
Perceptron Learning for Chinese Word Segmentation

Yaoyong Li†, Chuanjiang Miao‡, Kalina Bontcheva†, Hamish Cunningham†

†Department of Computer Science, The University of Sheffield, Sheffield, S1 4DP, UK
{yaoyong,kalina,hamish}@dcs.shef.ac.uk

‡Institute of Chinese Information Processing, Beijing Normal University, Beijing, 100875, China
miaochj@bnu.edu.cn

Abstract

We explored a simple, fast and effective
learning algorithm, the uneven margins
Perceptron, for Chinese word segmen-
tation. We adopted the character-based
classification framework and trans-
formed the task into several binary clas-
sification problems. We participated
the close and open tests for all the four
corpora. For the open test we only used
the utf-8 code knowledge for discrimi-
nation among Latin characters, Arabic
numbers and all other characters. Our
system performed well on the as, cityu
and msr corpora but was clearly worse
than the best result on the pku corpus.

1 Introduction

We participated in the closed and open tests for
all the four corpora, referred to as, cityu, msr and
pku, respectively. We adopted the character-based
methodology for Chinese word segmentation, that
processed text character by character. We ex-
plored a simple and effective learning algorithm,
the Perceptron with Uneven Margins (PAUM) for
Chinese word segmentation task.

For the open task, we only used the minimal ex-
ternal information – the utf-8 code knowledge to
distinguish Latin characters and Arabic numbers
from other characters, justified by the fact that
the English text requires no segmentation since
they has been segmented already, and another fact
that any Arabic number in one particular context
should have the same segmentation.

2 Character Based Chinese Word
Segmentation

We adopted the character based methodology for
Chinese word segmentation, in which every char-
acter in a sentence was checked one by one to
see if it was a word on its own or it was begin-
ning, middle, or end character of a multi-character
word. In contrast, another commonly used strat-
egy, the word based methodology segments a Chi-
nese sentence into the words in a pre-defined
word list possibly with probability information
about each word, according to some maximum
probability criteria (see e.g. Chen (2003)). The
performance of word based segmentation is de-
pendent upon the quality of word list used, while
the character based method does not need any
word list – it segments a sentence only based on
the characters in the sentence.

Using character based methodology, we trans-
form the word segmentation problem into four
binary classification problems, corresponding to
single-character word, the beginning, middle and
end character of multi-character word, respec-
tively. For each of the four classes a classifier was
learnt from training set using the one vs. all others
paradigm, in which every character in the train-
ing data belonging to the class considered was re-
garded as positive example and all other charac-
ters were negative examples.

After learning, we applied the four classifiers to
each character in test text and assigned the char-
acter the class which classifier had the maximal
output among the four. This kind of strategy has
been widely used in the applications of machine
learning to named entity recognition and has also

been used in Chinese word segmentation (Xue
and Shen, 2003). Finally a word delimiter (often a
blank space, depending on particular corpus) was
added to the right of one character if it was not the
last character of a sentence and it was predicted
as end character of word or as a single character
word.

3 Learning Algorithm

Perceptron is a simple and effective learning al-
gorithm. For a binary classification problem, it
checks the training examples one by one by pre-
dicting their labels. If the prediction is correct,
the example is passed; otherwise, the example is
used to correct the model. The algorithm stops
when the model classifies all training examples
correctly. The margin Perceptron not only classi-
fies every training example correctly but also out-
puts for every training example a value (before
thresholding) larger than a predefined parameter
(margin). The margin Perceptron has better gen-
eralisation capability than the standard Percep-
tron. Li et al. (2002) proposed the Perceptron al-
gorithm with uneven margins (PAUM) by intro-
ducing two margin parameters τ+ and τ− into the
update rules for the positive and negative exam-
ples, respectively. Two margin parameters allow
the PAUM to handle imbalanced datasets better
than both the standard Perceptron and the margin
Perceptron. PAUM has been successfully used for
document classification and information extrac-
tion (Li et al., 2005).

We used the PAUM algorithm to train a clas-
sifier for each of four classes for Chinese word
segmentation. For one test example, the output of
the Perceptron classifier before thresholding was
used for comparison among the four classifiers.
The important parameters of the learning algo-
rithm are the uneven margins parameters τ+ and
τ−. In all our experiments τ+ = 20 and τ− = 1

were used.
Table 1 presents the results for each of the

four classification problems, obtained from 4-fold
cross-validation on training set. Not surprisingly,
the classification for middle character of multi-
character word was much harder than other three
classification problems, since middle character of
Chinese word is less characteristic than beginning
or end character or single-character word. On the

other hand, improvement on the classification for
middle character, while keeping the performances
of other classification, would improve the overall
performance of segmentation.

