Rapid customisation of an Information Extraction
system for surprise languages

DIANA MAYNARD
VALENTIN TABLAN
KALINA BONTCHEVA
HAMISH CUNNINGHAM
University of Sheffield, UK

Additional Key Words and Phrases: Information Extraction, language agility

1. INTRODUCTION

One of the main aims of the surprise language exercise was to establish how quickly
the NLP community as a whole could build new systems or adapt existing ones to
a new language. Advances in information extraction (IE) technology, and in par-
ticular the increasingly dominant use of machine learning (ML) algorithms, have
led to the development of high performance systems for English and, more recently,
for other languages such as Chinese, Arabic and Japanese. One of today’s biggest
challenges to IE systems is, however, to make existing systems easy to port be-
tween languages. Most existing systems were originally designed for English and
only later adapted to new languages, rather than having an infrastructure designed
specifically to be truly multilingual and open-ended. Of particular importance is
the separation of algorithmic and infrastructural information from linguistic in-
formation. Our experience with GATE [Cunningham et al. 2002] shows that a
well-designed, multilingual system, based on a portable NLP infrastructure, is very
easy to adapt to new languages even without native speaker input and with minimal
amounts of training data.

We describe 3 main aspects of the work done by the University of Sheffield as part
of the program. In the first part, we describe work on language agility to prepare
the system for an unknown language. This comprises an overview of the basic
architecture (GATE) and details of the Unicode infrastructural support (Section
2), a brief description of the IE system (MUSE) and details of Unicode support for
— and reuse of — the language processing components (Sections 3 and 4). In the
second part, we describe the dry run experiment and the IE system built for the
Cebuano language (Sections 5 and 6) and some experimental results (Section 7).
Finally, we compare and contrast this system with a second system built for Hindi
(Sections 8, 9 and 10) for the main exercise, and draw some conclusions about the
work as a whole (Section 11). We should note also that the program was designed
as a community effort, and that an important part of the work was only made
possible by collaboration between sites and the sharing of tools and resources.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003, Pages 1-21.

2 . Diana Maynard et al.

2. GATE AND UNICODE

GATE is an architecture, a development environment, and a framework for building
systems for language engineering [Cunningham et al. 2002; Maynard et al. 2002]. It
has been in development at the University of Sheffield since 1995, and has been used
for many R&D projects, including Information Extraction in multiple languages and
media, and for multiple tasks and clients. Implemented fully in Java, GATE is a
stable, robust, and scalable infrastructure which allows users to focus on language
processing issues, while mundane tasks such as data storage, format analysis and
data visualisation are handled separately. GATE is also one of the few architectures
to support multilingual processing, using Unicode as its default text encoding.

2.1 Unicode Support

As part of the preparation for the surprise language exercise, we had to consider the
possibility that the language would not be written in a Roman script and would
require Unicode support — both for editing, displaying and processing language
resources (documents) and for creating processing resources such as gazetteer lists
and semantic taggers. Some new input methods and character encoding conversions
were therefore added to the Gate Unicode Kit (GUK).

2.2 GUK and Unicode Input Methods

While the support for displaying Unicode text is provided to a large extent by the
underlying platform, the same is not true with respect to editing Unicode text.
Many platforms provide some support for localisation, but it is not always very
comprehensive and is often not Unicode compliant, which makes it difficult for
Java to make use of it. The recommended way of adding new text input facilities
to a Java application is to define so called input methods (IMs). An IM allows
users to enter text in languages other than the default one, by intercepting the
events generated by the input hardware such as the system keyboard or mouse,
and mapping them to a different output from the one normally obtained.

The GUK consists of two main components: a set of IM definitions and the
Java code that handles the communication with the system, the decoding of the
IM definitions and the actual input mapping. The IMs defined by the GUK pro-
vide support for text input by means of virtual keyboards. Because of restrictions
imposed by the platform independent manner in which Java treats the input hard-
ware, there is no reliable way to determine the actual layout of the physical system
keyboard: only the characters generated by a key stroke (e.g “E”) can be obtained
but not the actual position of the pressed key (e.g. third from the left in the top
row of keys). The layout of the currently active virtual keyboard can be displayed
on the screen in order to assist the user in finding the right key (see figure 1). As
long as the virtual keyboard map is visible on screen it can also be used for entering
text directly by clicking with the mouse on the virtual keys.

Each input method maps an input consisting of keystrokes onto an output con-
sisting of characters in the target language according to the IM definition file. When
a GUK input method is activated, its definition file is read and used to construct a
finite state transducer that starts to “listen” for events from the keyboard. When
the user presses a key the character normally generated by it will be passed on to

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003.

Rapid customisation of an Information Extraction system for surprise languages . 3

@) Gate Unicade Editor, - Untitled”
File Edit Options Help

EJEEJ il e || & B | |arist Unicodens « | l[4 ~|
LH

ﬂf“.:-'_:‘?.“."'.?'i‘.'-:.‘.' ed Hangul) keyboard map a

A " 5 $ e i e [] k=L -

& |1 12233445556??389900_4:7BackSpace
s | [} W |E {R__ e (2 (e e hven |3 R s |
Tahquwx =t | S Ayuu‘-i =l p“ [[l] 14 |

7o (oo o | e T e R S e e

Caps Lock Ea Al L-illdo = I B 4 ; 3 ‘ | : J|| | Enter
0 (= = e e el L) R e Shift
it i & v b n m ! # —
ot Alt Alt cl

Fig. 1. The GUK Unicode editor using a Korean virtual keyboard.

the transducer and as soon as the transducer starts generating output it will be
sent to the Java virtual machine as if it came directly from the keyboard. Because
GUK intercepts the keyboard events at a very low level in the input hierarchy, it
is unlikely that its actions will cause any conflicts with the actual application that
receives the translated input.

A transducer is required rather than a simple mapping table because there is
no direct correspondence between the number of keystrokes read and the amount
of generated text. In some cases (e.g. for the TCode Japanese keyboard) more
keystrokes are required in order to generate one output character, while in other
cases (e.g. the Bengali keyboard) a single keystroke can generate up to three dif-
ferent characters.

