can get a detailed statistical report at the end, including
P, R, & F1 for each class.

University of Sheffield NLP

Built-in cross-validation

● The config file includes:
● <EVALUATION method="kfold" runs="5" ratio="0.66" />
● kfold ignores the ratio setting
● holdout ignores the runs setting

● The Batch Learning PR will automatically split the corpus into 5 parts,
and then

● train on 1,2,3,4; apply on 5; then
● train on 1,2,3,5; apply on 4; …
● train on 2,3,4,5; apply on 1;
● and average the results.

University of Sheffield NLP

Built-in cross-validation

● The application can be modified slightly to perform cross-validation
according to the config file

● Switch the AS Transfer PR back on (so it copies the comment
annoation to the default AS)

● Switch off the JAPE transducer
● Set the Batch Learning PR parameters:

● inputAS, outputAS = “”
● learningMode = EVALUATION

● Create a new corpus “all” and populate it from the corpora/all
directory (all the documents from training and testing.)

● Run the pipeline on the new corpus. This will take a few minutes.
● Click on the Messages pane to view the results

University of Sheffield NLP

Results

University of Sheffield NLP

Looking into the future

● Typically, opinion mining looks at social media content to analyse
people’s explicit opinions about a product or service

● This backwards-looking approach often aims primarily at dealing
with problems, e.g. unflattering comments

● A forwards-looking approach aims at looking ahead to
understanding potential new needs from consumers

● This is not just about looking at specific comments, e.g. “the
product would be better if it had longer battery life”, but also about
detecting non-specific sentiment

● This is achieved by understanding people's needs and interests in
a more general way, e.g. drawing conclusions from their opinions
about other products, services and interests.

University of Sheffield NLP

The problem of sparse data

● One of the difficulties of drawing conclusions from traditional
opinion mining techniques is the sparse data issue

● Opinions tend to be based on a very specific product or service,
e.g. a particular model of camera, but don't necessarily hold for
every model of that brand of camera, or for every product sold by
the company

● One solution is figuring out which statements can be generalised
to other models/products and which are specific

● Another solution is to leverage sentiment analysis from more
generic expressions of motivation, behaviour, emotions and so on,
e.g. what type of person buys what kind of camera?

University of Sheffield NLP

Predicting future behaviour

● Social media provides a wealth of information about a user's behaviour
and interests, from the explicit “John's interests are tennis, swimming and
classical music”, the implicit “people who like skydiving tend to be big
risk-takers” and the associative “people who buy Nike products also tend
to buy Apple products”

● While information about individuals isn't useful on its own, finding defined
clusters of interests and opinions is

● For example, if many people talk on social media sites about fears in
airline security, life insurance companies might consider opportunities to
sell a new service

● This kind of predictive analysis is all about understanding your potential
audience at a much deeper level - this can lead to improved advertising
techniques such as personalised ads to different groups

University of Sheffield NLP

Summary

● Introduced the concept of Opinion Mining and Sentiment Analysis
● Simple examples of rule-based and ML methods for creating OM

applications
● Examples of how deeper linguistic information can be useful
● Practice with complex applications
● Looking ahead to the future

University of Sheffield NLP

Suggestions for
further ML experiments...

University of Sheffield NLP

Suggestions...

● The config file URL is an init parameter, but the contents can
be re-loaded, so you can

● use any text editor on the config file, save the
changes, and

● re-initialize the Batch Learning PR to re-load the file
with changes.

University of Sheffield NLP

Suggestions...

● Try n-grams where n>1
● Change <NUMBER> in the config
● Usually this is slower, but sometimes it improves

quality
● combining features

● change <CONSUM> in the config to 2 and
uncomment the Token.orth element

● this concatenates the features

University of Sheffield NLP

Suggestions...

● Adjust the thresholdProbabilityClassification
● Increasing it may increase precision and decrease

recall, and may prevent the classifier from assigning
a class to every instance.

● Decreasing it may increase recall and decrease
precision.

● This is the “pickiness” control of the classifier.

University of Sheffield NLP

Suggestions...

● Try using other features
● Token.string, Token.category, or combinations of

these with Token.root and Token.orth
● You could even include other ANNIE PRs in the pipeline and

use Lookup or other annotation types.
● You need to run the same annotation-creating PRs

for training and application.
● If the config file specifies an annotation that is

missing in an instance, the ML PR will throw an
exception.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