Table 1: Results for each of the four classifiers:
F1 (%) averaged over 4-fold cross-validation on
training sets of the four corpora. C1, C2 and
C3 refer to the classifier for beginning, middle
and end character of multi-character word, re-
spectively, and C4 refers to the classifier for single
character word.

C1 C2 C3 C4
as 95.64 90.07 95.47 95.27
cityu 96.64 90.06 96.43 95.14
msr 96.36 89.79 96.00 94.99
pku 96.09 89.99 96.18 94.12

Support vector machines (SVM) is a popular
learning algorithm, which has been successfully
applied to many classification problems in natural
language processing. Similar to the PAUM, SVM
is a maximal margin algorithm. Table 2 presents
a comparison of performances and computation
times between the PAUM and the SVM with lin-
ear kernel1 on three subsets of cityu corpora with
different sizes. The performance of SVM was
better than the PAUM. However, the larger the
training data was, the closer the performance of
PAUM to that of SVM. On the other hand, SVM
took much longer computation time than PAUM.
As a matter of fact, we have run the SVM with
linear kernel on the whole cityu training corpus
using 4-fold cross-validation for one month and it
has not finished yet. In contrast, PAUM just took
about one hour to run the same experiment.

4 Features for Each Character

In our system every character was regarded as
one instance for classification. The features for
one character were the character form itself and
the character forms of the two preceding and
the two following characters of the current one.
In other word, the features for one character c0

were the character forms from a context win-
1The SVMlight package version 5.0, available from

http://svmlight.joachims.org/, was used to learn the SVM
classifiers in our experiments.

Table 2: Comparison of the Perceptron with SVM
for Chinese word segmentation: averaged F1 (%)
over the 4-fold cross-validation on three subsets
of cityu corpus and the computation time (in sec-
ond) for each experiment. The three subsets have
100, 1000 and 5000 sentences, respectively.

100 1000 5000
PAUM 73.55 78.00 88.08

4s 14s 92s
SVM 75.50 79.15 88.78

227s 3977s 49353s

dow centering at c0 and containing five char-
acters {c−2, c−1, c0, c1, c2} in a sentence. Our
experiments on training data showed that co-
occurrences of characters in the context win-
dow were helpful. Taking account of all co-
occurrences of characters in context window is
equivalent to using a quadratic kernel in Percep-
tron, while not using any co-occurrence amounts
to a linear kernel. Actually we can only use part
of co-occurrences as features, which can be re-
garded as some kind of semi-quadratic kernel.

Table 3 compares the three types of ker-
nel for Perceptron, where for the semi-
quadratic kernel we used the co-occurrences
of characters in context window as those
used in (Xue and Shen, 2003), namely
{c−2c−1, c−1c0, c0c1, c1c2, c−1c1}. It was
shown that the quadratic kernel gave much better
results than linear kernel and the semi-quadratic
kernel was slightly better than fully quadratic ker-
nel. Semi-quadratic kernel also led to less feature
and less computation time than fully quadratic
kernel. Therefore, this kind of semi-quadratic
kernel was used in our submissions.

Table 3: Comparisons between different kernels
for Perceptron: F1 (%) averaged over 4-fold
cross-validation on three training sets.

linear quadratic semi-quadratic
cityu 81.30 94.78 95.13
msr 79.80 94.78 94.93
pku 82.33 94.80 95.05

Actually it has been noted that quadratic ker-
nel for Perceptron, as well as for SVM, per-

formed better than linear kernel for informa-
tion extraction and other NLP tasks (see e.g.
Carreras et al. (2003)). However, quadratic ker-
nel was usually implemented in dual form for
Perceptron and it took very long time for train-
ing. We implemented the quadratic kernel for
Perceptron in primal form by encoding the linear
and quadratic features into feature vector explic-
itly. Actually our implementation performed even
slightly better than the Perceptron with quadratic
kernel as we used only part of quadratic features,
and it was still as efficient as the Perceptron with
linear kernel.

5 Open Test

While closed test required the participants only to
use the information presented in training material,
open test allowed to use any external information
or resources besides the training data. In our sub-
missions for the open test we just used the min-
imal external information, namely the utf-8 code
knowledge for identifying a piece of English text
or an Arabic number. and What we did by us-
ing this kind of knowledge was to pre-process the
text by replacing each piece of English text with
a symbol “E” and replacing every Arabic num-
ber with another symbol “N”. This kind of pre-
processing resulted in a smaller training data and
less computation time and yet slightly better per-
formance on training data, as shown in Table 4
which compares the results of collapsing the En-
glish text only and collapsing both the English
text and Arabic number with those for closed test.
Table 4 also presents the 95% confidence intervals
for the F-measures.