There are also situations, particularly for some modifier characters, when the
output character (or group of characters) is different from the symbol that needs
to be displayed on the key of the virtual keyboard. For input methods that require
for instance double keystrokes to generate characters, not all pairs of keystrokes are
valid combinations. In such cases the keyboard map (if displayed) will highlight
the keys that will lead to a valid input (see keys “Q”, “R”, “T”, “A”, “S”, “D” and
“F” in Figure 1).

Apart from the input methods, GUK also provides a simple Unicode-aware text
editor which is important because not all platforms provide one by default or the
users may not know which one of the already installed editors is Unicode-aware.
Besides providing text visualisation and editing facilities, the GUK editor also per-
forms encoding conversion operations. This is particularly useful when texts or
resources found by the community are supplied in different encodings, so that they
can all be converted to a single standard form such as UTF-8.

3. UNICODE SUPPORT FOR PROCESSING RESOURCES

The MUSE system consists of a set of processing resources for Information Extrac-
tion, adapted from ANNIE, the freely available core IE system packaged within

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003.

4 . Diana Maynard et al.

GATE. The majority of the MUSE components use JAPE!-based finite state tech-
niques to implement various tasks from tokenisation to semantic tagging and coref-
erence. The emphasis is on robustness and low-overhead portability, rather than
full parsing and deep semantic analysis. The set of modules comprises: tokeniser,
gazetteer, sentence splitter, part-of-speech tagger, named entity recognition gram-
mars, and coreference resolution (orthomatcher). For more details of MUSE, see
[Maynard et al. 2003]. We describe in this section details of the Unicode support
provided for the individual processing resources, and the necessary adaptations
needed to prepare for an unknown language.

3.1 Unicode Tokeniser

Although the default tokeniser within MUSE is Unicode aware, the original ruleset
was intended for Indo-European languages and therefore only handled a restricted
range of characters (essentially, the first 256 codes, which follow the arrangement of
ISO-8859-1 (Latinl). We created a modified version of this which would deal with
a wider range of Unicode characters, such as those used in Chinese, Arabic, Indic
languages etc. There is some overlap between the Unicode characters used for differ-
ent languages. Codes which represent letters, punctuation, symbols, and diacritics
that are generally shared by multiple languages or scripts are grouped together in
several locations, and characters with common characteristics are grouped together
contiguously (for example, right-to-left scripts are grouped together) and may fall
under the same category. Character code allocation is therefore not correlated with
language-dependent collation.

In order to enable the tokeniser to handle other Unicode characters, we had to find
the relevant character types and their symbolic equivalents (e.g. “OTHER_LETTER”;
“COMBINING_SPACING_MARK?”, “NONSPACING_MARK?”). Rules covering these
types were added to the tokeniser in order to discover the tokens correctly in a vari-
ety of other languages. An example of such a rule, which creates a Token annotation
of kind “word” and type “other” for any combination of types 5, 6 and 8, is shown
in Figure 2. This enables the correct processing of Chinese and Indic languages, for
example. Even more importantly, having discovered the technique for extending
the tokeniser in this way, it will be easy to add any further new types as necessary,
depending on the language (since we have not covered all possibilities).

(OTHER_LETTER | COMBINING _SPACING_MARK | NON_SPACING_MARK)+
>Token;kind=word;type=other;

Fig. 2. A New Rule for the Tokeniser

3.2 Gazetteer Behaviour

The default behaviour of the gazetteer is to match only whole words, which it
defines as sequences of letters. The gazetteer has no direct relationship with the

1Java Annotations Pattern Engine — see [Cunningham et al. 2000] for more information

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003.

Rapid customisation of an Information Extraction system for surprise languages . 5

tokeniser, i.e. it does not make use of the tokens already found in order to decide
where a word begins and ends. This is deliberate because sometimes the two need
to be independent and tokens as defined by the tokeniser may be more complex
than the words defined by the gazetteer (for example, they do not always begin and
end with white space or punctuation). In order to account for other languages, we
needed to include the characters belonging to other Unicode categories (as for the
tokeniser) which might be found in a word. We added the ” COMBINING SPACING
MARK” and "NON SPACING MARK” Unicode categories as characters allowed
inside a word, thus preventing the gazetteer from finding partial words as potential
matches. Again, this can be extended as appropriate for the language in question,
should other kinds of categories be becessary.

4. REUSE OF OTHER PROCESSING RESOURCES

We also spent some time investigating what kinds of changes might need to made
to processing resources, and to what extent existing resources could be reused.
With the additional Unicode support described above, the tokeniser and gazetteer
handling should work for other languages. The sentence splitter should also work,
provided that the language in question has punctuation marks as for English. If
this is not the case, the relevant punctuation characters (if they exist) can be added
to the splitter rules. Depending on the structure of the language, the orthomatcher
may also work without modification. If this is not the case, we will need to know
details about the language in question before making changes.

4.1 JAPE Grammars

When an application requires NE recognition in another language, the reuse of
grammars becomes more difficult than simply adaptation to a new domain, due
largely to the differences in formation and syntactic behaviour of the named en-
tities in various languages [Pastra et al. 2002]. Clearly reusability of grammars
between strongly related languages is more feasible; however, the relation between
the languages in question can only determine the extent of reusability.

Our previous work on Romanian NE recognition [Hamza et al. 2002] showed
that it was possible to modify rules originally developed for English according to
the linguistic features of the Romanian named entities without too much difficulty.
We believe that with a core set of rules for NE recognition in one language (as
we have in MUSE) and some knowledge about the nature of named entities in
the other language, the process of creating NE grammars automatically can be
considerably facilitated. As will be described below, our work on Cebuano in the
dry run also confirmed this theory. We therefore spent some time ensuring that the
existing grammars could easily be partitioned into language-specific and language-
independent sets and that it would be as simple as possible to reuse existing rules
rather than rewriting everything from scratch. Obviously the language in question
will have a great impact on how much of the grammars can be reused, so the idea
was more to facilitate the correct selection of rules and phases once the language
becomes known.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003.

6 . Diana Maynard et al.

4.2 Gazetteer Lists

Although it is clear that lists of English entity components and key words cannot be
directly reused for other languages (except in the case where English names are used
for entities), nevertheless both the structure of the lists and ther actual contents
are extremely useful when it comes to creating new lists for other languages. It is
likely that most of the same kinds of lists will be needed for other languages, though
this may differ slightly according to the structure of the entities and the feasibility
of listing possibilities (for example in English there are too many surnames to list
individually, but there is a more restricted set of common first names, which can
be listed, whereas in Chinese there is a restricted set of common surnames which
can be listed but an almost infinite number of first names). Even without a native
speaker, some gazetteer lists (such as those for date and time expressions) can be
automatically generated if an appropriate bilingual dictionary is available.

5. THE SURPRISE LANGUAGE DRY RUN: CEBUANO

The dry run took place over 10 days, in order to see how feasible the tasks would be
in general, how quickly the necessary data could be collected, and to test out the
best working practices for communication and collaboration between participating
sites. The dry run was extremely important in terms of preparation for the real
thing, as a number of problems were identified during this phase.

The language chosen for the dry run was Cebuano, which is spoken by 24% of
the population in the Philippines, and is the lingua franca of the South Philippines.
Twenty four hours before the language was announced, a bomb had exploded in
Davao City (the second largest city in the Philippines), and the event had been
classified by the President of the Philippines as a terrorist attack.

5.1 The Cebuano Language

The Linguistic Data Consortium (LDC) at the University of Pennsylvania con-
ducted a survey of the largest 300 languages (by population), in order to establish
what resources were available for each language and which languages would be po-
tentially feasible. Their categorisation? includes factors such as whether they could
find dictionaries, newspaper texts, a copy of the Bible, etc. on the Internet, and
whether the language has its words separated in writing, simple punctuation, or-
thography and morphology, and so on. According to this categorisation, Cebuano
was classed as a language which would be of medium difficulty to process - the main
problems being that no large-scale translation dictionaries, parallel corpora or mor-
phological analyser could be found. However, the language has a Latin script, is
written with spaces between words, and has capitalisation similar to English, all of
which make processing a much easier task than for, say, Chinese or Arabic. The
important points are therefore that little work has been done on the language, and
few resources exist, but that the language is not intrinsically hard to process.

2available at
http://www.ldc.upenn.edu/Projects/ TIDES/language-summary-table.html

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003.

Rapid customisation of an Information Extraction system for surprise languages . 7

5.2 Named Entity Recognition

We concentrated our efforts on the task of resource development for named en-
tity recognition. Correct entity recognition is a vital precursor to many other
applications such as Machine Translation and CLIR. Robust tools for multilingual
information extraction are becoming increasingly sought after now that we have
capabilities for processing texts in different languages and scripts

There are two particularly important points to note about our approach. First,
MUSE is a rule-based system, which means that it does not require large amounts
of training data, unlike most NE systems which rely at least partially on machine
learning algorithms, such as Identifinder [Bikel et al. 1999]. This was a huge benefit
since we were not likely to find suitable pre-existing training data for Cebuano.
Second, we could not guarantee that we would have a native speaker available
to help us develop rules for the system. This appears initially to counteract the
benefit of using a rule-based system, since how could we expect to develop rules
for a language of which we had no knowledge, if we had no training data? Perhaps
surprisingly, this turned out not to be a major problem, as will be explained in
more detail in the following sections.

5.3 Resources

A collaborative effort was made by all participants to collect and make available
tools and resources which might be useful. These were divided into general tools
(not necessarily for Cebuano), monolingual text resources, bilingual text resources,
and lexical resources. Other useful information, such as details of Cebuano native
speakers who were willing to help, was also made available, where appropriate.

5.3.1 Text Resources. Clearly, monolingual (Cebuano) texts were necessary in
order to have clean data to work on. Various websites were found containing news
texts, though these had mostly to be downloaded daily because there were no
archives. In particular we found two good sources: Superbalita® and iliganon.com*
(local news from Iligan City and the surrounding area).

Other sites found bilingual text resources online, such as the Bible, but these
were not particularly helpful to us since they did not contain the kinds of entities
we were interested in. Had we found any such texts, it could have been very useful
as a method of mining the English texts for gazetteer entries and grammar rules.

5.3.2 Lexical Resources. Various lexical resources were located and made avail-
able by the participating sites, such as a list of surnames, and some bilingual dic-
tionaries. However, many of these resources were not available until after we had
already built our system.

5.4 Other Resources

Due to the limited amount of time available, it was unfeasible to find Cebuano
speakers who had computational and linguistic skills, and to train them to use
GATE and learn to write grammar rules etc. An extensive search via email and the
Internet revealed several native speakers who were prepared to help, however. We

3http://www.sunstar.com.ph/superbalita/
4http://www.iliganon.com/newsroom/bisaya.html

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003.

8 . Diana Maynard et al.

made use of one local native speaker to annotate some texts with Named Entities
manually (on paper), so that we could evaluate our system. We also made use of
a native speaker in the US found by another site, who evaluated some preliminary
results for us (again, on paper). The results of our search for speakers was encour-
aging in that we found many more contacts who could have been used had we had
the time and money available.

One further discovery was that of a Yahoo groups email discussion list for Ce-
buano speakers. Members of this list were able to provide us with some resources
such as electronic dictionaries not available on the Internet, and (had we had the
time and money) could have again been a very useful source of further information.

6. ADAPTING MUSE TO CEBUANO

The IE system for Cebuano consists of the following resources taken from MUSE:
tokeniser, sentence splitter, POS tagger, gazetteer, NE grammar, and orthomatcher.
Some of these were used without modification, the others were modified for Cebuano
as described below. Figure 3 shows a diagram of the architecture of the system.

ANNIE Modules Cebuano Modules

Tokeniser P ki
ost-processor
Sentence
Splitter
Cebuano
POS Tagger Lexicon
l .
Gazetteer Cebuano
gazetteer

l

NE grammar

l

Orthomatecher

Fig. 3. Architecture of Cebuano NE system

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003.

Rapid customisation of an Information Extraction system for surprise languages . 9

6.1 Tokeniser and POS Tagger

The Hepple POS tagger is similar to Brill’s transformation-based tagger [Brill 1992],
but differs mainly in that it uses a decision list variant of Brill’s algorithm. This
means that in classifying any instance, only one transformation can apply. It is
also written in Java.