6 Results on Test Data

Table 5 presents our official results on test corpora
for both close and open tests. First, comparing
with the results in Table 4, the results on test set
are significantly different from the result using 4-
fold cross validation on training set for all the four
corpora. The test result was better than the results
on training set for the msr corpus but was worse
for other three corpora, especially for the pku cor-
pora. We suspected that this may be caused by
difference between training and test data, which
needs further investigation.

Table 4: Comparisons between the results for
close and open tests: averaged F1 (%) and the
95% confidence interval on the 4-fold cross-
validation on the training sets of four corpora and
the computation time (in hour) for each experi-
ment. “English” means only collapsing English
texts and “E & N” means collapsing both English
texts and Arabic numbers.

close test English E & N
as 95.53±0.46 95.65±0.47 95.78±0.46

8.88h 7.66h 7.07h
cityu 95.13 ±1.49 95.25 ±1.48 95.25 ±1.48

1.03h 0.86h 0.82h
msr 94.92 ±0.36 94.98 ±0.40 95.00 ±0.39

2.62h 1.69h 1.62h
pku 95.05 ±0.43 95.08 ±0.36 95.15 ±0.46

0.70h 0.63h 0.60h

Secondly, the test results for close and open
tests are close to each other on other three corpora
except the pku corpora, for which the result for
open test is clearly better than that for close test.
This was mainly because of different encoding
of Arabic number in training and test sets of the
pku corpus. Since Arabic number was encoded in
three bytes in training set but was encoded in one
byte in test set for the pku corpora, for close test
the trained model for Arabic number was not ap-
plicable to the Arabic numbers in test set. How-
ever, for open test, as we replaced Arabic num-
ber with one symbol in both training and test sets,
the different encoding of Arabic number in train-
ing and test sets could not cause any problem at
all, which led to better result. On the other hand,
our pre-processing with respect to the English text
and Arabic numbers seemed have slightly effect
on the F-measure for other three corpora.

Finally, comparing with the results of closed
test from other participants, our F1 figures were
no more than 0.008 lower than the best ones on
the as, cityu and msr corpora, but was 0.023 lower
than the best one on the pku corpus.

7 Conclusion

We applied the uneven margins Perceptron to Chi-
nese word segmentation. The learning algorithm
is simple, fast and effective. The results obtained

Table 5: The official results on test set: F-measure
(%) for close and open tests, respectively.

as cityu msr pku
close 94.4 93.6 95.6 92.7
open 94.8 93.6 95.4 93.8

are encouraging.
The performance of Perceptron was close to

that of the SVM on Chinese word segmentation
for large training data. On the other hand, the
Perceptron took much less computation time than
SVM. We implemented the Perceptron with semi-
quadratic kernel in primal form. Our implemen-
tation was both effective and efficient.

Our system performed well for the three of four
corpora, as, cityu and msr corpora. But it was
significantly worse than the best result on the pku
corpora, which needs further investigation.

Acknowledgements

This work is supported by the EU-funded SEKT
project (http://www.sekt-project.org).

References
X. Carreras, L. Màrquez, and L. Padró. 2003. Learn-

ing a perceptron-based named entity chunker via
online recognition feedback. In Proceedings of
CoNLL-2003, pages 156–159. Edmonton, Canada.

A. Chen. 2003. Chinese Word Segmentation Using
Minimal Linguistic Knowledge. In Proceedings of
the 2nd SIGHAN Workshop on Chinese Language
Processing.

Y. Li, H. Zaragoza, R. Herbrich, J. Shawe-Taylor, and
J. Kandola. 2002. The Perceptron Algorithm with
Uneven Margins. In Proceedings of the 9th Inter-
national Conference on Machine Learning (ICML-
2002), pages 379–386.

Y. Li, K. Bontcheva, and H. Cunningham. 2005. Us-
ing Uneven Margins SVM and Perceptron for Infor-
mation Extraction. In Proceedings of Ninth Confer-
ence on Computational Natural Language Learning
(CoNLL-2005).

N. Xue and L. Shen. 2003. Chinese Word Segmen-
tation as LMR Tagging. In Proceedings of the 2nd
SIGHAN Workshop on Chinese Language Process-
ing.