Having acquired a bilingual Cebuano-English lexicon containing also POS infor-
mation, we decided to test whether we could adapt the Hepple tagger to Cebuano.
Cebuano morphology is similar to English, and it also has similar orthography.
The rules for English (derived from training on the Wall Street Journal) would
clearly not be applicable for Cebuano, so we used an empty ruleset, but we decided
that many of the default heuristics might still be appropriate. The heuristics are
essentially as follows:

(1) look up the word in the lexicon

(2) if no lexicon entry found:
—if capitalised return NNP
—if word containes ”-” return JJ
—if word contains a digit return CD
—if word ends in ”ed”, "us”, ”ic”, "ble”,
”less” return JJ
—if word ends in ”s” return NNS
—if word ends in ”ly” return RB
—if word ends in ”ing” return VBG
—if none of the above matched return NN

R ive” , ” ish” , R ary” , » ful” , ” icaI” ,

(3) apply the trained rules to make changes to the assigned categories based on the
context

These rules make sense for Cebuano because it is unusual for Cebuano words to
have endings such as “ic”,“ly”, “ing” etc. This means that in most cases, the tag
returned will be NNP (proper noun) if capitalised, or NN (common noun) if not,
which is appropriate.

muse|n.|batahala sa arte

muse|v. |paghandum, paghanduraw
museum|n. |[musiyo

mushroom|n. |libgos, uhong, kaupas
music|n.|honi, musika
musical|adj.|mahitungod sa honi

Fig. 4. Extract from Cebuano-English lexicon

Adapting the tagger did have a number of problems, mostly associated with the
fact that while the English lexicon (used for the tagger) consists only of single-
word entries, the Cebuano lexicon contained many multi-word entries (such as
mahitungod sa honi (musical), as shown in Figure 4). The tagger expects lexicon
entries to have a single word entry per line, followed by one or more POS tags, each
separated by a single space.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003.

10 . Diana Maynard et al.

We therefore modified the lexicon so that the delimiter between the lexical entry
and the POS tag(s) was a “#” rather than a space, and adapted the tagging
mechanism to recognise this. This enabled us to use multi-word lexical entries.
As shown in Figure 4, there was also the problem that Cebuano synonyms were
placed all on one line, rather than as separate entries, and that, conversely, where
a Cebuano entry had more than one POS category associated with it, these had
been included as separate entries. This, along with reordering the entries, adjusting
the format to fit with the English lexicon and converting the POS tags to Penn
Treebank-style tags, was a fairly trivial problem fixed automatically using a series
of scripts.

Once the lexicon had been reformatted, a final problem remained. The POS
tagger is implemented in GATE such that it assigns a POS category as a feature
and value to a Token (as identified by the Tokeniser). Many of the Cebuano lexical
entries are multi-word, and therefore multi-token (since the tokeniser delimits to-
kens according to white space), and therefore the entries would not match tokens
found in the text and tags could not be correctly assigned. To solve this, we used a
similar mechanism to that used for the English tokeniser in GATE (as opposed to
the default Unicode tokeniser), which incorporates an extra processing component
that joins together various tokens into one in order to deal with the problem of
tagging the possessive “’s” as a single unit rather than as two separate ones. This
is detailed in the GATE User Guide.

We therefore created two additional Cebuano-specific processing resources to
complement the default Unicode tokeniser, in the form of a gazetteer list and JAPE
(Java Annotations Pattern Engine) grammar. The gazetteer list consisted of all
the multi-word entries from the Cebuano lexicon. The JAPE grammar was used
to match any of these multi-word entries found in the text and combine the Token
annotations (created by the tokeniser) into a single annotation in each case. This
was run before the POS tagger, so that the tagger would then have as input one
Token annotation per lexical entry, and would be able to generate a single POS tag
as a feature on each entry.

We currently have no means of evaluating the POS tagger, but initial results
based on the manual annotation of Named Entities look promising (for example,
proper nouns are correctly tagged). The creation of the tagger took approximately
two person-days, and we were able to make it available to other sites within four
days of the language being announced (we did not start work on it on day one). This
was useful to sites working in a variety of different areas. For example, one site were
planning some annotation projection experiments to develop taggers, and wanted
output from our tagger to provide a useful reference point. Another site working on
date/time tagging needed POS annotations to help them identify numbers, while
those working on tasks such as Machine Translation (MT) and Cross-Language
Information Retrieval (CLIR) could also benefit from such information.

The POS tagger can only be used within GATE (which currently has thousands
of users at hundreds of sites worldwide), but we were also able to offer a tagging
service to the other program participants, whereby they could email us a set of
texts and we would return the results of tagging as XML or HTML files within a
matter of minutes - either as inline annotations or as TIPSTER-compliant standoff

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003.

Rapid customisation of an Information Extraction system for surprise languages . 11

markup (the default GATE method), according to their preference.

Figure 5 shows a small sample of text “Moabot ngadton sa 1,” marked with
inline POS annotations. Figure 6 shows the same text marked with standoff POS
annotations.

<Token gate:gateld="69" orth="upperInitial" category="NNP" length="6"
kind="word" string="Moabot">Moabot</Token>

<Token gate:gateId="1184" orth="multi" category="NN" kind="word"
string="ngadto sa">ngadto sa</Token>

<Token gate:gateld="75" length="1" category="CD" kind="number"
string="1">1</Token><Token gate:gateld="76" length="1" category=","
kind="punctuation" string=",">,</Token>

Fig. 5. Example of inline POS annotations

<Node id="106"/>Moabot<Node id="112"/>

<Node id="113"/>ngadto<Node id="119"/>

<Node id="120"/>sa<Node id="122"/>

<Node id="123"/>1<Node id="124"/>,<Node id="125"/>

<Annotation Type="Token" StartNode="106" EndNode="112">
<Feature>
<Name className="java.lang.String">orth</Name>
<Value className="java.lang.String">upperInitial</Value>
</Feature>
<Feature>
<Name className="java.lang.String">category</Name>
<Value className="java.lang.String">NNP</Value>
</Feature>
<Feature>
<Name className="java.lang.String">length</Name>
<Value className="java.lang.String">6</Value>
</Feature>
<Feature>
<Name className="java.lang.String">kind</Name>
<Value className="java.lang.String">word</Value>
</Feature>
<Feature>

<Name className="

java.lang.String">string</Name>
<Value className="java.lang.String">Moabot</Value>
</Feature>

</Annotation>

Fig. 6. Example of standoff POS annotations

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003.

12 . Diana Maynard et al.

6.2 Gazetteers

Perhaps surprisingly, there seemed to be little information available on the Inter-
net that could be used to compile gazetteer lists. Some lists of Philippine cities
were donated to us, but little else seemed to be readily available. We therefore
investigated the news corpora collected by various sites, and discovered a corpus of
Cebuano local news texts, of which the majority were in English, but some were in
Cebuano. We mined the English texts for names of organisations, locations, peo-
ple’s first names, etc. and created some new gazetteer lists. We also created lists of
expressions such as days of the week, months of the year, numbers etc. from online
bilingual dictionaries and phrasebooks. Furthermore, we found some typical clue
words in Cebuano news texts such as jobtitles which were recognisable due to their
similarity with either English or Spanish. For example “Presidente” followed by a
proper noun clearly could be translated as President, which enabled us to deduce
that the following proper noun was a person’s name. These clue words were also
compiled into gazetteer lists.

The GATE gazetteer processing resource enables gazetteer lists to be described
in three ways: majorType, minorType and language. The major and minor types
enable entries to be classified according to two dimensions or at two levels of gran-
ularity — for example a list of cities might have a majorType “location” and mi-
norType “city”. Using the language classification enabled us to keep the same
structure for the Cebuano lists as for their English counterparts, and simply alter
the language label, enabling us a method of differentiation. Because some names of
English entities were found in the Cebuano texts (e.g. “Cebu City Police Office”),
we required both the English gazetteer (to recognise “Office”) and the Cebuano
gazetteer (to recognise “Cebu City”, which is not in the English gazetteer). Using
both gazetteers improved recall and did not appear to affect precision, since English
entities did not seem to be ambiguous with Cebuano entities or proper nouns. We
did not perform extensive evaluation on this though, for reasons of time.

6.3 Named Entity Grammars

Most of the JAPE rules for NE recognition in English are based on POS tags and
gazetteer lookup of candidate and context words. Assuming similar morphological
structure and word order, the default grammars are therefore not highly language-
specific, as was discovered when they were adapted for Romanian [Hamza et al.
2002; Pastra et al. 2002]. We did not have time to make a detailed linguistic study
of Cebuano, so we used the main set of rules, discarding the ones which involved
use of particular context words, and modified a few others to account for things
such as slightly different structures of date and time expressions.

6.4 Orthomatcher

We used the orthographic coreference module (orthomatcher) to boost recognition
of unknown words. This works by matching entities tagged as Unknown with
other types of entities (Person, Location etc.) if they match according to the
coreference rules. For example, “Smith” on its own might be tagged as Unknown,
but if “John Smith” is tagged as a Person, the orthomatcher will match the two
entities and retag “Smith” as a Person. We predicted that the rules would not be

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003.

Rapid customisation of an Information Extraction system for surprise languages . 13

Cebuano system | P | R F Baseline system | P | R F
Person 71 | 65 | 68 Person 36 | 36 36
Organization 75|71 | 73 Organization 31 | 47 38
Location 73 | 78 | 76 Location 65 | 7 12
Date 83 | 100 | 92 Date 42 | 58 49
Total 76 | 79 | 77.5 || Total 45 | 41.7 | 43

Table I. NE results on Iliganon texts

particularly language-specific, given a language with similar morphology, so we used
the orthomatcher directly, without modification. Manual inspection of texts showed
that the orthomatcher was helpful in improving recall. For example, it recognised
“Pairat” as a Person due to coreference with “Leo Pairat” which was correctly
recognised as a Person by the first grammar. Although we were not focusing on
coreference per se, we noticed that many coreferences were correctly identified,
which proves indeed that the rules used are not particularly language-specific.

7. EVALUATION OF CEBUANO SYSTEM

The team at the University of Maryland provided a native speaker to evaluate
some sample texts annotated by our system. The annotations done by this native
speaker were not perfect (we noticed that they had wrongly tagged some generic
and common nouns as Locations, for example), but they were the only method of
evaluation we had available within our restricted time. We used the system to tag
10 news texts taken from the Superbalita news corpus, and wrote a small JAPE
grammar to produce the output in a form whereby each entity type was highlighted
in a different colour when saved as an HTML file, so that the result could be viewed
in a web browser, without access to the actual annotations. This was because it was
too time-consuming to teach the annotator to use GATE. The annotator marked on
a paper copy which entities were correct, incorrect, partially correct and missing,
and faxed us the copies.

The results were 85.1% Precision, 58.2% recall, and an F measure of 69.1%.
Because of the way the marking was done, we do not have figures to hand for the
individual entity types.

We also ran a second experiment with a further 12 files from the Superbalita news
corpus, and 9 files from the Iliganon news corpus. These texts were annotated by
a local Cebuano speaker prior to our experiment, and the automated scoring tools
in GATE were used to evaluate the results of the system. The results (in terms
of Precision, Recall and F-measure) are shown in Table I, together with with the
results from our baseline system, the MUSE system for English, which we ran on
the same test set. MUSE typically achieves scores for Precision and Recall in the
90th percentile for English news texts.

Clearly the results for Recall are much higher for these texts than for the other
set. We suspect that there are two reasons for this. First, between running the
first and second experiment, we added to the gazetteers using information from the
English news corpus. Second, we strongly suspect that there are many superfluous
key annotations in the data for the first experiment. For example, we noticed that

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003.

14 . Diana Maynard et al.

'EL] editoryal

Drefault annotations

=1 test Balitang Bisaya) —_
I ! N 2 Fehruary 2003 |9 NE annotations
51 kalingaw: F gitudla na nga puli ni Adeva sa SP b [vi Date
GIDAWAT na sa mayorlya sa konseho ang pagkatudio ni Atty. ip hag-ong kansehal sa o %M
dakbayan sa lligan huh_p 58 g\hiyaan_g posisyon ni kanhi kansehal-anhing Atty. Marciso ?Boy? Adeva Jr. [Initizls
nga namatay hiadtong karso B, 2001 o -
Sumala pa sa mga konsehal nga miyembro sa ruhhg majority, ilang ihatag ang ilang hugot nga suporta | -
ngadto kang aron llang mahatag ang moa kamitiba nga angayan niyang huptan didto sa konseho, [LocKey
; . : [¥i Location

Si Rovira gi-rekamendar n ng _ national president,
ngadto sa Malaca?ang aron mohulip sa nabakanteng posisyon $a konseho dinhi sa iy iy
appointment gitiman-an n g giaprobahan na s» SENARTEAG] v Drganization

pagpaningkamat nila n
paghalik ang nasiradong planta sa puthaw nga man ang
nga dili siva mamulitika sa hawanan sa konseho tungod kay dili man siya modagan sa umaabot 2004 local
ug national election.

: Type |SetlStart 4 End |
2| |Person INE! 44| 60/{rul PersonFull, gender=male}

Fig. 7. Screenshot of Cebuano NEs in GATE

many common nouns, such as “the doctor” and ”the committee” had been wrongly
tagged as Person and Organization entities.

Because our native speaker was not experienced in NE recognition and we had
no time for full training, we found some cases where the key annotations were
inaccurate. For example many relative dates (of the type “next week”, “this year”)
were missed, and organisations where the abbreviation was given in brackets were
treated as the same entity as the full name, e.g. “National Steel Corporation
(NSC)” was tagged as one Organization entity and not two.

There were many cases where our system correctly identified entities that our
human annotators missed or tagged incorrectly. For example, our human annotator
wrongly tagged “Sangguniang Panlungsod” (City Council) as a Location, which
our system correctly identified it as an Organization. We identified this mistake
by using GATE’s AnnotationDiff tool to search for errors. Looking at the text
the entity seemed to refer to an organisation, so we searched for it on the Internet
using Google, and discovered a website which gave the English translation “City

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003.

Rapid customisation of an Information Extraction system for surprise languages . 15

Council” from which we can deduce that it is an Organization.

Figure 7 shows a screenshot of a Cebuano news text tagged by our system.

The errors described above indicate that the evaluations are by no means conclu-
sive, but they do indicate that our system achieved a very creditable performance,
especially in view of the fact that we had no training data, no native speaker,
and only 10 days to complete the task. If the manual annotations had been more
correct, we believe that the evaluation results would have been even higher. It is
interesting to compare this work with that of [Palmer and Day 1997], who demon-
strated the large differences in languages for the NE task, but who also concluded
that much of the NE recognition task can be performed with a very simple analysis
of NE strings.

8. CEBUANO VS HINDI

Clearly the choice of the Cebuano language brought some important benefits for our
system. We needed to make only very small changes to the tokeniser and NE gram-
mar, and needed no modifications at all to the sentence splitter and orthomatcher
components. We did not make use of any morphological analysis or parsing compo-
nents. A language with a different script and/or significantly different morphology
or word order would have necessitated many more modifications to the system, and
clearly we would have struggled to produce such a system within the time limits
without a native speaker. However, for such a language, there might have been
more tools and resources already available. For example, many people have already
worked on tools for Chinese and Arabic, and there is a lot more data available.
Cebuano was very limited in this respect. A significantly different language would
therefore have necessitated a totally different approach, for example using machine
learning techniques.

The language chosen for the main evaluation in June was Hindi. In contrast
with Cebuano, Hindi is a widely spoken language (one of more than 13 official
languages in India, the native language for over 300 million people and the second
language for many more). Consequently there are many existing resources available
on the Internet and elsewhere. Also, because the main evaluation took place over 4
weeks instead of 10 days, this meant there was time for sites to create training data
by manual annotation. On the negative side, Hindi is written in the Devanagari
script, and there were many encoding and rendering issues at stake that needed
to be resolved before processing (and sometimes even viewing) texts could take
place. In addition to using a non-Western script, Hindi also has no capitalisation
to help with the detection of proper nouns, so a good POS tagger would seem to be
much more important for Hindi than for Cebuano. Fortunately, as with Cebuano,
and unlike languages such as Chinese, Hindi does have segmentation (words are
separated by white space) and punctuation similar to that of English. This is of
great benefit for a rule-based system such as ours, which relies heavily on correct
tokenisation.

From the strategic point of view, the Cebuano dry run taught us much about the
possibilities of adapting our system without knowledge of the language in question
— something that we had previously assumed would be a huge problem. For ex-
ample, the construction of gazetteer lists can easily be achieved with no language

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003.

16 . Diana Maynard et al.

knowledge, either by using online dictionaries and lists on the web, or by mining
texts and using a bootstrapping process. This knowledge is very useful for the
development of other languages, as relying solely on native speakers is not always
feasible. Even the construction of grammar rules can be achieved — to a certain
extent — with nothing more than a basic knowledge of the language’s grammar and
(preferably, though not essentially) some annotated data.

Taking part in the dry run not only gave us a better idea of what to expect
and of the problems that we might face for the real exercise, but also provided
us with some useful reusable methods and resources. The creation of the Cebuano
tagger provided us with a technique that we could reimplement for other languages,
and the modifications to the tagging processing resource and the tokeniser which
enabled processing of multi-word entries has provided a valuable resource for other
languages which require the same mechanism. Both of these were particularly useful
in the case of Hindi.

9. ADAPTING MUSE FOR HINDI

As for Cebuano, the final Hindi system created from MUSE consists of the following
components: tokeniser, sentence splitter, POS tagger, gazetteers, semantic tagger
and orthomatcher (orthographic coreference). Our aim was to create a baseline
system from a basic set of hand-coded resources, and to experiment with improving
this with machine learning where possible. From the dry run, it was clear that a
good baseline would be an important aspect of the evaluation process.

The tokeniser and sentence splitter were used without modification, apart from
the addition of a vertical bar as an alternative to a full stop (used in some Hindi
texts).

9.1 Gazetteer Lists

Our experiments with Cebuano and previously with other languages have shown
that good gazetteer lists are one of the keys to success, particularly in the short
term. By this we mean that good baseline scores can be achieved with nothing more
than a very basic set of components and a comprehensive gazetteer, particularly in
terms of Recall. We therefore focused on the gazetteer lists as a core component
of the Hindi system. Depending on the language, precision may suffer if more
sophisticated methods are not used, for example in languages such as Chinese where
names of Persons and Organisations are highly ambiguous.

For Hindi, we created a new component, the gazetteer lists collector. This is a
simple tool which collects occurrences of entities directly from annotated training
texts, and populates gazetteer lists with the entities. The entity types and structure
of the gazetteer lists can be defined as necessary by the user. Once the lists have
been collected, a JAPE grammar can then be used to find the same entities in new
texts. The list collector also has a facility to split the Person names that it collects
into their individual tokens, so that it adds both the entire name to the list, and
adds each of the tokens to the list as a separate entry. When the grammar annotates
Persons, it can require them to be at least 2 tokens or 2 consecutive person Lookups.
In this way, new Person names can be recognised by combining a known first name
with a known surname, even if they were not in the training corpus. Where only
a single token is found that matches, an Unknown entity is generated, which can

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003.

Rapid customisation of an Information Extraction system for surprise languages . 17

later be matched with an existing longer name via the orthomatcher (see below).

Experiments with the list collector have shown that the reuse of named entities
actually seems to occur extremely frequently, especially in texts belonging to the
same domain and type (for example, news articles from the same source), so that
a good baseline can be achieved by using just the list collector and associated
grammars.

By the end of week 3, some annotated data was made available to the partic-
ipating sites, on which we were able to train the lists collector.The training data
consisted of news reports from several different sources, and it soon became clear
that the sources were very different in style and in the kinds of entities they con-
tained. We experimented with using different amounts of training data and testing
on the remaining data. In general, the more training data used, the better the recall
but the higher the risk of ambiguity and therefore the lower the Precision. It ap-
pears, however, that Hindi is not nearly as ambiguous as languages such as Chinese,
and therefore the increase in Recall gained by using most of the data for training
outstripped the loss in Precision. Once we had found the optimal amount of train-
ing data from which to create the lists (90% of that available), we experimented
with other lists collected by different participating sites, and with the addition of
the manually created lists.

9.2 POS tagger

Following the success of adapting the English POS tagger for Cebuano, we at-
tempted to follow the same procedure for Hindi. This involved creating a monolin-
gual lexicon of Hindi words with their POS tags, and either using the tagger with
no ruleset and the default heuristics, or if possible training the tagger on a cor-
pus annotated with POS tags, if such data could be found. Unfortunately the only
such corpus available was in transliterated form rather than Hindi script, which was
useless for our purposes. We did, however, obtain several suitable English-Hindi
lexicons from the other participating sites, and we combined these together and
pre-processed the resulting lexicon to remove the English words and adapt it to the
correct format required by the tagger. The work we had carried out for Cebuano
enabling multi-token lexical entries to be recognised by the tagger and correctly
annotated turned out to be invaluable as this was necessary for Hindi. We used a
similar post-processing resource for the Hindi tokeniser to reannotate Tokens which
were found in a list of multi-word lexical entries (using a gazetteer list and a JAPE
grammar to annotate such multi-word entries as a single Token so that a single
POS feature could be added to the string.

Since we had no annotated corpus available for training, we had no option but
to use the default heuristics from the tagger. These made no sense for Hindi,
but on the other hand they did not adversely affect the tagging process because
they rules simply never applied. Essentially, we had a means of adding POS tags
to Tokens which matched an entry in our lexicon. A native speaker evaluated a
document containing approximately 1000 words at a value of approcimately 67%
correct. It should also be noted that the POS tags used in the original bilingual
lexicon were for the English words rather than the Hindi words, so it is possible
that this introduced some errors where the Hindi word has a different part of speech
to its English equivalent.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003.

18 . Diana Maynard et al.

9.3 Semantic Tagger

Our experiments with Cebuano proved that it was possible to write JAPE rules
for a foreign language without having anything more than a very rudimentary
grasp of the language and/or of its syntax and morphology. The preparation for
the surprise language experiment also showed that the default semantic tagger for
English is much more language-independent than might be first apparent, since a
large proportion of the rules are based on Lookup annotations from the gazetteer
lists, POS tags and other annotations previously created. We therefore decided to
write some simple rules to transform the Lookups from the gazetteer list into entity
annotations, including context where appropriate.

9.4 Orthomatcher

Again as with Cebuano, we used the default orthomatcher unchanged to find coref-
erences between names, and to boost recognition of entities through the Unknown
matching process used for English. Since coreference was not part of the official
evaluation task, we had no means of scoring this, but it was clear that use of the
orthomatcher to boost entity recognition was successful, as shown by our experi-
ments. In particular, we did not create Person names initially from the semantic
tagger if they were less than 3 characters long or if they contained only one to-
ken. Instead, we generated an Unknown annotation for such patterns and used the
orethomatcher to match them with existing Person annotations. This improved
Precision greatly, because many spurious Persons were initially found before this
strategy was used.

10. EVALUATION OF HINDI SYSTEM

The official TIDES evaluation took place at the end of the month, but in the
preceding week we performed several of our own evaluations on the annotated data
provided, in order to test different variants of the system, track progress and perform
regression testing. For the internal experiments, we used the Corpus Benchmark
Tool (see [Cunningham 2002] for a detailed description of this tool).

10.1 Experiments

We tested the system with the manually created gazetteer lists and grammars, and
with the induced gazetteer lists using 90% of the training set on the remaining 10%
of the corpus. The results are shown in Table II. We can see that Precision and
Recall are similar for Organisations and Locations, but that Precision for Persons
is much higher than Recall, and that Recall for Persons is a long way below Recall
for Organisations and Locations.

We therefore performed a second experiment using the entire list of Persons on
the entire (training) corpus, to see what the level of ambiguity was. The Precision
for Persons dropped dramatically from 66% to 26%, and Recall improved only from
38% to 49%. This made it clear that ambiguity amongst Persons was high.

We then performed a third experiment using the entire set of Organisations and
Locations, but 90% of the Persons, and achieved improvements all round, as shown
in Table ITI. Clearly using the training set as a test set brings inflated results, but
the purpose of this was to estimate whether increasing the size of the training set

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003.

Rapid customisation of an Information Extraction system for surprise languages . 19

Entity Type | P | R | F
Person 66 | 38 | 49
Organization | 56 | 67 | 61
Location 71 | 53 | 61
Total 58 | 51 | 54.3

Table II. Experiment 1

Entity Type | P |R | F

Person 84 | 40 | 54
Organization | 71 | 99 | 83
Location 65 | 97 | 78
Total 65 | 78 | 71

Table III. Experiment 3

would be detrimental (as in the case of Persons) by introducing too much ambiguity,
or whether it would boost Recall without losing Precision. Clearly, the Recall is
very high for Locations and Organisations, which suggested that we should use the
entire list sets for these 2 entities when running on the unseen test data.

We also tested the system on different subsets of the corpus, and found very
different results. We attribute this partly to the fact that there was much more
training data for some sources (e.g. BBC texts) than others, and also that some
sources contained very different kinds of entities.

Finally, we tested the system with just the induced gazetteer lists and associated
grammars, to check the effect of the manually created resources. The results were
similar for Persons and Organisations, but worse for Locations (which is to be
expected since we expected to have a much more complete set of locations in the
manually created lists).

10.2 Official Evaluation

We submitted two systems for the official evaluation, which consisted of 25 texts
from a variety of news sources. One system contained additional manually created
resources while the other system contained only the derived lists. System 1 achieved
an F measure of 62.36%, while system 2 scored 62.26%. The highest system, which
used HMMs with supervised training, performed at 79% Fmeasure. We did not
ultimately have time to experiment with improving our baseline scores with machine
learning techniques, so these results give a good indication of what can be achieved
with good gazetteer lists and a basic NE system using a minimal set of hand-coded
rules.

11. CONCLUSIONS

In this paper we have described the process of preparing and adapting a rule-based
IE system for unknown languages. For Cebuano, this was achieved in just over a
week. For Hindi, although we had a month available, most of the first 3 weeks

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003.

20 . Diana Maynard et al.

were taken up with resolving font and encoding issues, so the actual time available
for adaptation of the system was also about a week. The two surprise languages
are quite different in terms of both their linguistic properties and in the amount of
data available. Other participating systems clearly found the latter to be a more
important factor in terms of system adaptation, for machine learning techniques
are highly dependent on at least some, and preferably a large amount, of training
data. Rule-based techniques have an advantage in this respect, as was the case for
Cebuano, but on the other hand the linguistic properties of the language may be
more problematic to deal with for such techniques than for machine learning ones,
as can be seen from Hindi.

The gazetteer collector and the rules of the baseline system have since proved
to be reusable for Chinese and Arabic (currently scoring an Fmeasure in the 79th
percentile), and these can be used a baseline system for NE in any new languages
where sufficient data is available. As discussed earlier, the advantage of this is
that it also enables non-native speakers to get a feeling for the level of ambiguity
of the named entity elements (as with Persons in Chinese). Since GATE is freely
available, the baseline system can be reused by other sites in future.

Several important conclusions can be drawn from our experience with both sur-
prise languages. Clearly rule-based systems still have their uses, particularly where
training data is scarce, and can provide a useful baseline. The combination of rule-
based systems to provide good recall and machine learning techniques to improve
precision seems to be one of the optimal solutions to the tradeoff problem. The
experiments and results have highlighted the importance of good gazetteer lists to
at least get a system off the ground very fast, though evidently further resources
are necessary both to boost recall in the case of entity types such as Organisations
(where it is impossible to devise finite lists), and to boost Precision in the case
of ambiguous entities such as Persons (for many languages at least). Finally, the
experiment has proven the importance of cooperation and collaboration between
sites — both by combining manpower and resources in order to speed adaptation
of existing systems, but also by encouraging more hybrid techniques as a result of
combining not just lexical resources but also processing resources and applications.

REFERENCES
BIKEL, D., SCHWARTZ, R., AND WEISCHEDEL, R. 1999. An Algorithm that Learns What’s in a
Name. Machine Learning, Special Issue on Natural Language Learning 34, 1-3 (Feb.).

BriLL, E. 1992. A simple rule-based part-of-speech tagger. In Proceedings of the Third Conference
on Applied Natural Language Processing. Trento, Italy.

CUNNINGHAM, H. 2002. GATE, a General Architecture for Text Engineering. Computers and the
Humanities 36, 223—-254.

CUNNINGHAM, H., MAYNARD, D., BONTCHEVA, K., AND TABLAN, V. 2002. GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications. In Proceed-
ings of the 40th Anniversary Meeting of the Association for Computational Linguistics.

CUNNINGHAM, H., MAYNARD, D., AND TABLAN, V. 2000. JAPE: a Java Annotation Patterns
Engine (Second Edition). Research Memorandum CS—00-10, Department of Computer Science,
University of Sheffield. Nov.

Hawmza, O., V.TABLAN, D. M., Ursu, C., CUNNINGHAM, H., AND WILKS, Y. 2002. Named Entity
Recognition in Romanian. Tech. rep., Department of Computer Science, University of Sheffield.

MAYNARD, D., TABLAN, V., BONTCHEVA, K., CUNNINGHAM, H., AND Y.WILKS. 2003. Multi-

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003.

Rapid customisation of an Information Extraction system for surprise languages . 21

source entity recognition — an information extraction system for diverse text types. Research
Memorandum CS—-03-02, Department of Computer Science, University of Sheffield. April.

MAYNARD, D., TABLAN, V., CUNNINGHAM, H., Ursu, C., SAGGION, H., BONTCHEVA, K., AND
WILKS, Y. 2002. Architectural elements of language engineering robustness. Journal of Natural
Language Engineering — Special Issue on Robust Methods in Analysis of Natural Language
Data 8, 2/3, 257-274.

PALMER, D. AND DAy, D. 1997. A statistical profile of the named entity task. In Proceedings of
the Fifth Conference on Applied Natural Language Processing (ANLP). Washington, D.C.
PASTRA, K., MAYNARD, D., CUNNINGHAM, H., HAMzA, O., AND WILKS, Y. 2002. How feasible is
the reuse of grammars for named entity recognition? In Proceedings of 3rd Language Resources

and Evaluation Conference.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2003.

